organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Phenyl N-(5-chloro-2-nitro­phenyl)carbamate

aSchool of Pharmaceutical Sciences, Nanjing University of Technology, Puzhunan Road No. 30 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Puzhunan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: kaiguo@njut.edu.cn

(Received 6 June 2012; accepted 6 July 2012; online 25 July 2012)

In the title compound, C13H9ClN2O4, the dihedral angle between the benzene rings is 79.5 (1)°. The mean plane of the carbamate group makes angles of 7.4 (2) and 73.6 (2)° with the mean planes of the two benzene rings. In the crystal, weak C—H⋯O inter­actions are observed between the mol­ecules, connecting them into a two-dimensional network.

Related literature

For details of dovitinib, of which the title compound is a derivative, see: Huynh (2010[Huynh, H. (2010). Expert Opin. Emerg. Drugs, 15, 13-26.]). For the synthesis of the title compound, see: Bandgar et al. (2011[Bandgar, B. P., Sarangdhar, R. J., Khan, F., Mookkan, J., Shetty, P. & Singh, G. (2011). J. Med. Chem. 54, 5915-5926.]). For bond lengths, see: Zhu et al. (2007[Zhu, N., Tran, P., Bell, N. & Stevens, C. L. K. (2007). J. Chem. Crystallogr. 37, 670-683.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9ClN2O4

  • Mr = 292.67

  • Monoclinic, P 21 /c

  • a = 8.4760 (17) Å

  • b = 5.9270 (12) Å

  • c = 24.996 (5) Å

  • β = 94.77 (3)°

  • V = 1251.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.910, Tmax = 0.969

  • 2466 measured reflections

  • 2300 independent reflections

  • 1593 reflections with I > 2σ(I)

  • Rint = 0.084

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.155

  • S = 1.00

  • 2300 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O2i 0.93 2.48 3.312 (4) 150
C13—H13A⋯O1ii 0.93 2.56 3.419 (4) 154
Symmetry codes: (i) -x+2, -y+2, -z; (ii) x, y-1, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, C13H9ClN2O4, (I), is an important derivative of Dovitinib (Huynh, 2010). We report herein its crystal structure.

In the title compound, C13H9ClN2O4, the dihedral angle between the two benzene rings is 79.5 (1)° (Fig. 1). The angles between the mean plane of the carbamate group (N2/C7/O3/O4) and the two 6-membered benzene rings (C1–C6 and C8–C13) is 7.4° and 73.6°, respectively. Bond lengths are in normal ranges (Zhu et al., 2007). In the crystal structure, weak C—H···O (Table 1 )intermolecular interactions are observed which link the molecules into a two-dimensional network array (Fig. 2).

Related literature top

For details of dovitinib, of which the title compound is an important derivative [Rephrasing OK?], see: Huynh (2010). For the synthesis of the title compound, see: Bandgar et al. (2011). For bond lengths, see: Zhu et al. (2007).

Experimental top

5-chloro-2-nitroaniline (10.46 mmol, 1.80 g) and Et3N (1.5 ml) were dissolved in dichloromethane (30 ml). Phenyl carbonochloridate (19.23 mmol, 3.01 g) was added to the solution and the reaction mixture stired at room temperature for 5 h. The solution was washed with water (15 ml) for 3 times, dried and concentrated to get the crude. The crude was purified by ethanol to get the title compound (1.83 g) (Bandgar et al. 2011). pure: yellow solid. Crystals of the title compound for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically with C—H = 0.93 and N—H = 0.86 for aromatic and amine, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 times Ueq(C).

Structure description top

The title compound, C13H9ClN2O4, (I), is an important derivative of Dovitinib (Huynh, 2010). We report herein its crystal structure.

In the title compound, C13H9ClN2O4, the dihedral angle between the two benzene rings is 79.5 (1)° (Fig. 1). The angles between the mean plane of the carbamate group (N2/C7/O3/O4) and the two 6-membered benzene rings (C1–C6 and C8–C13) is 7.4° and 73.6°, respectively. Bond lengths are in normal ranges (Zhu et al., 2007). In the crystal structure, weak C—H···O (Table 1 )intermolecular interactions are observed which link the molecules into a two-dimensional network array (Fig. 2).

For details of dovitinib, of which the title compound is an important derivative [Rephrasing OK?], see: Huynh (2010). For the synthesis of the title compound, see: Bandgar et al. (2011). For bond lengths, see: Zhu et al. (2007).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, (I), showing the atom-labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis. Dashed lines indicate weak C—H···O intermolecular interactions which link the molecules into a two-dimensional network array. Remaining H atoms have been omitted for clarity.
Phenyl N-(5-chloro-2-nitrophenyl)carbamate top
Crystal data top
C13H9ClN2O4F(000) = 600
Mr = 292.67Dx = 1.553 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.4760 (17) Åθ = 9–13°
b = 5.9270 (12) ŵ = 0.32 mm1
c = 24.996 (5) ÅT = 293 K
β = 94.77 (3)°Block, yellow
V = 1251.4 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1593 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.084
Graphite monochromatorθmax = 25.4°, θmin = 1.6°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 07
Tmin = 0.910, Tmax = 0.969l = 3030
2466 measured reflections3 standard reflections every 200 reflections
2300 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.155 w = 1/[σ2(Fo2) + (0.095P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2300 reflectionsΔρmax = 0.22 e Å3
182 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.022 (4)
Crystal data top
C13H9ClN2O4V = 1251.4 (4) Å3
Mr = 292.67Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4760 (17) ŵ = 0.32 mm1
b = 5.9270 (12) ÅT = 293 K
c = 24.996 (5) Å0.30 × 0.20 × 0.10 mm
β = 94.77 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1593 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.084
Tmin = 0.910, Tmax = 0.9693 standard reflections every 200 reflections
2466 measured reflections intensity decay: 1%
2300 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.00Δρmax = 0.22 e Å3
2300 reflectionsΔρmin = 0.22 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.57503 (11)0.19442 (15)0.05438 (3)0.0609 (3)
O11.0095 (3)0.7195 (4)0.14287 (9)0.0616 (7)
N10.9731 (3)0.7720 (4)0.09605 (10)0.0423 (6)
C10.7096 (3)0.2956 (5)0.04383 (11)0.0414 (7)
H1A0.66250.16370.05480.050*
O21.0200 (3)0.9469 (4)0.07710 (9)0.0662 (7)
N20.8211 (3)0.3679 (4)0.13502 (9)0.0459 (6)
H2A0.88000.45680.15520.055*
C20.6891 (3)0.3616 (5)0.00907 (11)0.0440 (7)
O30.6855 (3)0.0324 (4)0.14033 (8)0.0499 (6)
C30.7548 (4)0.5578 (5)0.02738 (12)0.0515 (8)
H3A0.73790.60010.06320.062*
O40.7949 (3)0.2174 (4)0.21348 (8)0.0523 (6)
C40.8447 (4)0.6877 (5)0.00832 (11)0.0455 (7)
H4A0.88950.82030.00330.055*
C50.8702 (3)0.6245 (5)0.06190 (11)0.0380 (7)
C60.8009 (3)0.4261 (5)0.08095 (11)0.0370 (6)
C70.7591 (3)0.1870 (5)0.16017 (11)0.0384 (7)
C80.7459 (3)0.0532 (5)0.24940 (10)0.0400 (7)
C90.6295 (4)0.1140 (5)0.28161 (12)0.0458 (7)
H9A0.57800.25210.27710.055*
C100.5908 (4)0.0359 (6)0.32108 (12)0.0546 (9)
H10A0.51240.00130.34340.066*
C110.6686 (4)0.2403 (6)0.32724 (12)0.0563 (9)
H11A0.64200.34050.35370.068*
C120.7838 (4)0.2955 (6)0.29484 (13)0.0575 (9)
H12A0.83570.43340.29930.069*
C130.8247 (4)0.1489 (5)0.25529 (12)0.0487 (8)
H13A0.90370.18630.23320.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0763 (6)0.0643 (6)0.0401 (5)0.0168 (4)0.0063 (4)0.0024 (4)
O10.0783 (17)0.0571 (14)0.0470 (14)0.0243 (12)0.0099 (11)0.0075 (11)
N10.0454 (14)0.0396 (14)0.0428 (14)0.0047 (11)0.0083 (11)0.0038 (11)
C10.0463 (17)0.0399 (16)0.0381 (15)0.0066 (13)0.0039 (12)0.0038 (13)
O20.0900 (18)0.0517 (14)0.0564 (15)0.0300 (13)0.0034 (12)0.0098 (11)
N20.0598 (16)0.0443 (14)0.0329 (13)0.0182 (12)0.0011 (11)0.0030 (11)
C20.0477 (18)0.0470 (17)0.0368 (16)0.0028 (14)0.0005 (12)0.0010 (13)
O30.0651 (14)0.0470 (12)0.0369 (11)0.0183 (11)0.0002 (9)0.0031 (9)
C30.067 (2)0.0513 (19)0.0356 (16)0.0035 (16)0.0020 (14)0.0082 (14)
O40.0728 (15)0.0521 (13)0.0311 (11)0.0239 (11)0.0018 (10)0.0077 (9)
C40.0550 (18)0.0428 (17)0.0391 (16)0.0037 (14)0.0059 (13)0.0097 (13)
C50.0383 (15)0.0365 (15)0.0394 (15)0.0021 (12)0.0050 (12)0.0005 (12)
C60.0396 (15)0.0377 (15)0.0338 (14)0.0009 (12)0.0038 (11)0.0032 (12)
C70.0391 (15)0.0413 (16)0.0344 (15)0.0010 (13)0.0010 (12)0.0036 (13)
C80.0473 (17)0.0441 (17)0.0276 (14)0.0128 (14)0.0021 (12)0.0062 (12)
C90.0500 (18)0.0413 (16)0.0452 (17)0.0027 (14)0.0006 (13)0.0022 (13)
C100.058 (2)0.067 (2)0.0403 (17)0.0212 (18)0.0119 (14)0.0078 (16)
C110.078 (2)0.054 (2)0.0351 (16)0.0228 (19)0.0020 (16)0.0113 (15)
C120.071 (2)0.0434 (19)0.055 (2)0.0017 (17)0.0110 (17)0.0074 (16)
C130.0496 (18)0.0526 (19)0.0437 (17)0.0007 (15)0.0033 (13)0.0023 (14)
Geometric parameters (Å, º) top
Cl—C21.737 (3)O4—C81.410 (3)
O1—N11.226 (3)C4—C51.390 (4)
N1—O21.220 (3)C4—H4A0.9300
N1—C51.459 (4)C5—C61.415 (4)
C1—C21.376 (4)C8—C91.372 (4)
C1—C61.392 (4)C8—C131.374 (4)
C1—H1A0.9300C9—C101.387 (4)
N2—C71.369 (4)C9—H9A0.9300
N2—C61.391 (3)C10—C111.382 (5)
N2—H2A0.8600C10—H10A0.9300
C2—C31.384 (4)C11—C121.360 (5)
O3—C71.193 (3)C11—H11A0.9300
C3—C41.363 (4)C12—C131.382 (4)
C3—H3A0.9300C12—H12A0.9300
O4—C71.354 (3)C13—H13A0.9300
O2—N1—O1121.5 (3)N2—C6—C5120.8 (2)
O2—N1—C5118.7 (2)C1—C6—C5117.4 (2)
O1—N1—C5119.8 (2)O3—C7—O4125.3 (3)
C2—C1—C6120.1 (3)O3—C7—N2128.2 (3)
C2—C1—H1A119.9O4—C7—N2106.6 (2)
C6—C1—H1A119.9C9—C8—C13122.2 (3)
C7—N2—C6128.3 (2)C9—C8—O4117.2 (3)
C7—N2—H2A115.9C13—C8—O4120.3 (3)
C6—N2—H2A115.9C8—C9—C10118.2 (3)
C1—C2—C3122.3 (3)C8—C9—H9A120.9
C1—C2—Cl118.9 (2)C10—C9—H9A120.9
C3—C2—Cl118.8 (2)C11—C10—C9120.2 (3)
C4—C3—C2118.5 (3)C11—C10—H10A119.9
C4—C3—H3A120.8C9—C10—H10A119.9
C2—C3—H3A120.8C12—C11—C10120.3 (3)
C7—O4—C8118.8 (2)C12—C11—H11A119.9
C3—C4—C5120.8 (3)C10—C11—H11A119.9
C3—C4—H4A119.6C11—C12—C13120.7 (3)
C5—C4—H4A119.6C11—C12—H12A119.7
C4—C5—C6120.8 (3)C13—C12—H12A119.7
C4—C5—N1116.1 (2)C8—C13—C12118.5 (3)
C6—C5—N1123.1 (2)C8—C13—H13A120.8
N2—C6—C1121.8 (2)C12—C13—H13A120.8
C6—C1—C2—C30.9 (5)C4—C5—C6—C11.3 (4)
C6—C1—C2—Cl179.8 (2)N1—C5—C6—C1177.7 (3)
C1—C2—C3—C41.0 (5)C8—O4—C7—O31.5 (4)
Cl—C2—C3—C4179.7 (2)C8—O4—C7—N2179.5 (2)
C2—C3—C4—C50.1 (5)C6—N2—C7—O36.6 (5)
C3—C4—C5—C61.3 (5)C6—N2—C7—O4172.3 (3)
C3—C4—C5—N1177.8 (3)C7—O4—C8—C9111.0 (3)
O2—N1—C5—C45.3 (4)C7—O4—C8—C1375.8 (3)
O1—N1—C5—C4175.2 (3)C13—C8—C9—C100.4 (4)
O2—N1—C5—C6175.6 (3)O4—C8—C9—C10173.4 (2)
O1—N1—C5—C63.9 (4)C8—C9—C10—C110.0 (4)
C7—N2—C6—C10.6 (5)C9—C10—C11—C120.3 (5)
C7—N2—C6—C5178.0 (3)C10—C11—C12—C130.1 (5)
C2—C1—C6—N2178.4 (3)C9—C8—C13—C120.5 (4)
C2—C1—C6—C50.2 (4)O4—C8—C13—C12173.3 (3)
C4—C5—C6—N2177.3 (3)C11—C12—C13—C80.2 (5)
N1—C5—C6—N23.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O2i0.932.483.312 (4)150
C13—H13A···O1ii0.932.563.419 (4)154
Symmetry codes: (i) x+2, y+2, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC13H9ClN2O4
Mr292.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.4760 (17), 5.9270 (12), 24.996 (5)
β (°) 94.77 (3)
V3)1251.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.910, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
2466, 2300, 1593
Rint0.084
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.155, 1.00
No. of reflections2300
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O2i0.932.483.312 (4)150
C13—H13A···O1ii0.932.563.419 (4)154
Symmetry codes: (i) x+2, y+2, z; (ii) x, y1, z.
 

Acknowledgements

This research work was financially supported by the School of Pharmaceutical Science, Nanjing University of Technology, and the National Key Basic Research Program of China (973 Program) (grant Nos. 2011CB710803 and 2012CB725204).

References

First citationBandgar, B. P., Sarangdhar, R. J., Khan, F., Mookkan, J., Shetty, P. & Singh, G. (2011). J. Med. Chem. 54, 5915–5926.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEnraf–Nonius (1994). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHuynh, H. (2010). Expert Opin. Emerg. Drugs, 15, 13–26.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, N., Tran, P., Bell, N. & Stevens, C. L. K. (2007). J. Chem. Crystallogr. 37, 670–683.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds