organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S,E)-3-[(2-Hy­dr­oxy­benzyl­­idene)amino]-2-(2-hy­dr­oxy­phen­yl)-2,3-di­hydro­quinazolin-4(1H)-one

aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bCentre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS-UPR2301, 1 Avenue la Terrasse, 91198 Gif sur Yvette, France
*Correspondence e-mail: mlgayeastou@yahoo.fr

(Received 14 June 2012; accepted 1 July 2012; online 7 July 2012)

In the title compound, C21H17N3O3, the dihydro­quinazoline ring adopts a screw-boat conformation and its stereogenic C atom has an S configuration. The dihedral angle between the mean planes of the two hy­droxy­phenyl rings is 86.61 (12)°. The amino H atom forms an intra­molecular hydrogen bond with a phenol O atom, while the hydrazine N atom acts as an acceptor for the H atom of the other phenol group. In the crystal, O—H⋯N and O—H⋯O hydrogen bonds and weak C—H⋯centroid(π-ring) inter­molecular inter­actions are observed, forming chains along [1-10] and [110].

Related literature

For related structures and their biological properties, see: Rádl et al. (2000[Rádl, S., Hezky, P., Proška, J. & Krejci, I. (2000). Arch. Pharm. (Weinheim Ger.), 333, 381-386.]); Andries et al. (2005[Andries, K. et al. (2005). Science, 307, 223-227.]); Alagarsamy et al. (2006[Alagarsamy, V., Giridhar, R., Yadav, M. R., Revathi, R., Ruckmani, K. & De Clercq, E. (2006). Indian J. Pharm. Sci. 68, 532-535.]); Ghorab et al. (2007[Ghorab, M. M., Ragab, F. A., Noaman, E., Heiba, H. I. & El-Hossary, E. M. (2007). Arzneim. Forsch. Drug. Res. 58, 35-41.]); El-Azab et al. (2010[El-Azab, A. S., Al-Omar, M. A., Abdel-Aziz, A. A.-M., Abdel-Aziz, N. I., El-Sayed, M. A.-A., Aleisa, A. M., Sayed-Ahmed, M. M. & Abdel-Hamide, S. G. (2010). Eur. J. Med. Chem. 45, 4188-4198.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For determination of the absolute configuration, see: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]).

[Scheme 1]

Experimental

Crystal data
  • C21H17N3O3

  • Mr = 359.38

  • Orthorhombic, C 2221

  • a = 13.344 (15) Å

  • b = 10.693 (14) Å

  • c = 23.537 (13) Å

  • V = 3358 (6) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.79 mm−1

  • T = 193 K

  • 0.41 × 0.34 × 0.16 mm

Data collection
  • Rigaku RAPID II R-AXIS conversion diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.720, Tmax = 0.889

  • 15117 measured reflections

  • 2947 independent reflections

  • 2758 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.098

  • S = 1.07

  • 2947 reflections

  • 250 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1258 Friedel pairs

  • Flack parameter: 0.0 (2)

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C16–C21 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯N3 0.84 1.95 2.704 (4) 148
O2—H2O⋯O1i 0.84 1.73 2.555 (3) 168
C4—H4⋯Cg3ii 0.93 2.64 3.546 (5) 160
C5—H5⋯Cg3iii 0.93 2.91 3.705 (5) 141
Symmetry codes: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: CrystalClear-SM Expert (Rigaku, 2009[Rigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) interfaced by CRYSTALBUILDER (Welter, 2006[Welter, R. (2006). Acta Cryst. A62, s252.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON.

Supporting information


Comment top

Quinazolinone derivatives give rise to a large spectrum of biological properties such as analgesic (Rádl et al., 2000), antitubercular (Andries et al., 2005), antibacterial (Alagarsamy et al., 2006), anticancer activities (Ghorab et al., 2007) and anti-convulsant activity (El-Azab et al., 2010). We report here the crystal structure of the title compound, (I), and its absolute configuration. In the asymmetric unit of (I), the dihydroquinazolin ring adopts a screw-boat conformation with puckering parameters Q, θ, and φ of 0.4408 (18) Å, 64.1 (2)° and 41.9 (3)°, respectively (Cremer & Pople, 1975). The compound assumes an E configuration about the CN double bond and its stereogenic C atom has an S configuration (Flack, 1983; Hooft et al., 2008) (Fig. 1). The amino H atom forms an intramolecular hydrogen bond with a phenolic O atom while the hydrazino N acts as acceptor for the H atom of the other phenolic group. The dihedral angle between the 2-hydroxyphenyl rings is 86.61 (12)°. O—H···N and O—H···O hydrogen bonds and weak C—H···Cg π-ring intermolecular interactions are observed (Table 1) forming chains along [110] and [110] showing a corrugated layered structure in the ab plane which contributes to crystal packing stability (Fig. 2).

Related literature top

For related structures and their biological properties, see: Rádl et al. (2000); Andries et al. (2005); Alagarsamy et al. (2006); Ghorab et al. (2007); El-Azab et al. (2010). For puckering parameters, see: Cremer & Pople (1975). For determination of the absolute configuration, see: Flack (1983); Hooft et al. (2008).

Experimental top

o-Aminobenzoylhydrazine (0.302 g, 2 mmol) was dissolved in 5 ml ethanol and salicylaldehyde (0.488 g, 4 mmol) was added with thorough shaking. The mixture was heated under reflux during 2 h. On cooling, crystals that separated from the yellow solution were filtered off and recrystallized in methanol. Crystals suitable for X-ray analysis were obtained after 2 d. Yield: 73.5%. Anal. Calc. for [C21H17N3O3] (%): C, 70.18; H, 4.77; N, 11.69. Found: C, 70.16; H, 4.75; N, 11.71.

Refinement top

All H atoms were located in difference maps. The hydroxyl ones and those attached to the C atoms were then treated as riding in geometrically idealized positions, with O—H = 0.82 (AFIX 147), C—H = 0.93 (aromatic), and 0.98 Å (aliphatic), and with Uiso(H) = kUeq(C, O), where k = 1.2, and 1.5 for the O atoms. The amino H atom was freely refined except for the isotropic displacement parameter constrained to Uiso(H) = 1.2Ueq(N). The Flack parameter was x = 0.0 (2) (Flack, 1983). Further analysis of the absolute structure in absence of atoms heavier than oxygen was performed using likelihood methods (Hooft et al., 2008) with PLATON (Spek, 2009). A total of 1258 Bijvoet pairs (coverage of 0.94) were included in the calculations. The resulting value of the Hooft parameter was y = -0.10 (8), with a P3 probability for an inverted structure smaller than 0.9 × 10-43. These results indicated that the absolute structure has been correctly assigned.

Structure description top

Quinazolinone derivatives give rise to a large spectrum of biological properties such as analgesic (Rádl et al., 2000), antitubercular (Andries et al., 2005), antibacterial (Alagarsamy et al., 2006), anticancer activities (Ghorab et al., 2007) and anti-convulsant activity (El-Azab et al., 2010). We report here the crystal structure of the title compound, (I), and its absolute configuration. In the asymmetric unit of (I), the dihydroquinazolin ring adopts a screw-boat conformation with puckering parameters Q, θ, and φ of 0.4408 (18) Å, 64.1 (2)° and 41.9 (3)°, respectively (Cremer & Pople, 1975). The compound assumes an E configuration about the CN double bond and its stereogenic C atom has an S configuration (Flack, 1983; Hooft et al., 2008) (Fig. 1). The amino H atom forms an intramolecular hydrogen bond with a phenolic O atom while the hydrazino N acts as acceptor for the H atom of the other phenolic group. The dihedral angle between the 2-hydroxyphenyl rings is 86.61 (12)°. O—H···N and O—H···O hydrogen bonds and weak C—H···Cg π-ring intermolecular interactions are observed (Table 1) forming chains along [110] and [110] showing a corrugated layered structure in the ab plane which contributes to crystal packing stability (Fig. 2).

For related structures and their biological properties, see: Rádl et al. (2000); Andries et al. (2005); Alagarsamy et al. (2006); Ghorab et al. (2007); El-Azab et al. (2010). For puckering parameters, see: Cremer & Pople (1975). For determination of the absolute configuration, see: Flack (1983); Hooft et al. (2008).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2009); cell refinement: CrystalClear-SM Expert (Rigaku, 2009); data reduction: CrystalClear-SM Expert (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) interfaced by CRYSTALBUILDER (Welter, 2006); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 50% probability level.
[Figure 2] Fig. 2. Molecular representation of the compound viewed along the c axis. Cyan dashed lines represent O—H···O hydrogen bonds and violet dashed lines indicate weak C—H···Cg π-ring intermolecular interactions.
(S,E)-3-[(2-Hydroxybenzylidene)amino]-2-(2-hydroxyphenyl)- 2,3-dihydroquinazolin-4(1H)-one top
Crystal data top
C21H17N3O3F(000) = 1504
Mr = 359.38Dx = 1.422 Mg m3
Orthorhombic, C2221Cu Kα radiation, λ = 1.54187 Å
Hall symbol: C 2c 2Cell parameters from 7031 reflections
a = 13.344 (15) Åθ = 1.9–68.2°
b = 10.693 (14) ŵ = 0.79 mm1
c = 23.537 (13) ÅT = 193 K
V = 3358 (6) Å3Block, colourless
Z = 80.41 × 0.34 × 0.16 mm
Data collection top
Rigaku RAPID II R-AXIS conversion
diffractometer
2947 independent reflections
Radiation source: fine-focus rotating anode2758 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
profile data from ω scansθmax = 68.2°, θmin = 3.8°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1616
Tmin = 0.720, Tmax = 0.889k = 1211
15117 measured reflectionsl = 2827
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.056P)2 + 1.1889P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.18 e Å3
2947 reflectionsΔρmin = 0.21 e Å3
250 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00069 (11)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with 1258 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.0 (2)
Crystal data top
C21H17N3O3V = 3358 (6) Å3
Mr = 359.38Z = 8
Orthorhombic, C2221Cu Kα radiation
a = 13.344 (15) ŵ = 0.79 mm1
b = 10.693 (14) ÅT = 193 K
c = 23.537 (13) Å0.41 × 0.34 × 0.16 mm
Data collection top
Rigaku RAPID II R-AXIS conversion
diffractometer
2947 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2758 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 0.889Rint = 0.039
15117 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098Δρmax = 0.18 e Å3
S = 1.07Δρmin = 0.21 e Å3
2947 reflectionsAbsolute structure: Flack (1983), with 1258 Friedel pairs
250 parametersAbsolute structure parameter: 0.0 (2)
0 restraints
Special details top

Experimental. Selected IR data (cm-1, KBr pellet): 3400, 3216, 1730, 1650, 1582, 1458, 764.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.49079 (10)0.40376 (14)0.35557 (7)0.0471 (4)
O20.15925 (9)0.01452 (15)0.36712 (6)0.0432 (4)
H2O0.11000.03000.36210.052*
O30.3763 (2)0.6657 (2)0.43629 (9)0.0793 (7)
H3O0.38610.59280.42700.119*
N10.34660 (10)0.08134 (15)0.39518 (6)0.0305 (3)
H1N0.3110 (16)0.005 (2)0.3973 (9)0.037*
N20.35606 (10)0.31007 (15)0.38330 (7)0.0320 (4)
N30.32933 (12)0.43142 (16)0.40226 (7)0.0372 (4)
C10.29276 (12)0.19782 (16)0.38113 (8)0.0288 (4)
H10.24010.20850.40980.035*
C20.42664 (12)0.06210 (18)0.36295 (8)0.0314 (4)
C30.46168 (13)0.06173 (19)0.35216 (9)0.0382 (5)
H30.42820.13100.36670.046*
C40.54310 (14)0.0748 (2)0.32088 (9)0.0458 (5)
H40.56820.15350.31200.055*
C50.59031 (15)0.0343 (2)0.30160 (10)0.0480 (6)
H50.64750.02510.27940.058*
C60.55737 (14)0.1572 (2)0.31343 (9)0.0415 (5)
H60.59280.22600.29990.050*
C70.47477 (13)0.17286 (19)0.34431 (8)0.0345 (4)
C80.44402 (13)0.30414 (18)0.36033 (8)0.0341 (4)
C90.24182 (11)0.18717 (17)0.32475 (8)0.0281 (4)
C100.25851 (13)0.26696 (18)0.27833 (8)0.0326 (4)
H100.30380.33260.28210.039*
C110.21035 (14)0.2508 (2)0.22803 (8)0.0385 (5)
H110.22230.30390.19750.046*
C120.14367 (14)0.1541 (2)0.22371 (9)0.0405 (5)
H120.11000.14110.18960.049*
C130.12505 (13)0.0739 (2)0.26992 (8)0.0355 (4)
H130.07930.00890.26600.043*
C140.17329 (12)0.09045 (18)0.32014 (8)0.0313 (4)
C150.24436 (16)0.45674 (19)0.41379 (8)0.0398 (5)
H150.19380.39790.40860.048*
C160.2200 (2)0.5842 (2)0.43671 (9)0.0511 (6)
C170.1267 (2)0.6088 (3)0.44981 (11)0.0760 (10)
H170.07720.54930.44300.091*
C180.1004 (4)0.7261 (5)0.47435 (13)0.1121 (18)
H180.03300.73950.48250.135*
C190.1639 (5)0.8182 (4)0.48665 (14)0.119 (2)
H190.14300.89190.50400.143*
C200.2560 (4)0.7988 (3)0.47299 (11)0.0920 (13)
H200.30410.86030.47910.110*
C210.2836 (3)0.6810 (3)0.44825 (10)0.0665 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0269 (6)0.0451 (8)0.0693 (10)0.0139 (6)0.0023 (6)0.0087 (8)
O20.0262 (7)0.0524 (9)0.0510 (8)0.0173 (6)0.0047 (6)0.0142 (7)
O30.1221 (19)0.0582 (12)0.0577 (12)0.0448 (12)0.0036 (12)0.0071 (10)
N10.0215 (7)0.0338 (9)0.0362 (8)0.0038 (6)0.0006 (6)0.0028 (7)
N20.0227 (7)0.0335 (9)0.0399 (8)0.0067 (6)0.0011 (6)0.0027 (7)
N30.0384 (9)0.0357 (9)0.0374 (8)0.0059 (7)0.0025 (7)0.0016 (7)
C10.0215 (7)0.0305 (10)0.0344 (9)0.0040 (7)0.0027 (7)0.0000 (8)
C20.0199 (8)0.0429 (11)0.0314 (9)0.0012 (7)0.0019 (7)0.0001 (8)
C30.0260 (9)0.0424 (11)0.0461 (11)0.0003 (8)0.0039 (8)0.0030 (10)
C40.0293 (9)0.0570 (14)0.0513 (12)0.0113 (9)0.0021 (8)0.0075 (11)
C50.0242 (9)0.0714 (16)0.0483 (12)0.0063 (9)0.0037 (8)0.0000 (12)
C60.0205 (9)0.0598 (13)0.0443 (12)0.0021 (8)0.0015 (8)0.0080 (10)
C70.0223 (8)0.0452 (11)0.0360 (10)0.0027 (8)0.0042 (7)0.0052 (9)
C80.0239 (8)0.0406 (11)0.0378 (10)0.0070 (8)0.0051 (7)0.0051 (9)
C90.0164 (7)0.0310 (9)0.0370 (9)0.0018 (6)0.0015 (7)0.0023 (8)
C100.0217 (8)0.0348 (10)0.0413 (10)0.0003 (7)0.0035 (7)0.0021 (8)
C110.0283 (8)0.0512 (12)0.0360 (10)0.0040 (9)0.0030 (8)0.0087 (9)
C120.0287 (9)0.0524 (13)0.0405 (10)0.0083 (9)0.0070 (8)0.0051 (9)
C130.0229 (8)0.0360 (10)0.0477 (11)0.0001 (7)0.0068 (8)0.0056 (9)
C140.0212 (8)0.0309 (10)0.0416 (10)0.0005 (7)0.0009 (7)0.0006 (8)
C150.0427 (11)0.0393 (11)0.0376 (10)0.0027 (9)0.0060 (9)0.0039 (8)
C160.0797 (16)0.0419 (13)0.0317 (10)0.0166 (12)0.0107 (10)0.0029 (9)
C170.088 (2)0.093 (2)0.0472 (14)0.0530 (18)0.0220 (14)0.0189 (14)
C180.158 (4)0.125 (3)0.0533 (17)0.105 (3)0.035 (2)0.033 (2)
C190.239 (6)0.072 (3)0.0467 (18)0.086 (3)0.030 (3)0.0183 (17)
C200.198 (4)0.0386 (17)0.0398 (14)0.003 (2)0.017 (2)0.0004 (12)
C210.120 (3)0.0441 (15)0.0353 (12)0.0033 (16)0.0030 (14)0.0052 (10)
Geometric parameters (Å, º) top
O1—C81.240 (3)C7—C81.510 (3)
O2—C141.385 (2)C9—C141.385 (3)
O2—H2O0.8200C9—C101.404 (3)
O3—C211.280 (4)C10—C111.358 (3)
O3—H3O0.8200C10—H100.9300
N1—C21.326 (3)C11—C121.368 (3)
N1—C11.475 (3)C11—H110.9300
N1—H1N0.95 (2)C12—C131.407 (3)
N2—C81.294 (3)C12—H120.9300
N2—N31.418 (3)C13—C141.358 (3)
N2—C11.469 (3)C13—H130.9300
N3—C151.197 (3)C15—C161.501 (3)
C1—C91.495 (3)C15—H150.9300
C1—H10.9800C16—C171.310 (4)
C2—C71.417 (3)C16—C211.365 (4)
C2—C31.427 (3)C17—C181.425 (5)
C3—C41.320 (3)C17—H170.9300
C3—H30.9300C18—C191.331 (7)
C4—C51.401 (4)C18—H180.9300
C4—H40.9300C19—C201.288 (6)
C5—C61.414 (4)C19—H190.9300
C5—H50.9300C20—C211.436 (5)
C6—C71.331 (3)C20—H200.9300
C6—H60.9300
C14—O2—H2O109.5C10—C9—C1124.91 (16)
C21—O3—H3O109.5C11—C10—C9121.75 (18)
C2—N1—C1113.27 (15)C11—C10—H10119.1
C2—N1—H1N107.5 (13)C9—C10—H10119.1
C1—N1—H1N119.7 (12)C10—C11—C12117.93 (19)
C8—N2—N3113.87 (15)C10—C11—H11121.0
C8—N2—C1117.86 (16)C12—C11—H11121.0
N3—N2—C1127.89 (15)C11—C12—C13121.21 (18)
C15—N3—N2121.12 (17)C11—C12—H12119.4
N2—C1—N1113.71 (16)C13—C12—H12119.4
N2—C1—C9110.76 (15)C14—C13—C12120.64 (18)
N1—C1—C9110.85 (14)C14—C13—H13119.7
N2—C1—H1107.1C12—C13—H13119.7
N1—C1—H1107.1C13—C14—O2123.69 (17)
C9—C1—H1107.1C13—C14—C9118.61 (18)
N1—C2—C7114.36 (18)O2—C14—C9117.69 (16)
N1—C2—C3120.64 (17)N3—C15—C16119.5 (2)
C7—C2—C3124.88 (17)N3—C15—H15120.3
C4—C3—C2117.8 (2)C16—C15—H15120.3
C4—C3—H3121.1C17—C16—C21113.1 (3)
C2—C3—H3121.1C17—C16—C15118.2 (3)
C3—C4—C5117.6 (2)C21—C16—C15128.7 (3)
C3—C4—H4121.2C16—C17—C18120.4 (4)
C5—C4—H4121.2C16—C17—H17119.8
C4—C5—C6124.8 (2)C18—C17—H17119.8
C4—C5—H5117.6C19—C18—C17125.6 (4)
C6—C5—H5117.6C19—C18—H18117.2
C7—C6—C5118.8 (2)C17—C18—H18117.2
C7—C6—H6120.6C20—C19—C18115.8 (3)
C5—C6—H6120.6C20—C19—H19122.1
C6—C7—C2116.1 (2)C18—C19—H19122.1
C6—C7—C8118.56 (18)C19—C20—C21119.1 (4)
C2—C7—C8125.20 (17)C19—C20—H20120.4
O1—C8—N2116.90 (19)C21—C20—H20120.4
O1—C8—C7129.74 (18)O3—C21—C16117.4 (3)
N2—C8—C7113.35 (16)O3—C21—C20116.6 (3)
C14—C9—C10119.84 (17)C16—C21—C20125.9 (4)
C14—C9—C1115.25 (16)
C8—N2—N3—C15164.97 (18)N2—C1—C9—C14174.44 (14)
C1—N2—N3—C157.7 (3)N1—C1—C9—C1458.4 (2)
C8—N2—C1—N144.5 (2)N2—C1—C9—C105.2 (2)
N3—N2—C1—N1143.08 (16)N1—C1—C9—C10122.02 (19)
C8—N2—C1—C981.11 (19)C14—C9—C10—C111.2 (3)
N3—N2—C1—C991.3 (2)C1—C9—C10—C11179.20 (17)
C2—N1—C1—N255.6 (2)C9—C10—C11—C120.4 (3)
C2—N1—C1—C969.98 (19)C10—C11—C12—C130.3 (3)
C1—N1—C2—C731.0 (2)C11—C12—C13—C140.2 (3)
C1—N1—C2—C3152.58 (17)C12—C13—C14—O2179.43 (16)
N1—C2—C3—C4178.41 (17)C12—C13—C14—C90.6 (3)
C7—C2—C3—C42.4 (3)C10—C9—C14—C131.3 (3)
C2—C3—C4—C51.3 (3)C1—C9—C14—C13179.12 (16)
C3—C4—C5—C60.3 (3)C10—C9—C14—O2179.83 (16)
C4—C5—C6—C71.1 (3)C1—C9—C14—O20.2 (2)
C5—C6—C7—C20.1 (3)N2—N3—C15—C16176.71 (16)
C5—C6—C7—C8175.72 (17)N3—C15—C16—C17179.0 (2)
N1—C2—C7—C6177.84 (17)N3—C15—C16—C211.5 (3)
C3—C2—C7—C61.6 (3)C21—C16—C17—C181.0 (4)
N1—C2—C7—C82.6 (3)C15—C16—C17—C18176.9 (2)
C3—C2—C7—C8173.65 (18)C16—C17—C18—C190.7 (5)
N3—N2—C8—O13.1 (2)C17—C18—C19—C202.5 (5)
C1—N2—C8—O1170.36 (16)C18—C19—C20—C212.3 (5)
N3—N2—C8—C7175.68 (14)C17—C16—C21—O3179.4 (2)
C1—N2—C8—C710.8 (2)C15—C16—C21—O33.1 (4)
C6—C7—C8—O110.5 (3)C17—C16—C21—C201.0 (4)
C2—C7—C8—O1164.6 (2)C15—C16—C21—C20176.6 (2)
C6—C7—C8—N2170.89 (17)C19—C20—C21—O3178.9 (3)
C2—C7—C8—N214.0 (3)C19—C20—C21—C160.7 (4)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of which? ring.
D—H···AD—HH···AD···AD—H···A
O3—H3O···N30.841.952.704 (4)148
O2—H2O···O1i0.841.732.555 (3)168
C4—H4···Cg3ii0.932.643.546 (5)160
C5—H5···Cg3iii0.932.913.705 (5)141
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+1/2, y1/2, z; (iii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H17N3O3
Mr359.38
Crystal system, space groupOrthorhombic, C2221
Temperature (K)193
a, b, c (Å)13.344 (15), 10.693 (14), 23.537 (13)
V3)3358 (6)
Z8
Radiation typeCu Kα
µ (mm1)0.79
Crystal size (mm)0.41 × 0.34 × 0.16
Data collection
DiffractometerRigaku RAPID II R-AXIS conversion
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.720, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
15117, 2947, 2758
Rint0.039
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.098, 1.07
No. of reflections2947
No. of parameters250
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.21
Absolute structureFlack (1983), with 1258 Friedel pairs
Absolute structure parameter0.0 (2)

Computer programs: CrystalClear-SM Expert (Rigaku, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) interfaced by CRYSTALBUILDER (Welter, 2006), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of which? ring.
D—H···AD—HH···AD···AD—H···A
O3—H3O···N30.841.952.704 (4)147.9
O2—H2O···O1i0.841.732.555 (3)168.0
C4—H4···Cg3ii0.932.643.546 (5)160
C5—H5···Cg3iii0.932.913.705 (5)141
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+1/2, y1/2, z; (iii) x+1, y, z+1/2.
 

References

First citationAlagarsamy, V., Giridhar, R., Yadav, M. R., Revathi, R., Ruckmani, K. & De Clercq, E. (2006). Indian J. Pharm. Sci. 68, 532–535.  CrossRef CAS Google Scholar
First citationAndries, K. et al. (2005). Science, 307, 223–227.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl-Azab, A. S., Al-Omar, M. A., Abdel-Aziz, A. A.-M., Abdel-Aziz, N. I., El-Sayed, M. A.-A., Aleisa, A. M., Sayed-Ahmed, M. M. & Abdel-Hamide, S. G. (2010). Eur. J. Med. Chem. 45, 4188–4198.  Web of Science CAS PubMed Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGhorab, M. M., Ragab, F. A., Noaman, E., Heiba, H. I. & El-Hossary, E. M. (2007). Arzneim. Forsch. Drug. Res. 58, 35–41.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRádl, S., Hezky, P., Proška, J. & Krejci, I. (2000). Arch. Pharm. (Weinheim Ger.), 333, 381–386.  Google Scholar
First citationRigaku (2009). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWelter, R. (2006). Acta Cryst. A62, s252.  CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds