organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A second monoclinic polymorph of N-[bis­­(morpholin-4-yl)phosphino­yl]-4-fluoro­benzamide with the P21/n space group

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran, and bDepartment of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
*Correspondence e-mail: tarahhomi_at@yahoo.com

(Received 18 June 2012; accepted 10 July 2012; online 14 July 2012)

A second monoclinic polymorph of the title mol­ecule, C15H21FN3O4P, is reported in the space group P21/n and compared to the previously reported C2/c space group [Gholivand et al. (2006[Gholivand, K., Shariatinia, Z. & Pourayoubi, M. (2006). Polyhedron, 25, 711-721.]). Polyhedron, 25, 711–721]. The asymmetric unit of the title compound consists of two independent mol­ecules. The P atoms adopt a distorted tetra­hedral environment. In the C(O)NHP(O) fragment, the P=O and the N—H groups are in a syn conformation with respect to each other and in the crystal, inter­molecular N—H⋯O=P hydrogen bonds form dimeric aggregates.

Related literature

For the monoclinic polymorph of the title mol­ecule, in a C2/c space group, for bond lengths and angles and for preparation of the starting compound 4-F—C6H4C(O)NHP(O)Cl2, see: Gholivand et al. (2006[Gholivand, K., Shariatinia, Z. & Pourayoubi, M. (2006). Polyhedron, 25, 711-721.]). For related phospho­ramidates, see: Pourayoubi, Nečas & Negari (2012[Pourayoubi, M., Nečas, M. & Negari, M. (2012). Acta Cryst. C68, o51-o56.]); Pourayoubi, Tarahhomi et al. (2012[Pourayoubi, M., Tarahhomi, A., Karimi Ahmadabad, F., Fejfarová, K., Lee, A. van der & Dušek, M. (2012). Acta Cryst. C68, o164-o169.]).

[Scheme 1]

Experimental

Crystal data
  • C15H21FN3O4P

  • Mr = 357.32

  • Monoclinic, P 21 /n

  • a = 15.6093 (6) Å

  • b = 10.7114 (4) Å

  • c = 21.0045 (9) Å

  • β = 106.896 (2)°

  • V = 3360.3 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100 K

  • 0.18 × 0.15 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.965, Tmax = 0.980

  • 25230 measured reflections

  • 6912 independent reflections

  • 5355 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.160

  • S = 1.03

  • 6912 reflections

  • 439 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.45 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4N⋯O2i 0.85 (2) 2.01 (2) 2.855 (3) 176 (3)
N1—H1N⋯O6ii 0.87 (2) 2.04 (2) 2.870 (3) 159 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The structure determination of a monoclinic polymorph of the title molecule, [4-F—C6H4C(O)NH]P(O)[NC4H8O]2 (Fig. 1), in a C2/c space group with Z = 8 was investigated in ambient temperature, Gholivand et al. (2006). Here, we report on a second monoclinic polymorph in a space group P21/n with Z = 8. Cell parameters for both polymorphs exhibit similar dimensions. The C2/c structure at 293 K has cell parameters of 15.732 (3), 10.740 (2), 21.553 (4) Å with β of 106.93 (3)° while those of P21/n at 100 K have smaller cell dimensions indicative of a possible phase change.

The asymmetric unit consists of two independent molecules; in each molecule, the phosphoryl group adopts a syn orientation with respect to the N—H unit. In the first monoclinic modification of this compound (Gholivand et al., 2006), the asymmetric unit is composed of one molecule involving disorder in one morpholin-4-yl moiety. The P atom is in a distorted tetrahedral environment as has been noted for other phosphoramides (Pourayoubi, Nečas & Negari, 2012 and Pourayoubi, Tarahhomi et al., 2012).

The PO, CO and P—N bond lengths and P—N—C bond angles are within the expected values (Gholivand et al., 2006).

In the crystal, two different intermolecular N—H···O(P) hydrogen bonds make dimeric aggregates. So, each hydrogen-bonded dimer is built of two symmetrically independent molecules (Fig. 2).

Related literature top

For the monoclinic polymorph of the title molecule, in a C2/c space group, for bond lengths and angles and for preparation of the starting compound 4-F—C6H4C(O)NHP(O)Cl2, see: Gholivand et al. (2006). For related phosphoramidates, see: Pourayoubi, Nečas & Negari (2012); Pourayoubi, Tarahhomi et al. (2012).

Experimental top

4-F—C6H4C(O)NHP(O)Cl2 was prepared according to the literature method reported by Gholivand et al. (2006).

To a solution of 4-F—C6H4C(O)NHP(O)Cl2 (0.723 g, 2.825 mmol) in dry acetonitrile (25 ml), a solution of morpholine (0.984 g, 11.300 mmol) in dry acetonitrile (5 ml) was added at 273 K. After 4 h stirring, the solvent was removed and the product was washed with distilled water and the resulting precipitate of 4-F—C6H4C(O)NHP(O)(NC4H8O)2 was collected. Single crystals were obtained in a try on a reaction between 4-F—C6H4C(O)NHP(O)(NC4H8O)2 and Sn(CH3)2Cl2 in CH3OH under reflux, followed by slow evaporation of the filtered solution at room temperature.

Refinement top

All non-hydrogen atoms were refined anisotropically by full matrix least squares on F2. Hydrogen atoms H1N and H4N were found from a Fourier difference map and their N—H distances were fixed at 0.87 (2) Å and were allowed to refine isotropically with 1.20 Ueq of parent N atoms. All other hydrogen atoms were placed in calculated positions and treated as riding on their parent C atoms with distances C—H = 0.990 Å (CH2) and 1.00 Å (CH) with 1.20Ueq of their parent C atoms.

Structure description top

The structure determination of a monoclinic polymorph of the title molecule, [4-F—C6H4C(O)NH]P(O)[NC4H8O]2 (Fig. 1), in a C2/c space group with Z = 8 was investigated in ambient temperature, Gholivand et al. (2006). Here, we report on a second monoclinic polymorph in a space group P21/n with Z = 8. Cell parameters for both polymorphs exhibit similar dimensions. The C2/c structure at 293 K has cell parameters of 15.732 (3), 10.740 (2), 21.553 (4) Å with β of 106.93 (3)° while those of P21/n at 100 K have smaller cell dimensions indicative of a possible phase change.

The asymmetric unit consists of two independent molecules; in each molecule, the phosphoryl group adopts a syn orientation with respect to the N—H unit. In the first monoclinic modification of this compound (Gholivand et al., 2006), the asymmetric unit is composed of one molecule involving disorder in one morpholin-4-yl moiety. The P atom is in a distorted tetrahedral environment as has been noted for other phosphoramides (Pourayoubi, Nečas & Negari, 2012 and Pourayoubi, Tarahhomi et al., 2012).

The PO, CO and P—N bond lengths and P—N—C bond angles are within the expected values (Gholivand et al., 2006).

In the crystal, two different intermolecular N—H···O(P) hydrogen bonds make dimeric aggregates. So, each hydrogen-bonded dimer is built of two symmetrically independent molecules (Fig. 2).

For the monoclinic polymorph of the title molecule, in a C2/c space group, for bond lengths and angles and for preparation of the starting compound 4-F—C6H4C(O)NHP(O)Cl2, see: Gholivand et al. (2006). For related phosphoramidates, see: Pourayoubi, Nečas & Negari (2012); Pourayoubi, Tarahhomi et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. An ORTEP-style plot and atom labeling scheme for the asymmetric unit of the title molecule. Displacement ellipsoids are given at 50% probability level and H atoms are drawn as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Crystal packing view showing N—H···O(P) hydrogen bond which are shown as dotted lines. The symmetrically independent molecules are shown as different colors and the H atoms not involved in hydrogen bonding have been omitted for the sake of clarity.
N-[Bis(morpholin-4-yl)phosphinoyl]-4-fluorobenzamide top
Crystal data top
C15H21FN3O4PF(000) = 1504
Mr = 357.32Dx = 1.413 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7455 reflections
a = 15.6093 (6) Åθ = 2.3–26.4°
b = 10.7114 (4) ŵ = 0.20 mm1
c = 21.0045 (9) ÅT = 100 K
β = 106.896 (2)°Block, colourless
V = 3360.3 (2) Å30.18 × 0.15 × 0.10 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
6912 independent reflections
Radiation source: fine-focus sealed tube5355 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 8.33 pixels mm-1θmax = 26.4°, θmin = 1.4°
φ and ω scansh = 1919
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
k = 1313
Tmin = 0.965, Tmax = 0.980l = 2226
25230 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0816P)2 + 4.9555P]
where P = (Fo2 + 2Fc2)/3
6912 reflections(Δ/σ)max < 0.001
439 parametersΔρmax = 1.45 e Å3
2 restraintsΔρmin = 0.73 e Å3
Crystal data top
C15H21FN3O4PV = 3360.3 (2) Å3
Mr = 357.32Z = 8
Monoclinic, P21/nMo Kα radiation
a = 15.6093 (6) ŵ = 0.20 mm1
b = 10.7114 (4) ÅT = 100 K
c = 21.0045 (9) Å0.18 × 0.15 × 0.10 mm
β = 106.896 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
6912 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
5355 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.980Rint = 0.037
25230 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0562 restraints
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.45 e Å3
6912 reflectionsΔρmin = 0.73 e Å3
439 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.47360 (4)0.87432 (6)0.15573 (3)0.01350 (17)
P20.93848 (4)0.36293 (6)0.12376 (3)0.01408 (17)
F10.07031 (11)0.82774 (16)0.31748 (9)0.0255 (4)
F20.58872 (11)0.32224 (15)0.33946 (9)0.0239 (4)
O10.30622 (14)0.71437 (19)0.12959 (10)0.0250 (5)
O20.54401 (12)0.95376 (17)0.19942 (9)0.0170 (4)
O30.26441 (14)1.08121 (18)0.01350 (10)0.0263 (5)
O40.59087 (13)0.54123 (18)0.08540 (10)0.0238 (5)
O50.76002 (14)0.22559 (19)0.10808 (10)0.0246 (5)
O61.01711 (12)0.43300 (18)0.16535 (10)0.0192 (4)
O70.74106 (13)0.59113 (17)0.00982 (10)0.0228 (4)
O81.08127 (14)0.03799 (19)0.09330 (11)0.0294 (5)
N10.40849 (14)0.8319 (2)0.20362 (11)0.0149 (5)
H1N0.417 (2)0.872 (3)0.2410 (11)0.018*
N20.41816 (15)0.9499 (2)0.08931 (11)0.0165 (5)
N30.50455 (15)0.7452 (2)0.12658 (11)0.0176 (5)
N40.87238 (15)0.3430 (2)0.17412 (11)0.0157 (5)
H4N0.8948 (19)0.374 (3)0.2123 (10)0.019*
N50.88937 (14)0.4404 (2)0.05651 (11)0.0164 (5)
N60.95166 (15)0.2234 (2)0.09645 (11)0.0179 (5)
C10.27337 (18)0.8749 (3)0.27251 (14)0.0186 (6)
H1A0.32550.92570.28490.022*
C20.20861 (18)0.8881 (3)0.30509 (14)0.0199 (6)
H2A0.21520.94790.33960.024*
C30.13450 (17)0.8125 (2)0.28632 (14)0.0172 (6)
C40.12203 (18)0.7231 (3)0.23765 (14)0.0198 (6)
H4A0.07070.67060.22690.024*
C50.18645 (17)0.7119 (2)0.20477 (14)0.0173 (5)
H5A0.17880.65200.17020.021*
C60.26243 (17)0.7873 (2)0.22151 (13)0.0152 (5)
C70.32636 (18)0.7737 (2)0.18122 (13)0.0168 (5)
C80.35807 (18)0.8961 (3)0.02858 (14)0.0199 (6)
H8A0.35670.80410.03300.024*
H8B0.38050.91590.00980.024*
C90.2642 (2)0.9483 (3)0.01647 (15)0.0232 (6)
H9A0.22490.91470.02590.028*
H9B0.23970.92130.05280.028*
C100.3181 (2)1.1302 (3)0.07509 (15)0.0242 (6)
H10A0.29391.10230.11140.029*
H10B0.31601.22250.07350.029*
C110.4140 (2)1.0871 (2)0.08929 (15)0.0226 (6)
H11A0.43981.12060.05500.027*
H11B0.44981.11930.13310.027*
C120.56485 (19)0.7619 (3)0.08400 (15)0.0225 (6)
H12A0.62680.77700.11220.027*
H12B0.54540.83510.05460.027*
C130.5620 (2)0.6472 (3)0.04299 (15)0.0249 (6)
H13A0.50020.63330.01410.030*
H13B0.60150.65820.01410.030*
C140.53270 (19)0.5219 (3)0.12520 (15)0.0226 (6)
H14A0.55290.44780.15380.027*
H14B0.47150.50490.09600.027*
C150.53018 (19)0.6333 (2)0.16835 (14)0.0204 (6)
H15A0.48640.61860.19350.024*
H15B0.58980.64590.20070.024*
C160.75142 (17)0.3982 (2)0.25373 (14)0.0173 (5)
H16A0.79560.45970.25450.021*
C170.70067 (17)0.4068 (2)0.29795 (14)0.0177 (6)
H17A0.70880.47410.32860.021*
C180.63820 (17)0.3150 (2)0.29609 (13)0.0159 (5)
C190.62334 (16)0.2167 (2)0.25214 (14)0.0158 (5)
H19A0.58000.15460.25240.019*
C200.67331 (16)0.2109 (2)0.20749 (13)0.0131 (5)
H20A0.66300.14500.17590.016*
C210.73824 (17)0.3000 (2)0.20819 (13)0.0142 (5)
C220.78981 (17)0.2861 (2)0.15893 (14)0.0161 (5)
C230.81724 (17)0.3917 (2)0.00028 (13)0.0171 (5)
H23A0.80970.30120.00650.021*
H23B0.83340.40330.04150.021*
C240.73018 (18)0.4588 (2)0.00470 (15)0.0190 (6)
H24A0.68320.42860.04430.023*
H24B0.71080.44010.03520.023*
C250.8061 (2)0.6370 (3)0.04805 (16)0.0262 (7)
H25A0.78710.61790.08800.031*
H25B0.81120.72880.04490.031*
C260.89630 (19)0.5771 (2)0.05444 (16)0.0244 (6)
H26A0.91740.60180.01610.029*
H26B0.94060.60700.09560.029*
C270.98143 (19)0.2023 (3)0.03698 (15)0.0229 (6)
H27A0.97990.28210.01290.027*
H27B0.94010.14320.00680.027*
C281.0750 (2)0.1502 (3)0.05604 (18)0.0305 (7)
H28A1.09270.13340.01530.037*
H28B1.11690.21270.08280.037*
C291.0563 (2)0.0604 (3)0.15248 (16)0.0280 (7)
H29A1.09830.12140.18060.034*
H29B1.06100.01840.17790.034*
C300.9619 (2)0.1102 (3)0.13704 (15)0.0221 (6)
H30A0.91910.04590.11290.027*
H30B0.94790.12910.17910.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0156 (3)0.0121 (3)0.0144 (3)0.0020 (2)0.0069 (3)0.0010 (3)
P20.0130 (3)0.0138 (3)0.0165 (4)0.0014 (2)0.0060 (3)0.0030 (3)
F10.0196 (8)0.0309 (9)0.0323 (10)0.0007 (7)0.0173 (7)0.0010 (8)
F20.0236 (8)0.0232 (8)0.0321 (10)0.0011 (7)0.0194 (7)0.0030 (7)
O10.0283 (11)0.0296 (11)0.0193 (11)0.0100 (9)0.0104 (9)0.0112 (9)
O20.0146 (9)0.0176 (9)0.0180 (10)0.0000 (7)0.0034 (7)0.0024 (8)
O30.0328 (11)0.0195 (10)0.0199 (11)0.0081 (9)0.0026 (9)0.0024 (8)
O40.0260 (11)0.0196 (10)0.0305 (12)0.0071 (8)0.0155 (9)0.0017 (9)
O50.0287 (11)0.0272 (11)0.0211 (11)0.0105 (9)0.0124 (9)0.0097 (9)
O60.0142 (9)0.0230 (10)0.0201 (10)0.0004 (8)0.0045 (8)0.0065 (8)
O70.0235 (10)0.0166 (9)0.0240 (11)0.0052 (8)0.0002 (8)0.0008 (8)
O80.0281 (11)0.0238 (11)0.0389 (13)0.0130 (9)0.0140 (10)0.0058 (10)
N10.0151 (11)0.0159 (10)0.0157 (11)0.0010 (9)0.0077 (9)0.0041 (9)
N20.0214 (11)0.0114 (10)0.0158 (11)0.0024 (9)0.0041 (9)0.0001 (9)
N30.0260 (12)0.0144 (11)0.0162 (12)0.0057 (9)0.0120 (10)0.0037 (9)
N40.0168 (11)0.0171 (11)0.0151 (11)0.0028 (9)0.0075 (9)0.0033 (9)
N50.0145 (11)0.0133 (10)0.0198 (12)0.0004 (8)0.0026 (9)0.0028 (9)
N60.0235 (12)0.0165 (11)0.0163 (11)0.0052 (9)0.0102 (9)0.0030 (9)
C10.0153 (13)0.0222 (14)0.0196 (14)0.0039 (10)0.0073 (11)0.0049 (11)
C20.0168 (13)0.0239 (14)0.0191 (14)0.0007 (11)0.0054 (11)0.0060 (11)
C30.0121 (12)0.0205 (13)0.0211 (14)0.0046 (10)0.0081 (11)0.0060 (11)
C40.0133 (12)0.0200 (13)0.0259 (15)0.0025 (10)0.0055 (11)0.0016 (11)
C50.0154 (13)0.0177 (13)0.0169 (13)0.0003 (10)0.0018 (10)0.0017 (11)
C60.0135 (12)0.0150 (12)0.0164 (13)0.0011 (10)0.0036 (10)0.0008 (10)
C70.0205 (13)0.0134 (12)0.0168 (14)0.0010 (10)0.0057 (11)0.0006 (10)
C80.0252 (14)0.0183 (13)0.0162 (14)0.0028 (11)0.0061 (11)0.0019 (11)
C90.0289 (15)0.0178 (13)0.0202 (15)0.0035 (11)0.0026 (12)0.0035 (11)
C100.0327 (16)0.0163 (13)0.0193 (15)0.0074 (12)0.0008 (12)0.0024 (11)
C110.0305 (16)0.0130 (13)0.0228 (15)0.0008 (11)0.0055 (12)0.0020 (11)
C120.0262 (15)0.0214 (14)0.0241 (15)0.0034 (12)0.0140 (12)0.0021 (12)
C130.0324 (16)0.0238 (15)0.0238 (16)0.0070 (12)0.0165 (13)0.0015 (12)
C140.0240 (14)0.0189 (13)0.0280 (16)0.0028 (11)0.0122 (12)0.0024 (12)
C150.0251 (14)0.0175 (13)0.0208 (14)0.0038 (11)0.0101 (12)0.0047 (11)
C160.0127 (12)0.0171 (13)0.0229 (14)0.0039 (10)0.0064 (10)0.0043 (11)
C170.0156 (13)0.0187 (13)0.0183 (14)0.0011 (10)0.0042 (11)0.0068 (11)
C180.0124 (12)0.0186 (13)0.0190 (14)0.0043 (10)0.0084 (10)0.0027 (11)
C190.0113 (12)0.0129 (12)0.0228 (14)0.0009 (9)0.0043 (10)0.0016 (10)
C200.0095 (11)0.0120 (11)0.0155 (13)0.0020 (9)0.0002 (10)0.0014 (10)
C210.0145 (12)0.0131 (12)0.0151 (13)0.0003 (9)0.0045 (10)0.0017 (10)
C220.0180 (13)0.0122 (12)0.0187 (14)0.0033 (10)0.0061 (11)0.0004 (10)
C230.0183 (13)0.0167 (12)0.0156 (13)0.0021 (10)0.0036 (11)0.0009 (10)
C240.0179 (13)0.0159 (13)0.0221 (14)0.0012 (10)0.0041 (11)0.0016 (11)
C250.0281 (15)0.0127 (13)0.0316 (17)0.0043 (11)0.0010 (13)0.0011 (12)
C260.0226 (14)0.0143 (13)0.0307 (16)0.0031 (11)0.0011 (12)0.0069 (12)
C270.0268 (15)0.0242 (14)0.0215 (15)0.0043 (12)0.0130 (12)0.0026 (12)
C280.0291 (16)0.0278 (16)0.0419 (19)0.0094 (13)0.0221 (15)0.0092 (14)
C290.0309 (16)0.0234 (15)0.0260 (16)0.0081 (12)0.0022 (13)0.0091 (13)
C300.0296 (15)0.0168 (13)0.0210 (15)0.0021 (11)0.0091 (12)0.0034 (11)
Geometric parameters (Å, º) top
P1—O21.4791 (19)C9—H9B0.9900
P1—N21.628 (2)C10—C111.511 (4)
P1—N31.641 (2)C10—H10A0.9900
P1—N11.687 (2)C10—H10B0.9900
P2—O61.4866 (19)C11—H11A0.9900
P2—N51.626 (2)C11—H11B0.9900
P2—N61.635 (2)C12—C131.495 (4)
P2—N41.692 (2)C12—H12A0.9900
F1—C31.356 (3)C12—H12B0.9900
F2—C181.357 (3)C13—H13A0.9900
O1—C71.217 (3)C13—H13B0.9900
O3—C101.422 (3)C14—C151.505 (4)
O3—C91.425 (3)C14—H14A0.9900
O4—C141.417 (3)C14—H14B0.9900
O4—C131.432 (3)C15—H15A0.9900
O5—C221.220 (3)C15—H15B0.9900
O7—C251.426 (3)C16—C171.388 (4)
O7—C241.435 (3)C16—C211.396 (4)
O8—C281.422 (4)C16—H16A0.9500
O8—C291.427 (4)C17—C181.378 (4)
N1—C71.380 (3)C17—H17A0.9500
N1—H1N0.869 (17)C18—C191.375 (4)
N2—C81.464 (3)C19—C201.385 (4)
N2—C111.471 (3)C19—H19A0.9500
N3—C151.471 (3)C20—C211.389 (3)
N3—C121.486 (3)C20—H20A0.9500
N4—C221.377 (3)C21—C221.491 (4)
N4—H4N0.846 (18)C23—C241.514 (4)
N5—C261.470 (3)C23—H23A0.9900
N5—C231.470 (3)C23—H23B0.9900
N6—C301.465 (3)C24—H24A0.9900
N6—C271.471 (3)C24—H24B0.9900
C1—C21.383 (4)C25—C261.517 (4)
C1—C61.397 (4)C25—H25A0.9900
C1—H1A0.9500C25—H25B0.9900
C2—C31.373 (4)C26—H26A0.9900
C2—H2A0.9500C26—H26B0.9900
C3—C41.373 (4)C27—C281.504 (4)
C4—C51.381 (4)C27—H27A0.9900
C4—H4A0.9500C27—H27B0.9900
C5—C61.392 (4)C28—H28A0.9900
C5—H5A0.9500C28—H28B0.9900
C6—C71.491 (4)C29—C301.512 (4)
C8—C91.519 (4)C29—H29A0.9900
C8—H8A0.9900C29—H29B0.9900
C8—H8B0.9900C30—H30A0.9900
C9—H9A0.9900C30—H30B0.9900
O2—P1—N2111.08 (11)O4—C13—H13A109.7
O2—P1—N3118.04 (11)C12—C13—H13A109.7
N2—P1—N3103.92 (11)O4—C13—H13B109.7
O2—P1—N1104.63 (11)C12—C13—H13B109.7
N2—P1—N1112.50 (12)H13A—C13—H13B108.2
N3—P1—N1106.82 (11)O4—C14—C15111.9 (2)
O6—P2—N5110.68 (11)O4—C14—H14A109.2
O6—P2—N6120.07 (12)C15—C14—H14A109.2
N5—P2—N6103.74 (12)O4—C14—H14B109.2
O6—P2—N4104.22 (11)C15—C14—H14B109.2
N5—P2—N4112.86 (12)H14A—C14—H14B107.9
N6—P2—N4105.41 (11)N3—C15—C14109.7 (2)
C10—O3—C9109.7 (2)N3—C15—H15A109.7
C14—O4—C13110.1 (2)C14—C15—H15A109.7
C25—O7—C24110.3 (2)N3—C15—H15B109.7
C28—O8—C29110.2 (2)C14—C15—H15B109.7
C7—N1—P1125.42 (19)H15A—C15—H15B108.2
C7—N1—H1N115 (2)C17—C16—C21120.6 (2)
P1—N1—H1N116 (2)C17—C16—H16A119.7
C8—N2—C11112.1 (2)C21—C16—H16A119.7
C8—N2—P1126.66 (18)C18—C17—C16118.1 (2)
C11—N2—P1120.65 (19)C18—C17—H17A121.0
C15—N3—C12110.3 (2)C16—C17—H17A121.0
C15—N3—P1121.53 (18)F2—C18—C19118.5 (2)
C12—N3—P1115.43 (18)F2—C18—C17118.5 (2)
C22—N4—P2127.66 (19)C19—C18—C17123.1 (2)
C22—N4—H4N120 (2)C18—C19—C20118.1 (2)
P2—N4—H4N113 (2)C18—C19—H19A121.0
C26—N5—C23112.1 (2)C20—C19—H19A120.9
C26—N5—P2120.94 (19)C19—C20—C21121.0 (2)
C23—N5—P2125.07 (18)C19—C20—H20A119.5
C30—N6—C27111.0 (2)C21—C20—H20A119.5
C30—N6—P2123.80 (19)C20—C21—C16119.1 (2)
C27—N6—P2122.78 (19)C20—C21—C22117.6 (2)
C2—C1—C6120.3 (2)C16—C21—C22123.3 (2)
C2—C1—H1A119.9O5—C22—N4122.1 (2)
C6—C1—H1A119.9O5—C22—C21121.0 (2)
C3—C2—C1118.3 (3)N4—C22—C21116.9 (2)
C3—C2—H2A120.9N5—C23—C24110.5 (2)
C1—C2—H2A120.9N5—C23—H23A109.6
F1—C3—C2118.0 (2)C24—C23—H23A109.6
F1—C3—C4118.6 (2)N5—C23—H23B109.6
C2—C3—C4123.4 (2)C24—C23—H23B109.6
C3—C4—C5117.8 (2)H23A—C23—H23B108.1
C3—C4—H4A121.1O7—C24—C23110.5 (2)
C5—C4—H4A121.1O7—C24—H24A109.5
C4—C5—C6120.9 (3)C23—C24—H24A109.5
C4—C5—H5A119.5O7—C24—H24B109.5
C6—C5—H5A119.5C23—C24—H24B109.5
C5—C6—C1119.2 (2)H24A—C24—H24B108.1
C5—C6—C7117.5 (2)O7—C25—C26110.0 (2)
C1—C6—C7123.2 (2)O7—C25—H25A109.7
O1—C7—N1120.9 (2)C26—C25—H25A109.7
O1—C7—C6121.0 (2)O7—C25—H25B109.7
N1—C7—C6118.1 (2)C26—C25—H25B109.7
N2—C8—C9110.1 (2)H25A—C25—H25B108.2
N2—C8—H8A109.6N5—C26—C25110.5 (2)
C9—C8—H8A109.6N5—C26—H26A109.6
N2—C8—H8B109.6C25—C26—H26A109.6
C9—C8—H8B109.6N5—C26—H26B109.6
H8A—C8—H8B108.2C25—C26—H26B109.6
O3—C9—C8111.1 (2)H26A—C26—H26B108.1
O3—C9—H9A109.4N6—C27—C28110.7 (2)
C8—C9—H9A109.4N6—C27—H27A109.5
O3—C9—H9B109.4C28—C27—H27A109.5
C8—C9—H9B109.4N6—C27—H27B109.5
H9A—C9—H9B108.0C28—C27—H27B109.5
O3—C10—C11110.8 (2)H27A—C27—H27B108.1
O3—C10—H10A109.5O8—C28—C27111.5 (2)
C11—C10—H10A109.5O8—C28—H28A109.3
O3—C10—H10B109.5C27—C28—H28A109.3
C11—C10—H10B109.5O8—C28—H28B109.3
H10A—C10—H10B108.1C27—C28—H28B109.3
N2—C11—C10110.3 (2)H28A—C28—H28B108.0
N2—C11—H11A109.6O8—C29—C30111.6 (2)
C10—C11—H11A109.6O8—C29—H29A109.3
N2—C11—H11B109.6C30—C29—H29A109.3
C10—C11—H11B109.6O8—C29—H29B109.3
H11A—C11—H11B108.1C30—C29—H29B109.3
N3—C12—C13109.3 (2)H29A—C29—H29B108.0
N3—C12—H12A109.8N6—C30—C29110.6 (2)
C13—C12—H12A109.8N6—C30—H30A109.5
N3—C12—H12B109.8C29—C30—H30A109.5
C13—C12—H12B109.8N6—C30—H30B109.5
H12A—C12—H12B108.3C29—C30—H30B109.5
O4—C13—C12110.0 (2)H30A—C30—H30B108.1
O2—P1—N1—C7169.2 (2)P1—N2—C8—C9119.3 (2)
N2—P1—N1—C748.5 (2)C10—O3—C9—C861.2 (3)
N3—P1—N1—C764.9 (2)N2—C8—C9—O356.1 (3)
O2—P1—N2—C8165.5 (2)C9—O3—C10—C1161.6 (3)
N3—P1—N2—C837.6 (2)C8—N2—C11—C1052.5 (3)
N1—P1—N2—C877.6 (2)P1—N2—C11—C10119.2 (2)
O2—P1—N2—C1124.1 (2)O3—C10—C11—N257.0 (3)
N3—P1—N2—C11152.0 (2)C15—N3—C12—C1356.9 (3)
N1—P1—N2—C1192.9 (2)P1—N3—C12—C13160.6 (2)
O2—P1—N3—C1576.8 (2)C14—O4—C13—C1261.5 (3)
N2—P1—N3—C15159.7 (2)N3—C12—C13—O460.0 (3)
N1—P1—N3—C1540.6 (2)C13—O4—C14—C1559.7 (3)
O2—P1—N3—C1261.2 (2)C12—N3—C15—C1454.3 (3)
N2—P1—N3—C1262.3 (2)P1—N3—C15—C14165.87 (19)
N1—P1—N3—C12178.56 (19)O4—C14—C15—N356.1 (3)
O6—P2—N4—C22178.2 (2)C21—C16—C17—C180.9 (4)
N5—P2—N4—C2258.0 (3)C16—C17—C18—F2179.5 (2)
N6—P2—N4—C2254.5 (2)C16—C17—C18—C190.8 (4)
O6—P2—N5—C2625.8 (2)F2—C18—C19—C20179.2 (2)
N6—P2—N5—C26155.8 (2)C17—C18—C19—C200.5 (4)
N4—P2—N5—C2690.6 (2)C18—C19—C20—C211.6 (4)
O6—P2—N5—C23171.3 (2)C19—C20—C21—C161.5 (4)
N6—P2—N5—C2341.3 (2)C19—C20—C21—C22179.3 (2)
N4—P2—N5—C2372.3 (2)C17—C16—C21—C200.2 (4)
O6—P2—N6—C3079.2 (2)C17—C16—C21—C22179.3 (2)
N5—P2—N6—C30156.6 (2)P2—N4—C22—O511.3 (4)
N4—P2—N6—C3037.8 (2)P2—N4—C22—C21169.64 (19)
O6—P2—N6—C2781.7 (2)C20—C21—C22—O522.0 (4)
N5—P2—N6—C2742.5 (2)C16—C21—C22—O5157.1 (3)
N4—P2—N6—C27161.3 (2)C20—C21—C22—N4157.1 (2)
C6—C1—C2—C30.5 (4)C16—C21—C22—N423.8 (4)
C1—C2—C3—F1178.6 (2)C26—N5—C23—C2452.1 (3)
C1—C2—C3—C41.1 (4)P2—N5—C23—C24112.1 (2)
F1—C3—C4—C5177.7 (2)C25—O7—C24—C2361.5 (3)
C2—C3—C4—C52.0 (4)N5—C23—C24—O755.9 (3)
C3—C4—C5—C61.3 (4)C24—O7—C25—C2661.8 (3)
C4—C5—C6—C10.2 (4)C23—N5—C26—C2552.7 (3)
C4—C5—C6—C7176.9 (2)P2—N5—C26—C25112.2 (2)
C2—C1—C6—C51.2 (4)O7—C25—C26—N557.1 (3)
C2—C1—C6—C7175.8 (3)C30—N6—C27—C2853.3 (3)
P1—N1—C7—O122.8 (4)P2—N6—C27—C28109.8 (3)
P1—N1—C7—C6156.19 (19)C29—O8—C28—C2759.2 (3)
C5—C6—C7—O111.5 (4)N6—C27—C28—O856.7 (3)
C1—C6—C7—O1165.6 (3)C28—O8—C29—C3058.9 (3)
C5—C6—C7—N1169.6 (2)C27—N6—C30—C2952.9 (3)
C1—C6—C7—N113.4 (4)P2—N6—C30—C29110.0 (3)
C11—N2—C8—C951.9 (3)O8—C29—C30—N656.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O2i0.85 (2)2.01 (2)2.855 (3)176 (3)
N1—H1N···O6ii0.87 (2)2.04 (2)2.870 (3)159 (3)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H21FN3O4P
Mr357.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)15.6093 (6), 10.7114 (4), 21.0045 (9)
β (°) 106.896 (2)
V3)3360.3 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.18 × 0.15 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.965, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
25230, 6912, 5355
Rint0.037
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.160, 1.03
No. of reflections6912
No. of parameters439
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.45, 0.73

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4N···O2i0.846 (18)2.011 (18)2.855 (3)176 (3)
N1—H1N···O6ii0.869 (17)2.04 (2)2.870 (3)159 (3)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGholivand, K., Shariatinia, Z. & Pourayoubi, M. (2006). Polyhedron, 25, 711–721.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPourayoubi, M., Nečas, M. & Negari, M. (2012). Acta Cryst. C68, o51–o56.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPourayoubi, M., Tarahhomi, A., Karimi Ahmadabad, F., Fejfarová, K., Lee, A. van der & Dušek, M. (2012). Acta Cryst. C68, o164–o169.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds