organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Butyl-4-butyl­imino-2-methyl­pentan-2-aminium (E)-quercetinate

aNational Institute for R&D of Isotopic and Molecular Technologies, PO Box 700, Cluj-Napoca R-400293, Romania
*Correspondence e-mail: mihaela.pop@itim-cj.ro

(Received 6 June 2012; accepted 9 July 2012; online 14 July 2012)

The title salt, C14H31N2+·C15H9O7, was obtained in the reaction of quercetin with n-butyl­amine in a mixture of acetone and hexane. The crystal structure determination shows that the quercetin donates one of its phenol H atoms to the N-butyl-4-butyl­imino-2-methyl­pentan-2-amine mol­ecule. The crystal structure of the salt is stabilized by intramolecular (N—H⋯N for the cation and O—H⋯O for the anion) and intermolecular hydrogen bonding (N—H⋯O between cation–anion pairs and O—H⋯O between anions). Quercetin molecules form dimers connected into a two-dimensional network. The dihedral angle between the quercetin ring systems is 19.61 (8)°.

Related literature

For the anti­oxidant activity of quercetin, see: Young et al. (1999[Young, J. F., Nielsen, S. E., Haraldsdottir, J., Daneshvar, B., Lauridsen, S. L., Knuthsen, P., Crozier, A., Sandström, B. & Dragsted, L. O. (1999). Am. J. Clin. Nutr. 69, 87-94.]). For related co-crystal structures, see: Clarke et al. (2010[Clarke, H. D., Arora, K. K., Bass, H., Kavuru, P., Ong, T. T., Pujari, T., Wojtas, L. & Zaworotko, M. J. (2010). Cryst. Growth Des. 10, 2152-2167.]); Kavuru et al. (2010[Kavuru, P., Aboarayes, D., Arora, K. K., Clarke, H. D., Kennedy, A., Marshall, L., Ong, T. T., Perman, J., Pujari, T., Wojtas, L. & Zaworotko, M. J. (2010). Cryst. Growth Des. 10, 3568-3584.]).

[Scheme 1]

Experimental

Crystal data
  • C14H31N2+·C15H9O7

  • Mr = 528.63

  • Monoclinic, P 21 /n

  • a = 11.4017 (7) Å

  • b = 13.1730 (5) Å

  • c = 19.1961 (9) Å

  • β = 104.438 (6)°

  • V = 2792.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • SuperNova, Dual, Cu at zero, Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]). Tmin = 0.647, Tmax = 1.000

  • 25155 measured reflections

  • 6574 independent reflections

  • 4881 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.233

  • S = 1.57

  • 6574 reflections

  • 352 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2B—H2BA⋯O6A 0.9 1.87 2.765 (2) 171
N2B—H2BB⋯N1B 0.9 2.05 2.749 (3) 134
O7A—H7A⋯O5A 0.82 1.92 2.642 (2) 147
O1A—H1A⋯O6Ai 0.82 1.73 2.544 (2) 172
O2A—H2A⋯O6Ai 0.82 1.85 2.6637 (19) 173
O4A—H4A⋯O2Aii 0.82 2.01 2.771 (2) 154
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+2, -y+1, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Comment top

Quercetin belongs to the class of flavonoids which are naturally existing polyphenols possessing anti-oxidant activity (Young et al., 1999). Co-crystal forms of quercetin with theobromine and isonicotinic acid were reported (Clarke et al., 2010 and Kavuru et al., 2010). We present here the crystal structure of the title compound (Fig. 1). Quercetin molecules form nearly planar dimers through hydroxyl-hydroxyl (O4A—H4A···O2Aii, Table 1) supra-molecular homosynthon. The dihedral angle between the quercetin ring systems is 19.61 (8) degrees. The quercetin dimers are further connected via OH···O intermolecular hydrogen bonding involving the phenyl moieties into an infinite two-dimensional network (base vectors [1 0 - 1], [0 - 1 0]), extending parallel to (1 0 1) as shown in Fig. 2. One phenolic OH of quercetin is engaged in hydrogen bonding with one molecule of N-butyl-4-(butylimino)-2-methylpentane-2-amine and it transfers the proton to the basic moiety. Therefore, the title compound is a salt and not a co-crystal as the ones reported for quercetin so far.

Related literature top

For the antioxidant activity of quercetin, see: Young et al. (1999). For related co-crystal structures, see: Clarke et al. (2010); Kavuru et al. (2010).

Experimental top

The title compound (C15H9O7) (C14H31N2) was obtained in the reaction of quercetin with n-butylamine in a mixture of acetone/hexane. A suspension of quercetin dihydrate (0.044 mmol) in a mixture of acetone (2 ml) and hexane (1 ml) was stirred at 333 K for 30 minutes. The suspension was filtered and the clear solution was placed in a vial. The vial containing the quercetin solution was placed in a larger vial containing n-butylamine (2.5 ml). The vial was sealed to allow the slow diffusion of the amine vapors into the acetone/hexane quercetin solution. Yellow crystals of (I) were obtained after three days.

Refinement top

All H atoms were located in a difference map. The hydrogen atoms of the methyl and hydroxyl groups were allowed to rotate to best fit the experimental electron density, whilst keeping fixed angles and distances (d(C-H) = 0.96 Å, d(O-H) = 0.82 Å), with U(H) set to 1.5 Ueq (C,O). The remaining H atoms were placed in the calculated positions with d(C-H) = 0.97 Å (CH2 groups), d(C-H) = 0.93 Å (aromatic ring) and d(N-H) = 0.9 Å. They were included in the refinement in the riding model approximation, with U(H) set to 1.2 Ueq (C,N).

Structure description top

Quercetin belongs to the class of flavonoids which are naturally existing polyphenols possessing anti-oxidant activity (Young et al., 1999). Co-crystal forms of quercetin with theobromine and isonicotinic acid were reported (Clarke et al., 2010 and Kavuru et al., 2010). We present here the crystal structure of the title compound (Fig. 1). Quercetin molecules form nearly planar dimers through hydroxyl-hydroxyl (O4A—H4A···O2Aii, Table 1) supra-molecular homosynthon. The dihedral angle between the quercetin ring systems is 19.61 (8) degrees. The quercetin dimers are further connected via OH···O intermolecular hydrogen bonding involving the phenyl moieties into an infinite two-dimensional network (base vectors [1 0 - 1], [0 - 1 0]), extending parallel to (1 0 1) as shown in Fig. 2. One phenolic OH of quercetin is engaged in hydrogen bonding with one molecule of N-butyl-4-(butylimino)-2-methylpentane-2-amine and it transfers the proton to the basic moiety. Therefore, the title compound is a salt and not a co-crystal as the ones reported for quercetin so far.

For the antioxidant activity of quercetin, see: Young et al. (1999). For related co-crystal structures, see: Clarke et al. (2010); Kavuru et al. (2010).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 50% probability displacement ellipsoid. The C-bound H atoms are omitted for clarity.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines and the H atoms have been omitted for clarity.
N-Butyl-4-butylimino-2-methylpentan-2-aminium 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-4-oxo-4H-1-benzopyran-7-olate top
Crystal data top
C14H31N2+·C15H9O7F(000) = 1136
Mr = 528.63Dx = 1.258 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
a = 11.4017 (7) ÅCell parameters from 9486 reflections
b = 13.1730 (5) Åθ = 3.1–28.9°
c = 19.1961 (9) ŵ = 0.09 mm1
β = 104.438 (6)°T = 293 K
V = 2792.1 (2) Å3Prism, yellow
Z = 40.3 × 0.2 × 0.1 mm
Data collection top
SuperNova, Dual, Cu at zero, Eos
diffractometer
6574 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4881 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 16.4335 pixels mm-1θmax = 29.0°, θmin = 3.1°
ω scansh = 1415
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010).
k = 1617
Tmin = 0.647, Tmax = 1.000l = 2426
25155 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.233H-atom parameters constrained
S = 1.57 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
6574 reflections(Δ/σ)max < 0.001
352 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C14H31N2+·C15H9O7V = 2792.1 (2) Å3
Mr = 528.63Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.4017 (7) ŵ = 0.09 mm1
b = 13.1730 (5) ÅT = 293 K
c = 19.1961 (9) Å0.3 × 0.2 × 0.1 mm
β = 104.438 (6)°
Data collection top
SuperNova, Dual, Cu at zero, Eos
diffractometer
6574 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010).
4881 reflections with I > 2σ(I)
Tmin = 0.647, Tmax = 1.000Rint = 0.030
25155 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.233H-atom parameters constrained
S = 1.57Δρmax = 0.41 e Å3
6574 reflectionsΔρmin = 0.38 e Å3
352 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O3A0.72169 (12)0.32311 (9)0.12724 (7)0.0363 (3)
O6A0.46443 (12)0.32713 (10)0.28345 (7)0.0406 (3)
C12A0.59541 (17)0.32353 (14)0.20600 (9)0.0348 (4)
H12A0.56360.26170.18670.042*
O4A0.94607 (14)0.49703 (10)0.09262 (8)0.0487 (4)
H4A0.95380.55720.10380.073*
C7A0.80878 (16)0.36415 (13)0.09754 (9)0.0331 (4)
C5A0.83343 (17)0.29650 (12)0.04206 (9)0.0325 (4)
O5A0.87994 (14)0.59111 (10)0.20140 (8)0.0507 (4)
O2A0.96400 (16)0.30683 (10)0.11267 (8)0.0557 (5)
H2A0.96920.26350.14240.084*
C10A0.73580 (17)0.46380 (13)0.20802 (9)0.0351 (4)
O7A0.73998 (17)0.59868 (12)0.29219 (9)0.0643 (5)
H7A0.78680.62010.26940.097*
C11A0.68442 (16)0.37099 (13)0.18113 (9)0.0321 (4)
C9A0.82744 (17)0.50911 (13)0.17907 (10)0.0365 (4)
C14A0.60419 (19)0.46257 (15)0.28970 (10)0.0423 (5)
H14A0.57740.49290.32670.051*
C8A0.85987 (17)0.45473 (13)0.12110 (10)0.0348 (4)
C6A0.89019 (16)0.33040 (13)0.01056 (9)0.0332 (4)
H6A0.91520.39770.01000.040*
C13A0.55355 (17)0.36998 (14)0.26088 (9)0.0352 (4)
C1A0.90966 (17)0.26601 (13)0.06322 (9)0.0347 (4)
C2A0.87269 (19)0.16429 (14)0.06480 (10)0.0407 (5)
C4A0.79879 (19)0.19478 (14)0.04075 (11)0.0411 (5)
H4AA0.76190.17010.07540.049*
C15A0.69287 (19)0.50915 (15)0.26400 (10)0.0421 (5)
C3A0.8190 (2)0.13110 (14)0.01161 (11)0.0454 (5)
H3A0.79600.06340.01140.054*
N2B0.27813 (17)0.27896 (12)0.16548 (11)0.0500 (5)
H2BA0.33310.29460.20650.060*
H2BB0.31930.26320.13260.060*
N1B0.39679 (19)0.13238 (17)0.10738 (12)0.0644 (6)
C8B0.2110 (2)0.18603 (17)0.17890 (15)0.0600 (6)
C12B0.2816 (3)0.46167 (19)0.13476 (16)0.0687 (7)
H12B0.23150.52200.13010.082*
H12C0.34350.46750.17960.082*
C7B0.3047 (2)0.10201 (17)0.20315 (14)0.0590 (6)
H7BA0.35930.12350.24800.071*
H7BB0.26240.04230.21370.071*
C5B0.3785 (2)0.07113 (18)0.15472 (14)0.0602 (6)
C3B0.4607 (3)0.1825 (3)0.00001 (18)0.0922 (10)
H3BA0.52180.16840.02600.111*
H3BB0.47580.24980.02070.111*
C9B0.1187 (2)0.1555 (2)0.11018 (18)0.0795 (9)
H9BA0.05670.20650.09810.119*
H9BB0.08290.09170.11740.119*
H9BC0.15830.14920.07170.119*
C13B0.3421 (3)0.4609 (3)0.0749 (2)0.0939 (10)
H13A0.28100.45940.02950.113*
H13B0.39060.39980.07790.113*
C6B0.4337 (3)0.0340 (2)0.16675 (19)0.0844 (9)
H6BA0.37850.08250.13890.127*
H6BB0.44920.05120.21680.127*
H6BC0.50830.03510.15220.127*
C11B0.2045 (3)0.37186 (18)0.14017 (18)0.0738 (8)
H11A0.15040.35850.09340.089*
H11B0.15510.38720.17330.089*
C10B0.1493 (3)0.2091 (2)0.2401 (2)0.0884 (10)
H10A0.20890.23230.28170.133*
H10B0.11150.14860.25190.133*
H10C0.08910.26090.22470.133*
C4B0.4711 (3)0.1058 (3)0.05941 (18)0.0874 (9)
H4BA0.44680.03960.03850.105*
H4BB0.55490.10120.08660.105*
C14B0.4228 (4)0.5531 (3)0.0763 (3)0.1369 (19)
H14B0.38090.61300.08540.205*
H14C0.44250.55960.03070.205*
H14D0.49580.54500.11360.205*
C1B0.3270 (6)0.2454 (5)0.1144 (3)0.175 (3)
H1BA0.33710.31490.09900.263*
H1BB0.24870.23680.14690.263*
H1BC0.38870.22760.13830.263*
C2B0.3368 (4)0.1799 (4)0.0518 (3)0.1251 (14)
H2BC0.31850.11060.06820.150*
H2BD0.27690.20070.02660.150*
O1A0.88657 (18)0.09668 (11)0.11484 (9)0.0658 (5)
H1A0.90870.12630.14690.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O3A0.0456 (8)0.0369 (7)0.0352 (7)0.0082 (5)0.0265 (6)0.0079 (5)
O6A0.0461 (8)0.0475 (7)0.0370 (7)0.0029 (6)0.0267 (6)0.0032 (5)
C12A0.0403 (11)0.0365 (9)0.0325 (9)0.0025 (7)0.0181 (8)0.0008 (7)
O4A0.0599 (10)0.0430 (8)0.0573 (9)0.0183 (6)0.0415 (8)0.0152 (6)
C7A0.0378 (10)0.0378 (9)0.0294 (8)0.0020 (7)0.0192 (7)0.0010 (7)
C5A0.0363 (10)0.0352 (9)0.0305 (8)0.0023 (7)0.0171 (7)0.0029 (7)
O5A0.0632 (10)0.0441 (8)0.0543 (9)0.0195 (7)0.0325 (7)0.0165 (6)
O2A0.0947 (12)0.0401 (7)0.0511 (9)0.0205 (7)0.0534 (9)0.0132 (6)
C10A0.0397 (11)0.0392 (9)0.0309 (9)0.0024 (7)0.0172 (7)0.0040 (7)
O7A0.0866 (13)0.0574 (9)0.0655 (10)0.0290 (8)0.0499 (9)0.0337 (8)
C11A0.0389 (10)0.0346 (9)0.0272 (8)0.0015 (7)0.0163 (7)0.0011 (6)
C9A0.0418 (11)0.0376 (9)0.0339 (9)0.0057 (7)0.0167 (8)0.0051 (7)
C14A0.0524 (13)0.0477 (10)0.0352 (9)0.0020 (9)0.0265 (9)0.0090 (8)
C8A0.0381 (10)0.0372 (9)0.0350 (9)0.0030 (7)0.0204 (8)0.0028 (7)
C6A0.0420 (11)0.0308 (8)0.0319 (9)0.0040 (7)0.0184 (7)0.0021 (7)
C13A0.0403 (11)0.0421 (9)0.0286 (8)0.0024 (8)0.0186 (7)0.0049 (7)
C1A0.0433 (11)0.0345 (8)0.0329 (9)0.0043 (7)0.0220 (8)0.0007 (7)
C2A0.0545 (13)0.0367 (9)0.0389 (10)0.0092 (8)0.0265 (9)0.0097 (7)
C4A0.0515 (12)0.0404 (9)0.0404 (10)0.0108 (8)0.0283 (9)0.0051 (8)
C15A0.0517 (13)0.0438 (10)0.0369 (9)0.0076 (8)0.0223 (9)0.0103 (8)
C3A0.0644 (14)0.0340 (9)0.0480 (11)0.0142 (8)0.0335 (10)0.0080 (8)
N2B0.0492 (11)0.0421 (9)0.0576 (11)0.0029 (7)0.0115 (8)0.0013 (8)
N1B0.0646 (14)0.0664 (13)0.0640 (13)0.0019 (10)0.0192 (11)0.0097 (11)
C8B0.0535 (15)0.0461 (12)0.0791 (17)0.0036 (10)0.0140 (12)0.0046 (11)
C12B0.0732 (18)0.0513 (13)0.0774 (18)0.0080 (12)0.0106 (14)0.0126 (12)
C7B0.0611 (16)0.0458 (12)0.0670 (15)0.0023 (10)0.0103 (12)0.0027 (10)
C5B0.0614 (16)0.0512 (13)0.0614 (15)0.0032 (10)0.0031 (12)0.0038 (11)
C3B0.088 (2)0.121 (3)0.0681 (19)0.0099 (19)0.0205 (17)0.0051 (18)
C9B0.0555 (17)0.0577 (14)0.111 (2)0.0062 (12)0.0055 (15)0.0007 (15)
C13B0.103 (2)0.093 (2)0.089 (2)0.0237 (19)0.0301 (19)0.0281 (18)
C6B0.093 (2)0.0599 (16)0.093 (2)0.0146 (15)0.0105 (17)0.0055 (15)
C11B0.0647 (17)0.0482 (13)0.104 (2)0.0104 (11)0.0132 (15)0.0108 (13)
C10B0.093 (2)0.0713 (18)0.118 (3)0.0025 (16)0.059 (2)0.0081 (18)
C4B0.093 (2)0.097 (2)0.0758 (19)0.0072 (18)0.0288 (17)0.0140 (17)
C14B0.108 (3)0.126 (3)0.183 (5)0.001 (2)0.046 (3)0.079 (3)
C1B0.190 (6)0.140 (4)0.143 (5)0.015 (4)0.059 (4)0.032 (4)
C2B0.123 (3)0.143 (4)0.101 (3)0.001 (3)0.014 (3)0.024 (3)
O1A0.1151 (15)0.0414 (8)0.0631 (10)0.0239 (8)0.0637 (11)0.0208 (7)
Geometric parameters (Å, º) top
O3A—C7A1.373 (2)C8B—C10B1.542 (4)
O3A—C11A1.3667 (19)C12B—H12B0.9700
O6A—C13A1.326 (2)C12B—H12C0.9700
C12A—H12A0.9300C12B—C13B1.481 (4)
C12A—C11A1.375 (2)C12B—C11B1.493 (4)
C12A—C13A1.401 (2)C7B—H7BA0.9700
O4A—H4A0.8200C7B—H7BB0.9700
O4A—C8A1.358 (2)C7B—C5B1.458 (4)
C7A—C5A1.468 (2)C5B—C6B1.515 (4)
C7A—C8A1.355 (2)C3B—H3BA0.9700
C5A—C6A1.402 (2)C3B—H3BB0.9700
C5A—C4A1.395 (2)C3B—C4B1.506 (5)
O5A—C9A1.257 (2)C3B—C2B1.512 (6)
O2A—H2A0.8200C9B—H9BA0.9600
O2A—C1A1.366 (2)C9B—H9BB0.9600
C10A—C11A1.398 (2)C9B—H9BC0.9600
C10A—C9A1.430 (2)C13B—H13A0.9700
C10A—C15A1.419 (2)C13B—H13B0.9700
O7A—H7A0.8200C13B—C14B1.520 (5)
O7A—C15A1.352 (2)C6B—H6BA0.9600
C9A—C8A1.447 (2)C6B—H6BB0.9600
C14A—H14A0.9300C6B—H6BC0.9600
C14A—C13A1.403 (3)C11B—H11A0.9700
C14A—C15A1.375 (3)C11B—H11B0.9700
C6A—H6A0.9300C10B—H10A0.9600
C6A—C1A1.379 (2)C10B—H10B0.9600
C1A—C2A1.403 (2)C10B—H10C0.9600
C2A—C3A1.385 (2)C4B—H4BA0.9700
C2A—O1A1.348 (2)C4B—H4BB0.9700
C4A—H4AA0.9300C14B—H14B0.9600
C4A—C3A1.372 (3)C14B—H14C0.9600
C3A—H3A0.9300C14B—H14D0.9600
N2B—H2BA0.9000C1B—H1BA0.9600
N2B—H2BB0.9000C1B—H1BB0.9600
N2B—C8B1.500 (3)C1B—H1BC0.9600
N2B—C11B1.495 (3)C1B—C2B1.460 (7)
N1B—C5B1.271 (3)C2B—H2BC0.9700
N1B—C4B1.441 (4)C2B—H2BD0.9700
C8B—C7B1.528 (3)O1A—H1A0.8200
C8B—C9B1.522 (4)
C11A—O3A—C7A121.74 (13)C8B—C7B—H7BB107.7
C11A—C12A—H12A120.6H7BA—C7B—H7BB107.1
C11A—C12A—C13A118.81 (16)C5B—C7B—C8B118.6 (2)
C13A—C12A—H12A120.6C5B—C7B—H7BA107.7
C8A—O4A—H4A109.5C5B—C7B—H7BB107.7
O3A—C7A—C5A110.56 (14)N1B—C5B—C7B120.2 (2)
C8A—C7A—O3A120.22 (15)N1B—C5B—C6B123.6 (3)
C8A—C7A—C5A129.22 (15)C7B—C5B—C6B116.2 (2)
C6A—C5A—C7A122.38 (15)H3BA—C3B—H3BB108.0
C4A—C5A—C7A119.43 (15)C4B—C3B—H3BA109.3
C4A—C5A—C6A118.19 (15)C4B—C3B—H3BB109.3
C1A—O2A—H2A109.5C4B—C3B—C2B111.5 (3)
C11A—C10A—C9A120.06 (15)C2B—C3B—H3BA109.3
C11A—C10A—C15A117.13 (16)C2B—C3B—H3BB109.3
C15A—C10A—C9A122.81 (16)C8B—C9B—H9BA109.5
C15A—O7A—H7A109.5C8B—C9B—H9BB109.5
O3A—C11A—C12A116.66 (15)C8B—C9B—H9BC109.5
O3A—C11A—C10A120.16 (15)H9BA—C9B—H9BB109.5
C12A—C11A—C10A123.18 (15)H9BA—C9B—H9BC109.5
O5A—C9A—C10A123.90 (16)H9BB—C9B—H9BC109.5
O5A—C9A—C8A119.76 (16)C12B—C13B—H13A109.2
C10A—C9A—C8A116.34 (15)C12B—C13B—H13B109.2
C13A—C14A—H14A119.5C12B—C13B—C14B112.2 (4)
C15A—C14A—H14A119.5H13A—C13B—H13B107.9
C15A—C14A—C13A120.90 (16)C14B—C13B—H13A109.2
O4A—C8A—C9A117.12 (15)C14B—C13B—H13B109.2
C7A—C8A—O4A121.41 (15)C5B—C6B—H6BA109.5
C7A—C8A—C9A121.44 (16)C5B—C6B—H6BB109.5
C5A—C6A—H6A119.3C5B—C6B—H6BC109.5
C1A—C6A—C5A121.33 (15)H6BA—C6B—H6BB109.5
C1A—C6A—H6A119.3H6BA—C6B—H6BC109.5
O6A—C13A—C12A119.50 (17)H6BB—C6B—H6BC109.5
O6A—C13A—C14A120.98 (15)N2B—C11B—H11A109.2
C12A—C13A—C14A119.50 (16)N2B—C11B—H11B109.2
O2A—C1A—C6A116.80 (15)C12B—C11B—N2B112.2 (2)
O2A—C1A—C2A123.14 (15)C12B—C11B—H11A109.2
C6A—C1A—C2A120.06 (15)C12B—C11B—H11B109.2
C3A—C2A—C1A118.10 (16)H11A—C11B—H11B107.9
O1A—C2A—C1A123.96 (16)C8B—C10B—H10A109.5
O1A—C2A—C3A117.94 (16)C8B—C10B—H10B109.5
C5A—C4A—H4AA119.9C8B—C10B—H10C109.5
C3A—C4A—C5A120.12 (16)H10A—C10B—H10B109.5
C3A—C4A—H4AA119.9H10A—C10B—H10C109.5
O7A—C15A—C10A119.52 (17)H10B—C10B—H10C109.5
O7A—C15A—C14A120.01 (16)N1B—C4B—C3B111.9 (3)
C14A—C15A—C10A120.47 (17)N1B—C4B—H4BA109.2
C2A—C3A—H3A118.9N1B—C4B—H4BB109.2
C4A—C3A—C2A122.19 (17)C3B—C4B—H4BA109.2
C4A—C3A—H3A118.9C3B—C4B—H4BB109.2
H2BA—N2B—H2BB107.3H4BA—C4B—H4BB107.9
C8B—N2B—H2BA108.0C13B—C14B—H14B109.5
C8B—N2B—H2BB108.0C13B—C14B—H14C109.5
C11B—N2B—H2BA108.0C13B—C14B—H14D109.5
C11B—N2B—H2BB108.0H14B—C14B—H14C109.5
C11B—N2B—C8B117.04 (19)H14B—C14B—H14D109.5
C5B—N1B—C4B122.0 (2)H14C—C14B—H14D109.5
N2B—C8B—C7B107.19 (19)H1BA—C1B—H1BB109.5
N2B—C8B—C9B109.8 (2)H1BA—C1B—H1BC109.5
N2B—C8B—C10B108.6 (2)H1BB—C1B—H1BC109.5
C7B—C8B—C10B109.1 (2)C2B—C1B—H1BA109.5
C9B—C8B—C7B110.7 (2)C2B—C1B—H1BB109.5
C9B—C8B—C10B111.3 (2)C2B—C1B—H1BC109.5
H12B—C12B—H12C107.3C3B—C2B—H2BC108.9
C13B—C12B—H12B108.2C3B—C2B—H2BD108.9
C13B—C12B—H12C108.2C1B—C2B—C3B113.3 (4)
C13B—C12B—C11B116.4 (3)C1B—C2B—H2BC108.9
C11B—C12B—H12B108.2C1B—C2B—H2BD108.9
C11B—C12B—H12C108.2H2BC—C2B—H2BD107.7
C8B—C7B—H7BA107.7C2A—O1A—H1A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2B—H2BA···O6A0.91.872.765 (2)171
N2B—H2BB···N1B0.92.052.749 (3)134
O7A—H7A···O5A0.821.922.642 (2)147
O1A—H1A···O6Ai0.821.732.544 (2)172
O2A—H2A···O6Ai0.821.852.6637 (19)173
O4A—H4A···O2Aii0.822.012.771 (2)154
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H31N2+·C15H9O7
Mr528.63
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.4017 (7), 13.1730 (5), 19.1961 (9)
β (°) 104.438 (6)
V3)2792.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerSuperNova, Dual, Cu at zero, Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010).
Tmin, Tmax0.647, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
25155, 6574, 4881
Rint0.030
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.233, 1.57
No. of reflections6574
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.38

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2B—H2BA···O6A0.91.872.765 (2)171
N2B—H2BB···N1B0.92.052.749 (3)134
O7A—H7A···O5A0.821.922.642 (2)147
O1A—H1A···O6Ai0.821.732.544 (2)172
O2A—H2A···O6Ai0.821.852.6637 (19)173
O4A—H4A···O2Aii0.822.012.771 (2)154
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+2, y+1, z.
 

Acknowledgements

This work was supported by ANCS, project No. POSCCE ID536.

References

First citationClarke, H. D., Arora, K. K., Bass, H., Kavuru, P., Ong, T. T., Pujari, T., Wojtas, L. & Zaworotko, M. J. (2010). Cryst. Growth Des. 10, 2152–2167.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKavuru, P., Aboarayes, D., Arora, K. K., Clarke, H. D., Kennedy, A., Marshall, L., Ong, T. T., Perman, J., Pujari, T., Wojtas, L. & Zaworotko, M. J. (2010). Cryst. Growth Des. 10, 3568–3584.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoung, J. F., Nielsen, S. E., Haraldsdottir, J., Daneshvar, B., Lauridsen, S. L., Knuthsen, P., Crozier, A., Sandström, B. & Dragsted, L. O. (1999). Am. J. Clin. Nutr. 69, 87–94.  Web of Science CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds