organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Carb­­oxy­phenyl­boronic acid–theophylline (1/1)

aBulgarian Academy of Sciences, Institute of Mineralogy and Crystallography, Acad G. Bonchev str. build. 107, 1113 Sofia, Bulgaria
*Correspondence e-mail: blshivachev@gmail.com

(Received 5 June 2012; accepted 28 June 2012; online 4 July 2012)

The title two-component mol­ecular crystal [systematic name: 3-(dihy­droxy­boran­yl)benzoic acid–1,3-dimethyl-7H-purine-2,6-dione (1/1)], C7H7BO4·C7H8N4O2, comprises theophylline and 3-carb­oxy­phenyl­boronic acid mol­ecules in a 1:1 molar ratio. In the crystal, mol­ecules are self-assembled by O—H⋯O and N—H⋯N hydrogen bonds, generating layers parallel to (-209). The layers are stacked through ππ [centroid–centroid distance = 3.546 (2) Å] and C—H⋯π inter­actions.

Related literature

For background to theophylline and boronic acids, see: Barnes (2003[Barnes, P. J. (2003). Am. J. Respir. Crit. Care Med. 167, 813-818.]); Brittain (1999[Brittain, H. G. (1999). In Polymorphism in Pharmaceutical Solids. Boca Raton, FL: Informa Health Care.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7BO4·C7H8N4O2

  • Mr = 346.11

  • Monoclinic, P 21 /c

  • a = 13.185 (4) Å

  • b = 9.189 (3) Å

  • c = 13.287 (4) Å

  • β = 109.04 (3)°

  • V = 1521.7 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 290 K

  • 0.32 × 0.3 × 0.28 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 5890 measured reflections

  • 2972 independent reflections

  • 1949 reflections with I > 2σ(I)

  • Rint = 0.037

  • 3 standard reflections every 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.145

  • S = 1.03

  • 2972 reflections

  • 231 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroif of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.82 1.94 2.753 (2) 168
O2—H2⋯O3ii 0.82 1.89 2.671 (2) 160
O4—H4A⋯O11iii 0.82 2.03 2.815 (3) 160
N2—H2A⋯N1iv 0.86 1.95 2.812 (3) 177
C14—H14ACg 0.96 2.59 3.483 (3) 155
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+1, -z+1; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Theophylline (1,3-dimethyl-1H-purine-2,6(3H,7H)-dione) is a xanthine derivative chemically similar to caffeine and theobromine (Barnes, 2003). Apart from new perspectives in organic chemistry, (e.g. Suzuki coupling reactions) boronic acids are emerging in the fields of crystal engineering, biochemistry and medicinal chemistry. In most cases the usage of the Active Pharmaceutical Ingredients (APIs) has been routinely restricted to salts, polymorphs, hydrates or solvates form (Brittain, 1999). Here we present the structure of the two-component molecular crystal theophylline (THEO) and 3-carboxyphenyl boronic acid (CPHB).

The ring systems are nearly planar with r.m.s. of 0.0045 and 0.0172 for the phenyl (C2/C3/C4/C5/C6/C7) and purine (C11/N4/C8/N1/C12/N2/C9/C10/N3) moieties. The boronic group is slightly twisted from the phenyl plane (the angle between the mean planes of the phenyl and B1/O3/O4 is 6.93 (8) °). The angle between the phenyl and purine mean planes of the two molecules is 4.52 (5) ° (Fig. 1). In the crystal structure neighbouring CPHB molecules form dimmers through O2—H2···O3 hydrogen bond and thus R2,2(16) motif is observed (Table 1). Adjacent dimmers are linked through O3—H3···O1 bond and thus a tetramer of CPHB is generated [R4,4(12) motif]. The O3—H3···O1 bond produces C1,1(8) chains that propagate along b axis. The THEO molecules are linked together by N2—H2A···N1 hydrogen bond producing C1,1(4) chain that propagate along b axis (Fig. 2). The CPHB and THEO molecules (chains) are linked via O4—H4···O11 hydrogen bond and form layers parallel to the plane (-2 0 9) (interlayer distance of 3.507 Å). In addition to the extensive hydrogen bonding the structure reveals weak CH3···π and ππ interactions (Fig. 3): (i) an almost parallel π-π stacking involving the PHB and THEO aromatic rings (offset of 1.04 Å and distance separation of 3.546 Å between C2/C3/C4/C5/C6/C7 and C8/C9/C10N3/C11/N4 ring centroids); (ii) an offset ππ interaction between C2/C3/C4/C5/C6/C7 and N1/C12/N2/C9/C10/N3/C11/N4/C8 rings (with distance separation and offset for afore mentioned centroids of 4.603 and 3.18 Å respectively); (iii) a CHmethyl···..π interaction (C14···..CPHB ring, with C14 to C2/C3/C4/C5/C6/C7 centroid distance of 3.483 Å), and (iv) a T-shape CHmethyl···π interaction between C13 and CPHB aromatic ring (with shortest distance, C13···C4 of 3.582 (4) Å) (Fig. 3).

Related literature top

For background to theophylline and boronic acids, see: Barnes (2003); Brittain (1999).

Experimental top

Crystals of the title compound were obtained by slow evaporation of a 1:1 mol. mixture of theophylline and 3-carboxyphenyl boronic acid in water/MeOH (1:1 v/v) at room temperature.

Refinement top

All H atoms were placed in idealized positions (C—Haromatic = 0.93 Å; C—Hmethyl = 0.96 Å; N—H = 0.86 Å and O—H = 0.82 Å) and were constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C or N) and Uĩso~(H) = 1.5Ueq(O)

Structure description top

Theophylline (1,3-dimethyl-1H-purine-2,6(3H,7H)-dione) is a xanthine derivative chemically similar to caffeine and theobromine (Barnes, 2003). Apart from new perspectives in organic chemistry, (e.g. Suzuki coupling reactions) boronic acids are emerging in the fields of crystal engineering, biochemistry and medicinal chemistry. In most cases the usage of the Active Pharmaceutical Ingredients (APIs) has been routinely restricted to salts, polymorphs, hydrates or solvates form (Brittain, 1999). Here we present the structure of the two-component molecular crystal theophylline (THEO) and 3-carboxyphenyl boronic acid (CPHB).

The ring systems are nearly planar with r.m.s. of 0.0045 and 0.0172 for the phenyl (C2/C3/C4/C5/C6/C7) and purine (C11/N4/C8/N1/C12/N2/C9/C10/N3) moieties. The boronic group is slightly twisted from the phenyl plane (the angle between the mean planes of the phenyl and B1/O3/O4 is 6.93 (8) °). The angle between the phenyl and purine mean planes of the two molecules is 4.52 (5) ° (Fig. 1). In the crystal structure neighbouring CPHB molecules form dimmers through O2—H2···O3 hydrogen bond and thus R2,2(16) motif is observed (Table 1). Adjacent dimmers are linked through O3—H3···O1 bond and thus a tetramer of CPHB is generated [R4,4(12) motif]. The O3—H3···O1 bond produces C1,1(8) chains that propagate along b axis. The THEO molecules are linked together by N2—H2A···N1 hydrogen bond producing C1,1(4) chain that propagate along b axis (Fig. 2). The CPHB and THEO molecules (chains) are linked via O4—H4···O11 hydrogen bond and form layers parallel to the plane (-2 0 9) (interlayer distance of 3.507 Å). In addition to the extensive hydrogen bonding the structure reveals weak CH3···π and ππ interactions (Fig. 3): (i) an almost parallel π-π stacking involving the PHB and THEO aromatic rings (offset of 1.04 Å and distance separation of 3.546 Å between C2/C3/C4/C5/C6/C7 and C8/C9/C10N3/C11/N4 ring centroids); (ii) an offset ππ interaction between C2/C3/C4/C5/C6/C7 and N1/C12/N2/C9/C10/N3/C11/N4/C8 rings (with distance separation and offset for afore mentioned centroids of 4.603 and 3.18 Å respectively); (iii) a CHmethyl···..π interaction (C14···..CPHB ring, with C14 to C2/C3/C4/C5/C6/C7 centroid distance of 3.483 Å), and (iv) a T-shape CHmethyl···π interaction between C13 and CPHB aromatic ring (with shortest distance, C13···C4 of 3.582 (4) Å) (Fig. 3).

For background to theophylline and boronic acids, see: Barnes (2003); Brittain (1999).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing of the title compound. Hydrogen bonds are shown by dashed lines. Symmetry codes are used: (i) 1 - x, 1 - y, 1 - z; (ii)x, 1 + y, z; (iii) x - 1, y, z; (iv)x, y - 1, z.
[Figure 3] Fig. 3. Projection of the structure showing the interactions (ππ and CH3···π) within the layers, denoted by dotted lines. Symmetry codes are: (i) 2 - x, 2 - y, 1 - z; (ii) x, 3/2 - y, 1/2 + z.
3-(Dihydroxyboranyl)benzoic acid–1,3-dimethyl-7H-purine-2,6-dione (1/1) top
Crystal data top
C7H7BO4·C7H8N4O2F(000) = 720
Mr = 346.11Dx = 1.511 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.185 (4) ÅCell parameters from 22 reflections
b = 9.189 (3) Åθ = 18.4–19.8°
c = 13.287 (4) ŵ = 0.12 mm1
β = 109.04 (3)°T = 290 K
V = 1521.7 (8) Å3Prism, colourless
Z = 40.32 × 0.3 × 0.28 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.037
Radiation source: Enraf–Nonius FR590θmax = 26.0°, θmin = 1.6°
Graphite monochromatorh = 016
non–profiled ω/2τ scansk = 1111
5890 measured reflectionsl = 1615
2972 independent reflections3 standard reflections every 120 min
1949 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0783P)2 + 0.0279P]
where P = (Fo2 + 2Fc2)/3
2972 reflections(Δ/σ)max < 0.001
231 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C7H7BO4·C7H8N4O2V = 1521.7 (8) Å3
Mr = 346.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.185 (4) ŵ = 0.12 mm1
b = 9.189 (3) ÅT = 290 K
c = 13.287 (4) Å0.32 × 0.3 × 0.28 mm
β = 109.04 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.037
5890 measured reflections3 standard reflections every 120 min
2972 independent reflections intensity decay: none
1949 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
2972 reflectionsΔρmin = 0.27 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.61757 (18)0.7493 (2)0.51103 (18)0.0351 (5)
C20.70843 (17)0.6460 (2)0.52797 (17)0.0325 (5)
C30.81135 (18)0.7002 (2)0.54821 (18)0.0386 (6)
H3A0.82290.80010.54960.046*
C40.89597 (19)0.6057 (3)0.5661 (2)0.0448 (6)
H40.9650.64160.57880.054*
C50.87869 (18)0.4568 (2)0.56527 (19)0.0395 (6)
H50.9370.39440.57770.047*
C60.77718 (18)0.3978 (2)0.54645 (18)0.0335 (5)
C70.69213 (17)0.4961 (2)0.52676 (17)0.0322 (5)
H70.62280.46060.51250.039*
B10.7584 (2)0.2280 (3)0.5481 (2)0.0366 (6)
O10.62796 (14)0.87975 (16)0.51616 (15)0.0515 (5)
O20.52453 (13)0.68396 (17)0.49021 (17)0.0531 (5)
H20.47790.74460.48680.08*
O30.65614 (12)0.17673 (16)0.51923 (15)0.0450 (5)
H30.65720.08760.5220.067*
O40.83877 (13)0.12910 (17)0.57757 (16)0.0512 (5)
H4A0.89660.17150.59960.077*
C80.66439 (16)0.8169 (2)0.27274 (17)0.0308 (5)
C90.65008 (17)0.9642 (2)0.27539 (18)0.0328 (5)
C100.73564 (17)1.0648 (2)0.29647 (19)0.0356 (5)
C110.85224 (17)0.8449 (2)0.31589 (18)0.0353 (5)
C120.49854 (19)0.8503 (2)0.2413 (2)0.0423 (6)
H120.42560.83340.22650.051*
C130.93062 (19)1.0874 (3)0.3434 (2)0.0505 (7)
H13A0.97471.05760.30210.076*
H13B0.97061.07880.41780.076*
H13C0.9091.18680.32710.076*
C140.7768 (2)0.5983 (2)0.2817 (2)0.0427 (6)
H14A0.78070.55290.3480.064*
H14B0.84140.57860.26590.064*
H14C0.71640.56020.22590.064*
N10.57032 (15)0.7444 (2)0.25156 (16)0.0385 (5)
N20.54161 (14)0.9822 (2)0.25452 (16)0.0393 (5)
H2A0.50821.06350.25070.047*
N30.83506 (14)0.9941 (2)0.31754 (16)0.0372 (5)
N40.76421 (14)0.75608 (19)0.29013 (14)0.0327 (4)
O100.72989 (13)1.19763 (17)0.29774 (16)0.0522 (5)
O110.94299 (12)0.79504 (18)0.33659 (15)0.0497 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0373 (13)0.0233 (11)0.0456 (14)0.0044 (9)0.0150 (10)0.0005 (10)
C20.0348 (12)0.0228 (11)0.0406 (13)0.0039 (9)0.0135 (10)0.0034 (9)
C30.0385 (13)0.0252 (11)0.0512 (15)0.0084 (10)0.0134 (11)0.0032 (10)
C40.0294 (13)0.0360 (13)0.0674 (18)0.0112 (10)0.0135 (12)0.0036 (12)
C50.0293 (12)0.0322 (12)0.0562 (15)0.0027 (10)0.0128 (11)0.0011 (11)
C60.0314 (12)0.0257 (11)0.0430 (13)0.0013 (9)0.0117 (10)0.0002 (9)
C70.0273 (11)0.0234 (11)0.0476 (14)0.0055 (9)0.0145 (10)0.0010 (9)
B10.0303 (13)0.0266 (13)0.0516 (17)0.0023 (10)0.0117 (12)0.0004 (11)
O10.0522 (11)0.0198 (8)0.0809 (13)0.0022 (7)0.0195 (10)0.0018 (8)
O20.0342 (10)0.0248 (8)0.1026 (15)0.0009 (7)0.0254 (10)0.0011 (9)
O30.0310 (9)0.0195 (8)0.0829 (13)0.0010 (6)0.0164 (8)0.0006 (8)
O40.0307 (9)0.0272 (9)0.0902 (14)0.0027 (7)0.0123 (9)0.0057 (8)
C80.0260 (11)0.0255 (11)0.0398 (12)0.0004 (9)0.0091 (9)0.0026 (9)
C90.0282 (11)0.0248 (11)0.0455 (13)0.0022 (9)0.0122 (10)0.0031 (9)
C100.0294 (12)0.0278 (12)0.0494 (14)0.0012 (9)0.0127 (10)0.0017 (10)
C110.0285 (12)0.0336 (12)0.0412 (13)0.0033 (10)0.0080 (10)0.0048 (10)
C120.0278 (12)0.0291 (12)0.0680 (16)0.0024 (10)0.0128 (11)0.0022 (11)
C130.0320 (13)0.0371 (13)0.0774 (19)0.0100 (10)0.0112 (13)0.0001 (12)
C140.0411 (14)0.0251 (12)0.0592 (16)0.0055 (10)0.0127 (12)0.0003 (10)
N10.0283 (10)0.0258 (9)0.0583 (13)0.0013 (8)0.0101 (9)0.0024 (9)
N20.0274 (10)0.0228 (9)0.0651 (13)0.0017 (7)0.0117 (9)0.0022 (9)
N30.0254 (9)0.0297 (10)0.0535 (12)0.0035 (8)0.0088 (8)0.0009 (9)
N40.0269 (9)0.0239 (9)0.0465 (11)0.0026 (7)0.0106 (8)0.0023 (8)
O100.0411 (10)0.0232 (9)0.0913 (14)0.0022 (7)0.0203 (9)0.0017 (8)
O110.0258 (9)0.0420 (10)0.0761 (13)0.0071 (7)0.0097 (8)0.0067 (8)
Geometric parameters (Å, º) top
C1—O11.206 (3)C8—N41.378 (3)
C1—O21.312 (3)C9—N21.375 (3)
C1—C21.487 (3)C9—C101.414 (3)
C2—C31.387 (3)C10—O101.223 (3)
C2—C71.393 (3)C10—N31.407 (3)
C3—C41.372 (3)C11—O111.226 (3)
C3—H3A0.93C11—N41.368 (3)
C4—C51.386 (3)C11—N31.391 (3)
C4—H40.93C12—N21.326 (3)
C5—C61.389 (3)C12—N11.333 (3)
C5—H50.93C12—H120.93
C6—C71.397 (3)C13—N31.469 (3)
C6—B11.581 (3)C13—H13A0.96
C7—H70.93C13—H13B0.96
B1—O41.353 (3)C13—H13C0.96
B1—O31.360 (3)C14—N41.468 (3)
O2—H20.82C14—H14A0.96
O3—H30.82C14—H14B0.96
O4—H4A0.82C14—H14C0.96
C8—N11.354 (3)N2—H2A0.86
C8—C91.369 (3)
O1—C1—O2123.2 (2)N2—C9—C10132.2 (2)
O1—C1—C2123.7 (2)O10—C10—N3121.1 (2)
O2—C1—C2113.07 (18)O10—C10—C9127.3 (2)
C3—C2—C7119.7 (2)N3—C10—C9111.63 (18)
C3—C2—C1119.28 (19)O11—C11—N4121.3 (2)
C7—C2—C1121.04 (19)O11—C11—N3121.1 (2)
C4—C3—C2119.7 (2)N4—C11—N3117.57 (19)
C4—C3—H3A120.2N2—C12—N1113.3 (2)
C2—C3—H3A120.2N2—C12—H12123.4
C3—C4—C5120.1 (2)N1—C12—H12123.4
C3—C4—H4120N3—C13—H13A109.5
C5—C4—H4120N3—C13—H13B109.5
C4—C5—C6122.2 (2)H13A—C13—H13B109.5
C4—C5—H5118.9N3—C13—H13C109.5
C6—C5—H5118.9H13A—C13—H13C109.5
C5—C6—C7116.63 (19)H13B—C13—H13C109.5
C5—C6—B1122.0 (2)N4—C14—H14A109.5
C7—C6—B1121.4 (2)N4—C14—H14B109.5
C2—C7—C6121.7 (2)H14A—C14—H14B109.5
C2—C7—H7119.1N4—C14—H14C109.5
C6—C7—H7119.1H14A—C14—H14C109.5
O4—B1—O3117.4 (2)H14B—C14—H14C109.5
O4—B1—C6123.7 (2)C12—N1—C8103.52 (18)
O3—B1—C6118.9 (2)C12—N2—C9106.80 (19)
C1—O2—H2109.5C12—N2—H2A126.6
B1—O3—H3109.5C9—N2—H2A126.6
B1—O4—H4A109.5C11—N3—C10126.73 (18)
N1—C8—C9111.54 (19)C11—N3—C13116.56 (18)
N1—C8—N4126.55 (19)C10—N3—C13116.70 (18)
C9—C8—N4121.91 (19)C11—N4—C8119.09 (18)
C8—C9—N2104.89 (19)C11—N4—C14120.05 (18)
C8—C9—C10122.96 (19)C8—N4—C14120.86 (18)
O1—C1—C2—C31.7 (4)C8—C9—C10—N32.1 (3)
O2—C1—C2—C3178.5 (2)N2—C9—C10—N3177.6 (2)
O1—C1—C2—C7176.4 (2)N2—C12—N1—C80.1 (3)
O2—C1—C2—C73.3 (3)C9—C8—N1—C120.0 (3)
C7—C2—C3—C40.5 (4)N4—C8—N1—C12180.0 (2)
C1—C2—C3—C4178.7 (2)N1—C12—N2—C90.2 (3)
C2—C3—C4—C50.8 (4)C8—C9—N2—C120.2 (3)
C3—C4—C5—C60.2 (4)C10—C9—N2—C12179.6 (2)
C4—C5—C6—C70.8 (4)O11—C11—N3—C10179.4 (2)
C4—C5—C6—B1178.6 (2)N4—C11—N3—C100.8 (3)
C3—C2—C7—C60.6 (3)O11—C11—N3—C131.0 (3)
C1—C2—C7—C6177.6 (2)N4—C11—N3—C13178.8 (2)
C5—C6—C7—C21.2 (3)O10—C10—N3—C11178.2 (2)
B1—C6—C7—C2178.3 (2)C9—C10—N3—C111.9 (3)
C5—C6—B1—O46.6 (4)O10—C10—N3—C131.4 (3)
C7—C6—B1—O4172.8 (2)C9—C10—N3—C13178.5 (2)
C5—C6—B1—O3173.9 (2)O11—C11—N4—C8176.8 (2)
C7—C6—B1—O36.7 (4)N3—C11—N4—C83.4 (3)
N1—C8—C9—N20.1 (3)O11—C11—N4—C143.0 (3)
N4—C8—C9—N2179.9 (2)N3—C11—N4—C14176.9 (2)
N1—C8—C9—C10179.7 (2)N1—C8—N4—C11176.7 (2)
N4—C8—C9—C100.3 (4)C9—C8—N4—C113.2 (3)
C8—C9—C10—O10178.0 (2)N1—C8—N4—C143.0 (3)
N2—C9—C10—O102.3 (4)C9—C8—N4—C14177.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroif of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.821.942.753 (2)168
O2—H2···O3ii0.821.892.671 (2)160
O4—H4A···O11iii0.822.032.815 (3)160
N2—H2A···N1iv0.861.952.812 (3)177
C14—H14A···Cg0.962.593.483 (3)155
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H7BO4·C7H8N4O2
Mr346.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)13.185 (4), 9.189 (3), 13.287 (4)
β (°) 109.04 (3)
V3)1521.7 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.32 × 0.3 × 0.28
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5890, 2972, 1949
Rint0.037
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.145, 1.03
No. of reflections2972
No. of parameters231
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.27

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg is the centroif of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.821.942.753 (2)168.3
O2—H2···O3ii0.821.892.671 (2)159.7
O4—H4A···O11iii0.822.032.815 (3)160.4
N2—H2A···N1iv0.861.952.812 (3)176.9
C14—H14A···Cg0.962.593.483 (3)155
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1; (iv) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by Bulgarian National Fund of Scientific Research contract DRNF 02/1.

References

First citationBarnes, P. J. (2003). Am. J. Respir. Crit. Care Med. 167, 813–818.  Web of Science CrossRef PubMed Google Scholar
First citationBrittain, H. G. (1999). In Polymorphism in Pharmaceutical Solids. Boca Raton, FL: Informa Health Care.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds