organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-[1-(4-Chloro­phen­yl)ethyl­­idene]thio­semicarbazide

aDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo – CINN, C/ Julián Clavería, 8, 33006 Oviedo, Spain
*Correspondence e-mail: sgg@uniovi.es

(Received 13 June 2012; accepted 26 June 2012; online 4 July 2012)

In the crystal structure of the title compound, C9H10ClN3S, the mol­ecules form chains parallel to [001] through N—H⋯S hydrogen bonds. In addition, weak inter­molecular N—H⋯Cl hydrogen bonds connect the chains, forming a two-dimensional network parallel to (001).

Related literature

For related compounds and their biological activity, see: Odenike et al. (2008[Odenike, O. M., Larson, R. A., Gajria, D., Dolan, M. E., Delaney, S. M., Karrison, T. G., Ratain, M. J. & Stock, W. (2008). Invest. New Drugs. 26, 233-239.]); Rebolledo et al. (2008[Rebolledo, A. P., Teixeira, L. R., Batista, A. A., Mangrich, A. S., Aguirre, G., Cerecetto, H., González, M., Hernández, P., Ferreira, A. M., Speziali, N. L. & Bernaldo, H. (2008). Eur. J. Med. 43, 939-948.]). For a related structure, see: Wang et al. (2007[Wang, J.-G., Jian, F.-F., Ren, X.-Y. & Kan, S.-H. (2007). Acta Cryst. E63, o1160-o1161.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10ClN3S

  • Mr = 227.71

  • Monoclinic, P 21 /c

  • a = 9.2760 (2) Å

  • b = 13.9990 (3) Å

  • c = 8.3970 (2) Å

  • β = 97.448 (2)°

  • V = 1081.19 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.64 mm−1

  • T = 293 K

  • 0.53 × 0.10 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.256, Tmax = 1.000

  • 6043 measured reflections

  • 2024 independent reflections

  • 1807 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.104

  • S = 1.06

  • 2024 reflections

  • 167 parameters

  • All H-atom parameters refined

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H9⋯S1i 0.89 (3) 2.69 (3) 3.581 (2) 175 (2)
N3—H10B⋯S1ii 0.84 (3) 2.54 (3) 3.351 (2) 163 (2)
N3—H10A⋯Cl1iii 0.85 (3) 2.88 (2) 3.500 (2) 131 (2)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SIR2008 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), PARST95 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The family of thiosemicarbazone compounds have been extensively studied due to their wide range potential in medical applications (Odenike et al..,2008). Some studies with acetophenone derivates and their coordination complexes (Rebolledo et al. 2008) reveal that these compounds could be used as new class of anti-trypanosomal drug candidates. In this work we have synthesised and crystallised a new acetophenone thiosemicarbazone derivate (I).

The molecule exist in the thione form and E-configuration about hydrazine bond. The bond length N(1)–N(2) (1.380 (2) Å) and the dihedral angle C(7) N(1)—N(2)—C(9) (171.36 (2) °) are similar to those found for thiosemicarbazone systems in CSD (Allen, 2002) [selected 371 hits, average distance N—N is 1.374 Å and mean dihedral angle is 178.21 °] (Fig. 1).

The dihedral angle between chlorobenzene ring C1/C2/C3/C4/C5/C6/Cl1 (C3 atom max. deviation = 0.0098 (2) Å) and the moiety C7/N1/N2/C9/S1/N3 ( N1 atom max. deviation = 0.0955 (2) Å) is 44.25 (1)° for structure (I). The dihedral angle for the analogous, structure (II), reported by Wang (2007), in which Cl atom is in ortho position, is 57.48 (1)° (Fig. 2). The spatial position of para-isomer favours ππ stacking interactions of chlorobenzene rings in (I) (Fig. 3).

In the crystal packing molecules are forming chains througth N(2)—H(9)···S(1) and N(3)—H(10b)···S(1) hydrogen bonds along a axis (Table 1), as observed in other acetophenone thiosemicarbazone derivate, previously reported by ( Wang et al. 2007). Weak intermolecular N(3)—H(10a)···Cl(1) hydrogen bond and ππ stacking interactions [Cg1(C1C6)···Cg1(iv) = 4.2142 (1) Å, offset= 31.95° and dihedral angle = 13 (2) ° for iv: x,1/2-y,-1/2+z] are present in the crystal contributing to stabilize chains.

Related literature top

For related compounds and their biological activity, see: Odenike et al. (2008); Rebolledo et al. (2008). For a related structure, see: Wang et al. (2007). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

A solution of 1-(4-chlorophenyl)ethanone (3.092 g 0.02 mol) and thiosemicarbazide (1.82 g, 0.02 mol) in absolute methanol (80 mL) was refluxed for 2 h in the presence of p-toluenesulfonic acid as catalyst, with continuous stirring. On cooling to room temperature the precipitate was filtered off, washed with copious cold methanol and dried in air. Colourless single crystals of compound (I) were obtained after recrystallisation from a solution in methanol.

Refinement top

All H atoms located at the difference Fourier maps and isotropically refined. At the end of the refinement the highest peak in the electron density was 0.310 eÅ -3, while the deepest hole was -0.300 eÅ -3.

Structure description top

The family of thiosemicarbazone compounds have been extensively studied due to their wide range potential in medical applications (Odenike et al..,2008). Some studies with acetophenone derivates and their coordination complexes (Rebolledo et al. 2008) reveal that these compounds could be used as new class of anti-trypanosomal drug candidates. In this work we have synthesised and crystallised a new acetophenone thiosemicarbazone derivate (I).

The molecule exist in the thione form and E-configuration about hydrazine bond. The bond length N(1)–N(2) (1.380 (2) Å) and the dihedral angle C(7) N(1)—N(2)—C(9) (171.36 (2) °) are similar to those found for thiosemicarbazone systems in CSD (Allen, 2002) [selected 371 hits, average distance N—N is 1.374 Å and mean dihedral angle is 178.21 °] (Fig. 1).

The dihedral angle between chlorobenzene ring C1/C2/C3/C4/C5/C6/Cl1 (C3 atom max. deviation = 0.0098 (2) Å) and the moiety C7/N1/N2/C9/S1/N3 ( N1 atom max. deviation = 0.0955 (2) Å) is 44.25 (1)° for structure (I). The dihedral angle for the analogous, structure (II), reported by Wang (2007), in which Cl atom is in ortho position, is 57.48 (1)° (Fig. 2). The spatial position of para-isomer favours ππ stacking interactions of chlorobenzene rings in (I) (Fig. 3).

In the crystal packing molecules are forming chains througth N(2)—H(9)···S(1) and N(3)—H(10b)···S(1) hydrogen bonds along a axis (Table 1), as observed in other acetophenone thiosemicarbazone derivate, previously reported by ( Wang et al. 2007). Weak intermolecular N(3)—H(10a)···Cl(1) hydrogen bond and ππ stacking interactions [Cg1(C1C6)···Cg1(iv) = 4.2142 (1) Å, offset= 31.95° and dihedral angle = 13 (2) ° for iv: x,1/2-y,-1/2+z] are present in the crystal contributing to stabilize chains.

For related compounds and their biological activity, see: Odenike et al. (2008); Rebolledo et al. (2008). For a related structure, see: Wang et al. (2007). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis CCD (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009), PARST95 (Nardelli, 1995) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The principal differences of para-isomer (I) and ortho-isomer (II).
[Figure 3] Fig. 3. Packing diagram viewed parallel to (001). Hydrogen bonds and intermolecular interactions are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
(E)-1-[1-(4-Chlorophenyl)ethylidene]thiosemicarbazide top
Crystal data top
C9H10ClN3SF(000) = 472
Mr = 227.71Dx = 1.399 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
a = 9.2760 (2) ÅCell parameters from 4083 reflections
b = 13.9990 (3) Åθ = 4.8–70.4°
c = 8.3970 (2) ŵ = 4.64 mm1
β = 97.448 (2)°T = 293 K
V = 1081.19 (4) Å3Needle, white
Z = 40.53 × 0.10 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur (Ruby, Gemini)
diffractometer
2024 independent reflections
Radiation source: Enhance (Cu) X-ray Source1807 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.2673 pixels mm-1θmax = 70.6°, θmin = 4.8°
ω scansh = 911
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1616
Tmin = 0.256, Tmax = 1.000l = 109
6043 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.104All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.2508P]
where P = (Fo2 + 2Fc2)/3
2024 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C9H10ClN3SV = 1081.19 (4) Å3
Mr = 227.71Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.2760 (2) ŵ = 4.64 mm1
b = 13.9990 (3) ÅT = 293 K
c = 8.3970 (2) Å0.53 × 0.10 × 0.10 mm
β = 97.448 (2)°
Data collection top
Oxford Diffraction Xcalibur (Ruby, Gemini)
diffractometer
2024 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1807 reflections with I > 2σ(I)
Tmin = 0.256, Tmax = 1.000Rint = 0.027
6043 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.104All H-atom parameters refined
S = 1.06Δρmax = 0.31 e Å3
2024 reflectionsΔρmin = 0.30 e Å3
167 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.83335 (6)0.21962 (3)0.00603 (5)0.05163 (19)
Cl10.57019 (7)0.94286 (4)0.18264 (9)0.0821 (2)
N20.81521 (19)0.39415 (10)0.11515 (19)0.0491 (4)
N10.77525 (18)0.48923 (10)0.10634 (18)0.0476 (4)
C90.8022 (2)0.33823 (12)0.0125 (2)0.0432 (4)
N30.7653 (2)0.38062 (13)0.1416 (2)0.0605 (5)
C70.8045 (2)0.54568 (12)0.2186 (2)0.0438 (4)
C50.8203 (2)0.72184 (13)0.2668 (3)0.0515 (5)
C40.7665 (2)0.81370 (14)0.2571 (3)0.0565 (5)
C60.74834 (19)0.64447 (12)0.2095 (2)0.0424 (4)
C30.6403 (2)0.82766 (12)0.1920 (2)0.0520 (5)
C10.6206 (2)0.66152 (13)0.1440 (3)0.0529 (5)
C20.5654 (2)0.75293 (15)0.1350 (3)0.0587 (5)
C80.8862 (3)0.51830 (16)0.3537 (3)0.0637 (6)
H50.908 (3)0.7122 (16)0.314 (3)0.065 (7)*
H40.812 (3)0.8684 (18)0.300 (3)0.068 (7)*
H10.572 (2)0.6117 (16)0.111 (3)0.053 (6)*
H20.482 (3)0.7642 (18)0.088 (3)0.069 (7)*
H90.825 (3)0.3660 (17)0.208 (3)0.068 (7)*
H10B0.764 (2)0.3508 (19)0.228 (3)0.064 (7)*
H10A0.748 (3)0.4403 (19)0.138 (3)0.061 (6)*
H240.958 (3)0.477 (2)0.323 (3)0.085 (8)*
H250.913 (4)0.570 (3)0.406 (4)0.105 (10)*
H230.820 (4)0.488 (3)0.430 (4)0.115 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0813 (4)0.0306 (3)0.0452 (3)0.00960 (19)0.0166 (2)0.00294 (15)
Cl10.0895 (5)0.0360 (3)0.1238 (6)0.0149 (2)0.0247 (4)0.0101 (3)
N20.0750 (11)0.0292 (7)0.0452 (8)0.0056 (7)0.0163 (7)0.0029 (6)
N10.0665 (10)0.0281 (7)0.0493 (8)0.0045 (6)0.0121 (7)0.0020 (6)
C90.0566 (10)0.0317 (8)0.0422 (8)0.0027 (7)0.0100 (7)0.0003 (6)
N30.1046 (15)0.0321 (9)0.0482 (9)0.0092 (8)0.0234 (9)0.0027 (7)
C70.0549 (10)0.0308 (8)0.0459 (9)0.0027 (7)0.0078 (7)0.0015 (7)
C50.0563 (11)0.0365 (9)0.0636 (12)0.0035 (8)0.0149 (9)0.0039 (8)
C40.0660 (12)0.0306 (9)0.0740 (13)0.0058 (8)0.0130 (10)0.0066 (9)
C60.0532 (10)0.0304 (8)0.0434 (8)0.0021 (7)0.0051 (7)0.0026 (6)
C30.0620 (12)0.0308 (9)0.0622 (11)0.0036 (8)0.0041 (9)0.0034 (8)
C10.0624 (12)0.0332 (9)0.0659 (12)0.0032 (8)0.0188 (10)0.0078 (8)
C20.0622 (13)0.0427 (11)0.0743 (13)0.0036 (9)0.0203 (11)0.0046 (9)
C80.0942 (18)0.0367 (11)0.0664 (13)0.0043 (11)0.0346 (13)0.0046 (10)
Geometric parameters (Å, º) top
S1—C91.6875 (17)C5—C61.390 (3)
Cl1—C31.7443 (18)C5—H50.96 (2)
N2—C91.345 (2)C4—C31.369 (3)
N2—N11.386 (2)C4—H40.97 (2)
N2—H90.89 (3)C6—C11.390 (3)
N1—C71.286 (2)C3—C21.375 (3)
C9—N31.319 (2)C1—C21.384 (3)
N3—H10B0.84 (3)C1—H10.89 (2)
N3—H10A0.85 (3)C2—H20.93 (3)
C7—C61.483 (2)C8—H240.90 (3)
C7—C81.493 (3)C8—H250.90 (4)
C5—C41.386 (3)C8—H230.93 (4)
C9—N2—N1117.64 (15)C5—C6—C1118.38 (17)
C9—N2—H9118.2 (16)C5—C6—C7121.38 (17)
N1—N2—H9122.1 (16)C1—C6—C7120.23 (16)
C7—N1—N2117.88 (15)C4—C3—C2121.79 (18)
N3—C9—N2116.91 (16)C4—C3—Cl1119.54 (15)
N3—C9—S1122.19 (14)C2—C3—Cl1118.67 (17)
N2—C9—S1120.89 (13)C2—C1—C6121.34 (18)
C9—N3—H10B121.6 (17)C2—C1—H1120.2 (14)
C9—N3—H10A118.9 (16)C6—C1—H1118.5 (14)
H10B—N3—H10A119 (2)C3—C2—C1118.5 (2)
N1—C7—C6115.22 (16)C3—C2—H2120.4 (16)
N1—C7—C8125.12 (17)C1—C2—H2121.0 (16)
C6—C7—C8119.66 (16)C7—C8—H24112.5 (18)
C4—C5—C6120.66 (19)C7—C8—H25111 (2)
C4—C5—H5119.0 (14)H24—C8—H25115 (3)
C6—C5—H5120.3 (14)C7—C8—H23107 (2)
C3—C4—C5119.27 (18)H24—C8—H23107 (3)
C3—C4—H4118.2 (15)H25—C8—H23103 (3)
C5—C4—H4122.5 (15)
C9—N2—N1—C7171.36 (17)N1—C7—C6—C130.9 (2)
N1—N2—C9—N36.1 (3)C8—C7—C6—C1148.1 (2)
N1—N2—C9—S1174.28 (14)C5—C4—C3—C20.3 (3)
N2—N1—C7—C6175.21 (15)C5—C4—C3—Cl1178.89 (17)
N2—N1—C7—C83.8 (3)C5—C6—C1—C20.2 (3)
C6—C5—C4—C30.8 (3)C7—C6—C1—C2179.58 (19)
C4—C5—C6—C10.7 (3)C4—C3—C2—C10.2 (3)
C4—C5—C6—C7179.92 (18)Cl1—C3—C2—C1179.40 (17)
N1—C7—C6—C5149.71 (19)C6—C1—C2—C30.3 (3)
C8—C7—C6—C531.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H9···S1i0.89 (3)2.69 (3)3.581 (2)175 (2)
N3—H10B···S1ii0.84 (3)2.54 (3)3.351 (2)163 (2)
N3—H10A···Cl1iii0.85 (3)2.88 (2)3.500 (2)131 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H10ClN3S
Mr227.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.2760 (2), 13.9990 (3), 8.3970 (2)
β (°) 97.448 (2)
V3)1081.19 (4)
Z4
Radiation typeCu Kα
µ (mm1)4.64
Crystal size (mm)0.53 × 0.10 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur (Ruby, Gemini)
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.256, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6043, 2024, 1807
Rint0.027
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.104, 1.06
No. of reflections2024
No. of parameters167
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.31, 0.30

Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SIR2008 (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999), PLATON (Spek, 2009), PARST95 (Nardelli, 1995) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H9···S1i0.89 (3)2.69 (3)3.581 (2)175 (2)
N3—H10B···S1ii0.84 (3)2.54 (3)3.351 (2)163 (2)
N3—H10A···Cl1iii0.85 (3)2.88 (2)3.500 (2)131 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z+1/2.
 

Acknowledgements

Financial support was given by the Agencia Española de Cooperación Inter­nacional y Desarrollo (AECID), FEDER funding and the Spanish MINECO (MAT2006–01997, MAT2010-15094 and Factoría de Cristalización Consolider Ingenio-2010).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOdenike, O. M., Larson, R. A., Gajria, D., Dolan, M. E., Delaney, S. M., Karrison, T. G., Ratain, M. J. & Stock, W. (2008). Invest. New Drugs. 26, 233–239.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRebolledo, A. P., Teixeira, L. R., Batista, A. A., Mangrich, A. S., Aguirre, G., Cerecetto, H., González, M., Hernández, P., Ferreira, A. M., Speziali, N. L. & Bernaldo, H. (2008). Eur. J. Med. 43, 939–948.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-G., Jian, F.-F., Ren, X.-Y. & Kan, S.-H. (2007). Acta Cryst. E63, o1160-o1161.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds