organic compounds
(E)-1-[1-(4-Chlorophenyl)ethylidene]thiosemicarbazide
aDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo – CINN, C/ Julián Clavería, 8, 33006 Oviedo, Spain
*Correspondence e-mail: sgg@uniovi.es
In the 9H10ClN3S, the molecules form chains parallel to [001] through N—H⋯S hydrogen bonds. In addition, weak intermolecular N—H⋯Cl hydrogen bonds connect the chains, forming a two-dimensional network parallel to (001).
of the title compound, CRelated literature
For related compounds and their biological activity, see: Odenike et al. (2008); Rebolledo et al. (2008). For a related structure, see: Wang et al. (2007). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009), PARST95 (Nardelli, 1995) and publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536812029133/kp2427sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812029133/kp2427Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812029133/kp2427Isup3.cml
A solution of 1-(4-chlorophenyl)ethanone (3.092 g 0.02 mol) and thiosemicarbazide (1.82 g, 0.02 mol) in absolute methanol (80 mL) was refluxed for 2 h in the presence of p-toluenesulfonic acid as catalyst, with continuous stirring. On cooling to room temperature the precipitate was filtered off, washed with copious cold methanol and dried in air. Colourless single crystals of compound (I) were obtained after recrystallisation from a solution in methanol.
All H atoms located at the difference Fourier maps and isotropically refined. At the end of the
the highest peak in the electron density was 0.310 eÅ -3, while the deepest hole was -0.300 eÅ -3.The family of thiosemicarbazone compounds have been extensively studied due to their wide range potential in medical applications (Odenike et al..,2008). Some studies with acetophenone derivates and their coordination complexes (Rebolledo et al. 2008) reveal that these compounds could be used as new class of anti-trypanosomal drug candidates. In this work we have synthesised and crystallised a new acetophenone thiosemicarbazone derivate (I).
The molecule exist in the thione form and E-configuration about hydrazine bond. The bond length N(1)–N(2) (1.380 (2) Å) and the dihedral angle C(7)═ N(1)—N(2)—C(9) (171.36 (2) °) are similar to those found for thiosemicarbazone systems in CSD (Allen, 2002) [selected 371 hits, average distance N—N is 1.374 Å and mean dihedral angle is 178.21 °] (Fig. 1).
The dihedral angle between chlorobenzene ring C1/C2/C3/C4/C5/C6/Cl1 (C3 atom max. deviation = 0.0098 (2) Å) and the moiety C7/N1/N2/C9/S1/N3 ( N1 atom max. deviation = 0.0955 (2) Å) is 44.25 (1)° for structure (I). The dihedral angle for the analogous, structure (II), reported by Wang (2007), in which Cl atom is in ortho position, is 57.48 (1)° (Fig. 2). The spatial position of para-isomer favours π–π stacking interactions of chlorobenzene rings in (I) (Fig. 3).
In the crystal packing molecules are forming chains througth N(2)—H(9)···S(1) and N(3)—H(10b)···S(1) hydrogen bonds along a axis (Table 1), as observed in other acetophenone thiosemicarbazone derivate, previously reported by ( Wang et al. 2007). Weak intermolecular N(3)—H(10a)···Cl(1) hydrogen bond and π–π stacking interactions [Cg1(C1→C6)···Cg1(iv) = 4.2142 (1) Å, offset= 31.95° and dihedral angle = 13 (2) ° for iv: x,1/2-y,-1/2+z] are present in the crystal contributing to stabilize chains.
For related compounds and their biological activity, see: Odenike et al. (2008); Rebolledo et al. (2008). For a related structure, see: Wang et al. (2007). For a description of the Cambridge Structural Database, see: Allen (2002).
Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell
CrysAlis CCD (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009), PARST95 (Nardelli, 1995) and publCIF (Westrip, 2010).C9H10ClN3S | F(000) = 472 |
Mr = 227.71 | Dx = 1.399 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54180 Å |
a = 9.2760 (2) Å | Cell parameters from 4083 reflections |
b = 13.9990 (3) Å | θ = 4.8–70.4° |
c = 8.3970 (2) Å | µ = 4.64 mm−1 |
β = 97.448 (2)° | T = 293 K |
V = 1081.19 (4) Å3 | Needle, white |
Z = 4 | 0.53 × 0.10 × 0.10 mm |
Oxford Diffraction Xcalibur (Ruby, Gemini) diffractometer | 2024 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 1807 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 10.2673 pixels mm-1 | θmax = 70.6°, θmin = 4.8° |
ω scans | h = −9→11 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −16→16 |
Tmin = 0.256, Tmax = 1.000 | l = −10→9 |
6043 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.104 | All H-atom parameters refined |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0575P)2 + 0.2508P] where P = (Fo2 + 2Fc2)/3 |
2024 reflections | (Δ/σ)max < 0.001 |
167 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
C9H10ClN3S | V = 1081.19 (4) Å3 |
Mr = 227.71 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 9.2760 (2) Å | µ = 4.64 mm−1 |
b = 13.9990 (3) Å | T = 293 K |
c = 8.3970 (2) Å | 0.53 × 0.10 × 0.10 mm |
β = 97.448 (2)° |
Oxford Diffraction Xcalibur (Ruby, Gemini) diffractometer | 2024 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 1807 reflections with I > 2σ(I) |
Tmin = 0.256, Tmax = 1.000 | Rint = 0.027 |
6043 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.104 | All H-atom parameters refined |
S = 1.06 | Δρmax = 0.31 e Å−3 |
2024 reflections | Δρmin = −0.30 e Å−3 |
167 parameters |
Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.83335 (6) | 0.21962 (3) | 0.00603 (5) | 0.05163 (19) | |
Cl1 | 0.57019 (7) | 0.94286 (4) | −0.18264 (9) | 0.0821 (2) | |
N2 | 0.81521 (19) | 0.39415 (10) | −0.11515 (19) | 0.0491 (4) | |
N1 | 0.77525 (18) | 0.48923 (10) | −0.10634 (18) | 0.0476 (4) | |
C9 | 0.8022 (2) | 0.33823 (12) | 0.0125 (2) | 0.0432 (4) | |
N3 | 0.7653 (2) | 0.38062 (13) | 0.1416 (2) | 0.0605 (5) | |
C7 | 0.8045 (2) | 0.54568 (12) | −0.2186 (2) | 0.0438 (4) | |
C5 | 0.8203 (2) | 0.72184 (13) | −0.2668 (3) | 0.0515 (5) | |
C4 | 0.7665 (2) | 0.81370 (14) | −0.2571 (3) | 0.0565 (5) | |
C6 | 0.74834 (19) | 0.64447 (12) | −0.2095 (2) | 0.0424 (4) | |
C3 | 0.6403 (2) | 0.82766 (12) | −0.1920 (2) | 0.0520 (5) | |
C1 | 0.6206 (2) | 0.66152 (13) | −0.1440 (3) | 0.0529 (5) | |
C2 | 0.5654 (2) | 0.75293 (15) | −0.1350 (3) | 0.0587 (5) | |
C8 | 0.8862 (3) | 0.51830 (16) | −0.3537 (3) | 0.0637 (6) | |
H5 | 0.908 (3) | 0.7122 (16) | −0.314 (3) | 0.065 (7)* | |
H4 | 0.812 (3) | 0.8684 (18) | −0.300 (3) | 0.068 (7)* | |
H1 | 0.572 (2) | 0.6117 (16) | −0.111 (3) | 0.053 (6)* | |
H2 | 0.482 (3) | 0.7642 (18) | −0.088 (3) | 0.069 (7)* | |
H9 | 0.825 (3) | 0.3660 (17) | −0.208 (3) | 0.068 (7)* | |
H10B | 0.764 (2) | 0.3508 (19) | 0.228 (3) | 0.064 (7)* | |
H10A | 0.748 (3) | 0.4403 (19) | 0.138 (3) | 0.061 (6)* | |
H24 | 0.958 (3) | 0.477 (2) | −0.323 (3) | 0.085 (8)* | |
H25 | 0.913 (4) | 0.570 (3) | −0.406 (4) | 0.105 (10)* | |
H23 | 0.820 (4) | 0.488 (3) | −0.430 (4) | 0.115 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0813 (4) | 0.0306 (3) | 0.0452 (3) | 0.00960 (19) | 0.0166 (2) | 0.00294 (15) |
Cl1 | 0.0895 (5) | 0.0360 (3) | 0.1238 (6) | 0.0149 (2) | 0.0247 (4) | 0.0101 (3) |
N2 | 0.0750 (11) | 0.0292 (7) | 0.0452 (8) | 0.0056 (7) | 0.0163 (7) | 0.0029 (6) |
N1 | 0.0665 (10) | 0.0281 (7) | 0.0493 (8) | 0.0045 (6) | 0.0121 (7) | 0.0020 (6) |
C9 | 0.0566 (10) | 0.0317 (8) | 0.0422 (8) | 0.0027 (7) | 0.0100 (7) | 0.0003 (6) |
N3 | 0.1046 (15) | 0.0321 (9) | 0.0482 (9) | 0.0092 (8) | 0.0234 (9) | 0.0027 (7) |
C7 | 0.0549 (10) | 0.0308 (8) | 0.0459 (9) | −0.0027 (7) | 0.0078 (7) | 0.0015 (7) |
C5 | 0.0563 (11) | 0.0365 (9) | 0.0636 (12) | −0.0035 (8) | 0.0149 (9) | 0.0039 (8) |
C4 | 0.0660 (12) | 0.0306 (9) | 0.0740 (13) | −0.0058 (8) | 0.0130 (10) | 0.0066 (9) |
C6 | 0.0532 (10) | 0.0304 (8) | 0.0434 (8) | −0.0021 (7) | 0.0051 (7) | 0.0026 (6) |
C3 | 0.0620 (12) | 0.0308 (9) | 0.0622 (11) | 0.0036 (8) | 0.0041 (9) | 0.0034 (8) |
C1 | 0.0624 (12) | 0.0332 (9) | 0.0659 (12) | −0.0032 (8) | 0.0188 (10) | 0.0078 (8) |
C2 | 0.0622 (13) | 0.0427 (11) | 0.0743 (13) | 0.0036 (9) | 0.0203 (11) | 0.0046 (9) |
C8 | 0.0942 (18) | 0.0367 (11) | 0.0664 (13) | 0.0043 (11) | 0.0346 (13) | 0.0046 (10) |
S1—C9 | 1.6875 (17) | C5—C6 | 1.390 (3) |
Cl1—C3 | 1.7443 (18) | C5—H5 | 0.96 (2) |
N2—C9 | 1.345 (2) | C4—C3 | 1.369 (3) |
N2—N1 | 1.386 (2) | C4—H4 | 0.97 (2) |
N2—H9 | 0.89 (3) | C6—C1 | 1.390 (3) |
N1—C7 | 1.286 (2) | C3—C2 | 1.375 (3) |
C9—N3 | 1.319 (2) | C1—C2 | 1.384 (3) |
N3—H10B | 0.84 (3) | C1—H1 | 0.89 (2) |
N3—H10A | 0.85 (3) | C2—H2 | 0.93 (3) |
C7—C6 | 1.483 (2) | C8—H24 | 0.90 (3) |
C7—C8 | 1.493 (3) | C8—H25 | 0.90 (4) |
C5—C4 | 1.386 (3) | C8—H23 | 0.93 (4) |
C9—N2—N1 | 117.64 (15) | C5—C6—C1 | 118.38 (17) |
C9—N2—H9 | 118.2 (16) | C5—C6—C7 | 121.38 (17) |
N1—N2—H9 | 122.1 (16) | C1—C6—C7 | 120.23 (16) |
C7—N1—N2 | 117.88 (15) | C4—C3—C2 | 121.79 (18) |
N3—C9—N2 | 116.91 (16) | C4—C3—Cl1 | 119.54 (15) |
N3—C9—S1 | 122.19 (14) | C2—C3—Cl1 | 118.67 (17) |
N2—C9—S1 | 120.89 (13) | C2—C1—C6 | 121.34 (18) |
C9—N3—H10B | 121.6 (17) | C2—C1—H1 | 120.2 (14) |
C9—N3—H10A | 118.9 (16) | C6—C1—H1 | 118.5 (14) |
H10B—N3—H10A | 119 (2) | C3—C2—C1 | 118.5 (2) |
N1—C7—C6 | 115.22 (16) | C3—C2—H2 | 120.4 (16) |
N1—C7—C8 | 125.12 (17) | C1—C2—H2 | 121.0 (16) |
C6—C7—C8 | 119.66 (16) | C7—C8—H24 | 112.5 (18) |
C4—C5—C6 | 120.66 (19) | C7—C8—H25 | 111 (2) |
C4—C5—H5 | 119.0 (14) | H24—C8—H25 | 115 (3) |
C6—C5—H5 | 120.3 (14) | C7—C8—H23 | 107 (2) |
C3—C4—C5 | 119.27 (18) | H24—C8—H23 | 107 (3) |
C3—C4—H4 | 118.2 (15) | H25—C8—H23 | 103 (3) |
C5—C4—H4 | 122.5 (15) | ||
C9—N2—N1—C7 | 171.36 (17) | N1—C7—C6—C1 | −30.9 (2) |
N1—N2—C9—N3 | −6.1 (3) | C8—C7—C6—C1 | 148.1 (2) |
N1—N2—C9—S1 | 174.28 (14) | C5—C4—C3—C2 | 0.3 (3) |
N2—N1—C7—C6 | 175.21 (15) | C5—C4—C3—Cl1 | −178.89 (17) |
N2—N1—C7—C8 | −3.8 (3) | C5—C6—C1—C2 | −0.2 (3) |
C6—C5—C4—C3 | −0.8 (3) | C7—C6—C1—C2 | −179.58 (19) |
C4—C5—C6—C1 | 0.7 (3) | C4—C3—C2—C1 | 0.2 (3) |
C4—C5—C6—C7 | −179.92 (18) | Cl1—C3—C2—C1 | 179.40 (17) |
N1—C7—C6—C5 | 149.71 (19) | C6—C1—C2—C3 | −0.3 (3) |
C8—C7—C6—C5 | −31.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H9···S1i | 0.89 (3) | 2.69 (3) | 3.581 (2) | 175 (2) |
N3—H10B···S1ii | 0.84 (3) | 2.54 (3) | 3.351 (2) | 163 (2) |
N3—H10A···Cl1iii | 0.85 (3) | 2.88 (2) | 3.500 (2) | 131 (2) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+1/2, z+1/2; (iii) x, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H10ClN3S |
Mr | 227.71 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 9.2760 (2), 13.9990 (3), 8.3970 (2) |
β (°) | 97.448 (2) |
V (Å3) | 1081.19 (4) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 4.64 |
Crystal size (mm) | 0.53 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur (Ruby, Gemini) |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.256, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6043, 2024, 1807 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.612 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.104, 1.06 |
No. of reflections | 2024 |
No. of parameters | 167 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.31, −0.30 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SIR2008 (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999), PLATON (Spek, 2009), PARST95 (Nardelli, 1995) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H9···S1i | 0.89 (3) | 2.69 (3) | 3.581 (2) | 175 (2) |
N3—H10B···S1ii | 0.84 (3) | 2.54 (3) | 3.351 (2) | 163 (2) |
N3—H10A···Cl1iii | 0.85 (3) | 2.88 (2) | 3.500 (2) | 131 (2) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+1/2, z+1/2; (iii) x, −y+3/2, z+1/2. |
Acknowledgements
Financial support was given by the Agencia Española de Cooperación Internacional y Desarrollo (AECID), FEDER funding and the Spanish MINECO (MAT2006–01997, MAT2010-15094 and Factoría de Cristalización Consolider Ingenio-2010).
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Odenike, O. M., Larson, R. A., Gajria, D., Dolan, M. E., Delaney, S. M., Karrison, T. G., Ratain, M. J. & Stock, W. (2008). Invest. New Drugs. 26, 233–239. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Rebolledo, A. P., Teixeira, L. R., Batista, A. A., Mangrich, A. S., Aguirre, G., Cerecetto, H., González, M., Hernández, P., Ferreira, A. M., Speziali, N. L. & Bernaldo, H. (2008). Eur. J. Med. 43, 939–948. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, J.-G., Jian, F.-F., Ren, X.-Y. & Kan, S.-H. (2007). Acta Cryst. E63, o1160-o1161. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The family of thiosemicarbazone compounds have been extensively studied due to their wide range potential in medical applications (Odenike et al..,2008). Some studies with acetophenone derivates and their coordination complexes (Rebolledo et al. 2008) reveal that these compounds could be used as new class of anti-trypanosomal drug candidates. In this work we have synthesised and crystallised a new acetophenone thiosemicarbazone derivate (I).
The molecule exist in the thione form and E-configuration about hydrazine bond. The bond length N(1)–N(2) (1.380 (2) Å) and the dihedral angle C(7)═ N(1)—N(2)—C(9) (171.36 (2) °) are similar to those found for thiosemicarbazone systems in CSD (Allen, 2002) [selected 371 hits, average distance N—N is 1.374 Å and mean dihedral angle is 178.21 °] (Fig. 1).
The dihedral angle between chlorobenzene ring C1/C2/C3/C4/C5/C6/Cl1 (C3 atom max. deviation = 0.0098 (2) Å) and the moiety C7/N1/N2/C9/S1/N3 ( N1 atom max. deviation = 0.0955 (2) Å) is 44.25 (1)° for structure (I). The dihedral angle for the analogous, structure (II), reported by Wang (2007), in which Cl atom is in ortho position, is 57.48 (1)° (Fig. 2). The spatial position of para-isomer favours π–π stacking interactions of chlorobenzene rings in (I) (Fig. 3).
In the crystal packing molecules are forming chains througth N(2)—H(9)···S(1) and N(3)—H(10b)···S(1) hydrogen bonds along a axis (Table 1), as observed in other acetophenone thiosemicarbazone derivate, previously reported by ( Wang et al. 2007). Weak intermolecular N(3)—H(10a)···Cl(1) hydrogen bond and π–π stacking interactions [Cg1(C1→C6)···Cg1(iv) = 4.2142 (1) Å, offset= 31.95° and dihedral angle = 13 (2) ° for iv: x,1/2-y,-1/2+z] are present in the crystal contributing to stabilize chains.