metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ3-pyrimidine-4-carboxyl­ato)bis­­(μ2-pyrimidine-4-carboxyl­ato)tetra­kis­(aqua­lithium)

aInstitute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl

(Received 28 June 2012; accepted 10 July 2012; online 14 July 2012)

The asymmetric unit of the title compound, [Li4(C5H3N2O2)4(H2O)4], contains two symmetry-independent LiI ions, two symmetry-independent ligands and two symmetry-independent coordinated water mol­ecules. They form a dinuclear unit in which the two LiI ions are bridged by two carboxyl­ate O atoms from the two ligands. Two dinuclear units related by an inversion centre form the tetra­meric mol­ecule. One of the LiI ions shows a distorted tetra­hedral coordination geometry, the other a distorted trigonal–bipyramidal environment. The tetra­mers are held together by hydrogen bonds in which coordinated water mol­ecules act as donors, and the carboxyl­ate O atoms act as acceptors. A hydrogen bond between coordinated water molecule as donor and a ring N atom as acceptor is also observed.

Related literature

For the crystal structures of four 3d metal complexes with pyrimidine-4-carboxyl­ate and aqua ligands, see: Aakeröy et al. (2006[Aakeröy, C. B., Desper, J., Levin, B. & Valdes-Martines, J. (2006). Inorg. Chim. Acta, 359, 1255-1262.]). For the structure of an ionic LiI complex with pyridazine-3,6-dicarboxyl­ate and water ligands, see: Starosta & Leciejewicz (2012[Starosta, W. & Leciejewicz, J. (2012). Acta Cryst. E68, m324-m325.]).

[Scheme 1]

Experimental

Crystal data
  • [Li4(C5H3N2O2)4(H2O)4]

  • Mr = 592.20

  • Triclinic, [P \overline 1]

  • a = 7.2750 (15) Å

  • b = 7.9108 (16) Å

  • c = 12.966 (3) Å

  • α = 77.91 (3)°

  • β = 84.59 (3)°

  • γ = 67.23 (3)°

  • V = 672.7 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.24 × 0.20 × 0.08 mm

Data collection
  • Kuma KM-4 four-cricle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.982, Tmax = 0.991

  • 4167 measured reflections

  • 3874 independent reflections

  • 2417 reflections with I > 2σ(I)

  • Rint = 0.048

  • 3 standard reflections every 200 reflections intensity decay: 2.8%

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.164

  • S = 1.07

  • 3874 reflections

  • 216 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected bond lengths (Å)

Li1—O11 1.961 (3)
Li1—O22 1.932 (3)
Li1—O21i 1.953 (3)
Li1—O1 1.967 (3)
Li2—O11 2.021 (3)
Li2—O22 2.020 (3)
Li2—N13 2.155 (3)
Li2—O2 1.998 (4)
Li2—N23 2.205 (3)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O12ii 0.83 (3) 1.98 (3) 2.8120 (18) 175 (2)
O2—H3⋯O12iii 0.93 (3) 1.84 (3) 2.7671 (18) 177 (3)
O1—H2⋯O21iv 0.87 (3) 1.98 (3) 2.7941 (18) 155 (3)
O2—H4⋯N21v 0.81 (4) 2.10 (4) 2.8881 (19) 166 (3)
Symmetry codes: (ii) -x+2, -y+1, -z+1; (iii) x-1, y, z; (iv) x+1, y, z; (v) x, y+1, z.

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structure of the title compound is built of tetrameric molecular clusters, each composed of two dinuclear units related by an inversion centre. A dinuclear unit consists of two symmetry independent LiI ions, two symmetry independent ligand molecules and two symmetry independent coordinating water molecules (Fig. 1). The ligand molecule PMC1 shows µ2 coordination mode: its carboxylato O11 atom acts as bidentate bridging to Li1 and the Li2 ions, leaving the O12 atom chelating inactive. Ligand PMC2 shows µ3 bridging mode since both its carboxylato O atoms act as bridging: the O22 atom bridges the Li2 ion and the Li1 ion while the O21 atom links the Li2 ion and the Li1(i). The Li1—O11—Li2—O22—Li1 bridging pathway forms a core of a dinuclear unit with r.m.s. of 0.0133 (2) Å which through bridging O21 and O21(i) atoms generates a centrosymmetric tetrameric molecular cluster with a core represented by a bonding loop Li1—O22—C27—O21—Li1(i)—O22(i)—C37(i)—O21(i)—Li1(i) with r.m.s. of 0.1664 (3) Å. Li1 ion, chelated by O1, O11, O22 and O21(i) atoms shows distorted tetrahedral coordination geometry. On the other hand, Li2 coordination polyhedron is a distorted trigonal bipyramid with an equatorial plane composed of O11, O2 and N23 atoms. The Li2 ion is 0.1809 (2) Å out of this plane; N13 and O22 atoms are at axial positions. The observed Li—O and Li—N bond distances are typical (Table 1). Both pyrimidine rings are planar with r.m.s. of 0.0080 (2) Å and 0.0079 (2) Å for ligand PMC1 and PMC2, respectively. The carboxylate groups C17/O11/O12 and C27/O21/O22 make dihedral angles of 4.3 (1)° and 3.3 (1)/% with the respective rings. Bond distances and bond angles within both ligand molecules do not differ from those observed in the structures of 3 d-metal complexes with the title ligand (Aakeröy et al., 2006). A hydrogen bond system in which water molecules are donors and carboxylate O atoms are acceptors is responsible for the cohesion of the structure (Table 2, Fig. 2). Isolated neutral tetrameric clusters with a different internal structure have been detected in the structure of an ionic LiI complex with pyridazine-3,6-dicarboxylate and water ligands aside dimeric anions and hydrazine cations (Starosta & Leciejewicz, 2012).

Related literature top

For the crystal structures of four 3d metal complexes with pyrimidine-4-carboxylate and aqua ligands, see: Aakeröy et al. (2006). For the structure of an ionic LiI complex with pyridazine-3,6-dicarboxylate and water ligands, see: Starosta & Leciejewicz, (2012).

Experimental top

1 Mmol of pyrimidine-4-carboxylic acid dissolved in 20 ml of water was titrated with an aqueous solution of LiOH until pH of 5.6 was reached. Then the mixture was boiled under reflux with stirring for 5 h. Left to crystallize at room temperature, well shaped single-crystal plates were found after evaporation to dryness. They were washed with cold metanol and dried in air.

Refinement top

Water H atoms were located in a difference map and refined isotropically, while the H atoms attached to pyrimidine C atoms were located at a calculated position and treated as riding on the parent atom with C—H=0.93 Å and Uiso(H)=1.2Ueq(C). Residual electron density values can be explained as due to the decomposition of the single-crystal sample (observed decay 2.8%).

Structure description top

# Used for convenience to store draft or replaced versions # of the abstract, comment etc. # Its contents will not be output

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The tetrameric structural unit of the title compound with atom labelling scheme and 50% probability displacement ellipsoids. Symmetry code: (i) -x + 1, -y + 1, -z + 1.
[Figure 2] Fig. 2. Packing of the tetramers with hydrogen bonds marked by dashed lines.
Bis(µ3-pyrimidine-4-carboxylato)bis(µ2-pyrimidine-4- carboxylato)tetrakis(aqualithium) top
Crystal data top
[Li4(C5H3N2O2)4(H2O)4]Z = 1
Mr = 592.20F(000) = 304
Triclinic, P1Dx = 1.462 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2750 (15) ÅCell parameters from 25 reflections
b = 7.9108 (16) Åθ = 6–15°
c = 12.966 (3) ŵ = 0.12 mm1
α = 77.91 (3)°T = 293 K
β = 84.59 (3)°Plate, colourless
γ = 67.23 (3)°0.24 × 0.20 × 0.08 mm
V = 672.7 (2) Å3
Data collection top
Kuma KM-4 four-cricle
diffractometer
2417 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 30.1°, θmin = 1.6°
profile data from ω/2θ scansh = 09
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1010
Tmin = 0.982, Tmax = 0.991l = 1818
4167 measured reflections3 standard reflections every 200 reflections
3874 independent reflections intensity decay: 2.8%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.1119P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3874 reflectionsΔρmax = 0.50 e Å3
216 parametersΔρmin = 0.43 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.045 (10)
Crystal data top
[Li4(C5H3N2O2)4(H2O)4]γ = 67.23 (3)°
Mr = 592.20V = 672.7 (2) Å3
Triclinic, P1Z = 1
a = 7.2750 (15) ÅMo Kα radiation
b = 7.9108 (16) ŵ = 0.12 mm1
c = 12.966 (3) ÅT = 293 K
α = 77.91 (3)°0.24 × 0.20 × 0.08 mm
β = 84.59 (3)°
Data collection top
Kuma KM-4 four-cricle
diffractometer
2417 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.048
Tmin = 0.982, Tmax = 0.9913 standard reflections every 200 reflections
4167 measured reflections intensity decay: 2.8%
3874 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.50 e Å3
3874 reflectionsΔρmin = 0.43 e Å3
216 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.88666 (17)0.45353 (18)0.30827 (9)0.0367 (3)
O220.58826 (18)0.34392 (18)0.40929 (9)0.0388 (3)
O10.95392 (19)0.29323 (18)0.55962 (10)0.0375 (3)
O121.12854 (18)0.55986 (19)0.25411 (10)0.0399 (3)
C141.0751 (2)0.3590 (2)0.15808 (11)0.0271 (3)
C171.0257 (2)0.4686 (2)0.24760 (11)0.0271 (3)
N130.9603 (2)0.2639 (2)0.15315 (11)0.0384 (3)
N111.1556 (3)0.1439 (3)0.00732 (13)0.0535 (5)
C151.2310 (3)0.3528 (3)0.08744 (12)0.0363 (4)
H151.30870.42170.08930.044*
C121.0059 (3)0.1634 (3)0.07720 (16)0.0536 (5)
H120.92390.09980.07240.064*
C161.2665 (3)0.2393 (3)0.01366 (14)0.0458 (5)
H161.37320.23020.03340.055*
Li10.7612 (4)0.4527 (4)0.4490 (2)0.0339 (6)
Li20.7150 (4)0.3328 (4)0.2642 (2)0.0371 (6)
N230.6007 (2)0.10648 (19)0.28871 (10)0.0326 (3)
C270.4559 (2)0.27807 (19)0.43070 (11)0.0253 (3)
C240.4582 (2)0.14055 (19)0.36333 (11)0.0249 (3)
C250.3226 (2)0.0542 (2)0.37941 (12)0.0313 (3)
H250.22170.08040.43030.038*
C220.6095 (3)0.0203 (3)0.23334 (14)0.0415 (4)
H220.70980.04630.18220.050*
O210.32633 (17)0.31149 (16)0.50106 (9)0.0336 (3)
N210.4884 (2)0.1138 (2)0.24405 (12)0.0405 (4)
C260.3446 (3)0.0731 (2)0.31605 (14)0.0383 (4)
H260.25460.13260.32440.046*
O20.5018 (2)0.55144 (19)0.18214 (11)0.0402 (3)
H10.922 (4)0.340 (3)0.614 (2)0.055 (7)*
H30.378 (4)0.549 (4)0.208 (2)0.068 (8)*
H21.071 (5)0.274 (4)0.531 (2)0.080 (9)*
H40.505 (5)0.649 (5)0.189 (3)0.085 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0329 (6)0.0583 (7)0.0359 (6)0.0296 (5)0.0146 (4)0.0274 (5)
O220.0413 (6)0.0582 (8)0.0401 (6)0.0374 (6)0.0153 (5)0.0283 (5)
O10.0344 (6)0.0499 (7)0.0410 (6)0.0248 (5)0.0082 (5)0.0217 (5)
O120.0398 (6)0.0590 (7)0.0429 (6)0.0357 (6)0.0152 (5)0.0297 (6)
C140.0279 (7)0.0358 (7)0.0252 (6)0.0174 (6)0.0055 (5)0.0138 (5)
C170.0252 (6)0.0375 (7)0.0259 (6)0.0167 (6)0.0040 (5)0.0138 (5)
N130.0384 (7)0.0538 (8)0.0413 (7)0.0309 (7)0.0145 (6)0.0278 (6)
N110.0659 (11)0.0736 (11)0.0482 (9)0.0461 (10)0.0266 (8)0.0421 (8)
C150.0386 (8)0.0528 (10)0.0323 (7)0.0300 (7)0.0132 (6)0.0202 (7)
C120.0612 (12)0.0773 (13)0.0555 (11)0.0511 (11)0.0262 (9)0.0457 (10)
C160.0511 (10)0.0667 (12)0.0372 (8)0.0364 (10)0.0230 (8)0.0293 (8)
Li10.0348 (13)0.0468 (15)0.0335 (13)0.0252 (12)0.0086 (10)0.0205 (11)
Li20.0364 (14)0.0545 (16)0.0374 (13)0.0302 (13)0.0131 (11)0.0254 (12)
N230.0345 (7)0.0371 (7)0.0376 (7)0.0215 (5)0.0107 (5)0.0206 (5)
C270.0252 (6)0.0305 (7)0.0256 (6)0.0141 (5)0.0016 (5)0.0107 (5)
C240.0258 (7)0.0260 (6)0.0278 (6)0.0132 (5)0.0013 (5)0.0094 (5)
C250.0307 (7)0.0335 (7)0.0376 (8)0.0196 (6)0.0069 (6)0.0119 (6)
C220.0487 (10)0.0469 (9)0.0451 (9)0.0298 (8)0.0187 (8)0.0286 (8)
O210.0311 (6)0.0429 (6)0.0360 (6)0.0193 (5)0.0110 (4)0.0213 (5)
N210.0517 (9)0.0387 (8)0.0460 (8)0.0280 (7)0.0072 (7)0.0212 (6)
C260.0469 (9)0.0379 (8)0.0448 (9)0.0297 (7)0.0034 (7)0.0142 (7)
O20.0412 (7)0.0468 (7)0.0485 (7)0.0290 (6)0.0118 (5)0.0239 (5)
Geometric parameters (Å, º) top
O11—C171.2491 (18)N11—C121.332 (2)
Li1—O111.961 (3)C15—C161.386 (2)
Li1—O221.932 (3)C15—H150.9300
Li1—O21i1.953 (3)C12—H120.9300
Li1—O11.967 (3)C16—H160.9300
Li2—O112.021 (3)N23—C221.3299 (19)
Li2—O222.020 (3)N23—C241.3370 (18)
Li2—N132.155 (3)C27—O211.2395 (17)
Li2—O21.998 (4)C27—C241.5257 (18)
Li2—N232.205 (3)C24—C251.3803 (19)
O22—C271.2463 (17)C25—C261.383 (2)
O1—H10.83 (3)C25—H250.9300
O1—H20.87 (3)C22—N211.335 (2)
O12—C171.2425 (18)C22—H220.9300
C14—N131.3354 (18)O21—Li1i1.953 (3)
C14—C151.381 (2)N21—C261.323 (2)
C14—C171.5263 (19)C26—H260.9300
N13—C121.332 (2)O2—H30.93 (3)
N11—C161.318 (2)O2—H40.81 (4)
C17—O11—Li1149.71 (13)O2—Li2—O2298.68 (14)
C17—O11—Li2117.79 (12)O2—Li2—O11102.08 (15)
Li1—O11—Li291.26 (11)O22—Li2—O1186.21 (11)
C27—O22—Li1151.27 (13)O2—Li2—N13103.79 (15)
C27—O22—Li2116.48 (12)O22—Li2—N13155.06 (18)
Li1—O22—Li292.15 (11)O11—Li2—N1378.69 (10)
Li1—O1—H1108.4 (17)O2—Li2—N23104.14 (13)
Li1—O1—H2106 (2)O22—Li2—N2377.76 (10)
H1—O1—H2121 (3)O11—Li2—N23150.98 (18)
N13—C14—C15121.20 (13)N13—Li2—N23106.61 (13)
N13—C14—C17115.74 (12)C22—N23—C24116.37 (13)
C15—C14—C17123.04 (13)C22—N23—Li2134.44 (13)
O12—C17—O11126.77 (13)C24—N23—Li2107.11 (11)
O12—C17—C14117.50 (12)O21—C27—O22126.68 (13)
O11—C17—C14115.71 (13)O21—C27—C24117.70 (12)
C12—N13—C14116.22 (14)O22—C27—C24115.61 (12)
C12—N13—Li2133.18 (14)N23—C24—C25121.87 (13)
C14—N13—Li2110.24 (12)N23—C24—C27116.20 (12)
C16—N11—C12115.34 (15)C25—C24—C27121.93 (13)
C14—C15—C16117.12 (15)C24—C25—C26116.60 (14)
C14—C15—H15121.4C24—C25—H25121.7
C16—C15—H15121.4C26—C25—H25121.7
N11—C12—N13127.28 (16)N23—C22—N21126.36 (15)
N11—C12—H12116.4N23—C22—H22116.8
N13—C12—H12116.4N21—C22—H22116.8
N11—C16—C15122.80 (15)C27—O21—Li1i120.24 (12)
N11—C16—H16118.6C26—N21—C22116.08 (13)
C15—C16—H16118.6N21—C26—C25122.67 (14)
O22—Li1—O21i125.60 (16)N21—C26—H26118.7
O22—Li1—O1190.34 (12)C25—C26—H26118.7
O21i—Li1—O11115.37 (15)Li2—O2—H3108.4 (17)
O22—Li1—O1115.40 (15)Li2—O2—H4112 (2)
O21i—Li1—O199.05 (12)H3—O2—H4108 (3)
O11—Li1—O1111.64 (15)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O12ii0.83 (3)1.98 (3)2.8120 (18)175 (2)
O2—H3···O12iii0.93 (3)1.84 (3)2.7671 (18)177 (3)
O1—H2···O21iv0.87 (3)1.98 (3)2.7941 (18)155 (3)
O2—H4···N21v0.81 (4)2.10 (4)2.8881 (19)166 (3)
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x1, y, z; (iv) x+1, y, z; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Li4(C5H3N2O2)4(H2O)4]
Mr592.20
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.2750 (15), 7.9108 (16), 12.966 (3)
α, β, γ (°)77.91 (3), 84.59 (3), 67.23 (3)
V3)672.7 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.24 × 0.20 × 0.08
Data collection
DiffractometerKuma KM-4 four-cricle
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.982, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
4167, 3874, 2417
Rint0.048
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.164, 1.07
No. of reflections3874
No. of parameters216
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.43

Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Li1—O111.961 (3)Li2—O222.020 (3)
Li1—O221.932 (3)Li2—N132.155 (3)
Li1—O21i1.953 (3)Li2—O21.998 (4)
Li1—O11.967 (3)Li2—N232.205 (3)
Li2—O112.021 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O12ii0.83 (3)1.98 (3)2.8120 (18)175 (2)
O2—H3···O12iii0.93 (3)1.84 (3)2.7671 (18)177 (3)
O1—H2···O21iv0.87 (3)1.98 (3)2.7941 (18)155 (3)
O2—H4···N21v0.81 (4)2.10 (4)2.8881 (19)166 (3)
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x1, y, z; (iv) x+1, y, z; (v) x, y+1, z.
 

References

First citationAakeröy, C. B., Desper, J., Levin, B. & Valdes-Martines, J. (2006). Inorg. Chim. Acta, 359, 1255–1262.  Google Scholar
First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2012). Acta Cryst. E68, m324–m325.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds