organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-2-Methyl-5-[(R)-2,4,4,4-tetra­chloro­butan-2-yl]cyclo­hex-2-enone

aEquipe de Chimie de Coordination, Faculté des Sciences Semlalia, BP 2390, Marrakech, Morocco, and bInstitute of Physics, University of Neuchâtel, 2000 Neuchâtel, Switzerland
*Correspondence e-mail: lafirdoussi@hotmail.com,helen.stoeckli-evans@unine.ch

(Received 29 June 2012; accepted 9 July 2012; online 14 July 2012)

The title compound, C11H14Cl4O, was efficiently synthesized by atom-transfer radical addition between (R)-carvone and tetra­chloro­methane. In the mol­ecule, both chiral centres are of the absolute configuration R. The cyclo­hex-2-enone ring has an envelope conformation with the chiral C atom displaced by 0.633 (2) Å from the mean plane through the other five C atoms [maximum deviation = 0.036 (2) Å]. In the crystal, mol­ecules are linked via C—H⋯O inter­actions, leading to the formation of helical chains propagating along [100].

Related literature

For synthetic details, see: Boualy et al. (2011[Boualy, B., Harrad, M. A., El Firdoussi, L., Ait Ali, M., El Houssame, S. & Karim, A. (2011). Catal. Commun. 12, 1295-1297.]); Dragutan et al. (2007[Dragutan, V., Dragutan, I., Delaude, L. & Demonceau, A. (2007). Coord. Chem. Rev. 251, 765-794.]). For related structures, see: Boualy et al. (2009[Boualy, B., El Firdoussi, L., Ait Ali, M., Karim, A. & Spannenberg, A. (2009). Z. Kristallogr. New Cryst. Struct. 224, 631-632.], 2011[Boualy, B., Harrad, M. A., El Firdoussi, L., Ait Ali, M., El Houssame, S. & Karim, A. (2011). Catal. Commun. 12, 1295-1297.]); Ziyat et al. (2004[Ziyat, H., El Houssame, S., Ait Ali, M., Ait Itto, M. Y., Karim, A., Wartchow, R. & Butenschoen, H. (2004). Z. Naturforsch. Teil B, 59, 1177-1179.], 2006[Ziyat, H., Ait Itto, M. Y., Ait Ali, M., Riahi, A., Karim, A. & Daran, J. C. (2006). Arkivoc, CXII, 152-160.]). For the distribution of caraway (Carum carvi L.), see: Carvalho da & Fonseca da (2006[Carvalho da, C. C. C. R. & Fonseca da, M. M. R. (2006). Food Chem. 95, 413-422.]); Hornok (1992[Hornok, L. (1992). In Cultivation and Processing of Medicinal Plants. Chichester, UK: John Wiley and Sons.]). For biological activity, see: Farag et al. (1989[Farag, R. S., Daw, Z. Y. & Abo-Raya, S. H. (1989). J. Food Sci. 54, 74-76.]); Juaristi & Soloschonok (2005[Juaristi, E. & Soloschonok, V. A. (2005). In Enantioselective Synthesis of β-Amino Acids. Canada: Wiley Interscience.]); Nagashima et al. (2003[Nagashima, H., Gondo, M., Masuda, S., Kondo, H., Yamaguchi, Y. & Matsubara, K. (2003). Chem. Commun. 3, 442-443.]); Reynolds (1987[Reynolds, T. (1987). Ann. Bot. (Lond.), 60, 215-223.]); Saxena et al. (1987[Saxena, D. B., Goswami, B. K. & Tomar, S. S. (1987). Indian Perfumer, 31, 150-154.]); Zheng et al. (1992[Zheng, G. Q., Kenney, P. M. & Lam, L. K. (1992). J. Agric. Food Chem. 40, 751-755.]). For carvone derivatives having olfactory properties, see: Buch & Wuest (1969[Buch, G. & Wuest, H. (1969). J. Org. Chem. 34, 857-860.]); Aurrecoechea & Okamura (1987[Aurrecoechea, J. M. & Okamura, W. H. (1987). Tetrahedron Lett. 28, 4947-4950.]); Torii et al. (1983[Torii, S., Inokuchi, T. & Oi, R. (1983). J. Org. Chem. 48, 1944-1951.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14Cl4O

  • Mr = 304.02

  • Orthorhombic, P 21 21 21

  • a = 6.4976 (6) Å

  • b = 13.3343 (16) Å

  • c = 15.7648 (14) Å

  • V = 1365.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 293 K

  • 0.38 × 0.27 × 0.20 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.963, Tmax = 1.000

  • 9786 measured reflections

  • 2431 independent reflections

  • 1662 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.063

  • S = 0.87

  • 2431 reflections

  • 148 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1005 Friedel pairs

  • Flack parameter: 0.00 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.97 2.51 3.394 (3) 152
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: EXPOSE in IPDS-I (Stoe & Cie, 2004[Stoe & Cie (2004). IPDS-I. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: CELL in IPDS-I (Stoe & Cie, 2004[Stoe & Cie (2004). IPDS-I. Stoe & Cie GmbH, Darmstadt, Germany.]); data reduction: INTEGRATE in IPDS-I (Stoe & Cie, 2004[Stoe & Cie (2004). IPDS-I. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97, PLATON and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Caraway (Carum carvi L.) is naturally found in Northern and Central Europe, Siberia, Turkey, Iran, India and North Africa (Carvalho da & Fonseca da, 2006). The main constituent (50–70%) of the essential Caraway oil is (4S)-(+)-carvone (Hornok, 1992). This monoterpene exhibits some interesting biological activities, such as antimicrobial (Farag et al., 1989), nematicidal (Saxena et al., 1987), antitumor (Zheng et al., 1992) and plant growth regulatory activities (Reynolds, 1987). In fact, many syntheses from carvone were reported in order to prepare new compounds having olfactory properties suitable in various fields (Buch & Wuest, 1969; Aurrecoechea & Okamura, 1987; Torii et al., 1983).

The Kharasch addition or atom transfer radical addition (ATRA) is a synthetically useful process for functionalizing organic compounds by means of halogen derivatives (Dragutan et al., 2007). They are applied in the synthesis of polyfunctional acyclic and heterocyclic compounds, such as β-aminoacids (Juaristi & Soloschonok, 2005) and alkaloids (Nagashima et al., 2003). As a part of our interest in the synthesis of optically actives polyhalogenated products from terpenes (Boualy et al., 2009; Ziyat et al., 2004; Ziyat et al., 2006; Boualy et al., 2011) we report herein on the synthesis and crystal structure of the title compound. It is a new polyhalogenated terpene from (R)-carvone, which could be a valuable precursor for the synthesis of new polyfunctional terpenic compounds.

The title compound (Fig. 1) was obtained as a colourless solid by addition of tetrachloromethane to (R)-carvone catalyzed by Fe(acac)3 in toluene at 353 K (Boualy et al., 2011). The two chiral centres, C1 and C7, have R absolute configurations (Fig. 1). The cyclohex-2-enone ring (C1—C6) has an envelope conformation with the chiral C atom, C1, displaced by 0.633 (2) Å from the mean plane through the other five C atoms [C2—C6; maximum deviation 0.036 (2) Å]. In the molecule there is a short C2—H2A···Cl1 contact (H2a···Cl1 = 2.72 Å; C2···Cl1 = 3.167 (2) Å).

In the crystal, C—H···O interactions (Table 1 and Fig. 2) are present and lead to the formation of helical chains propagating along [100].

The structure of the title molecule was also characterized by 1H, 13C NMR spectroscopy and by mass spectroscopy. 1H NMR data of the isolated product indicated the presence of an olefinic proton at 6.77 p.p.m. corresponding to the group (CCH), which indicated also the absence of the olefinic protons of the group (CCH2). In the 13C NMR spectrum, the signal of the carbonyl group was observed at δ = 199 p.p.m., the olefinic carbons appeared at 144.5 and 135.5 p.p.m. and the quaternary carbon containing three chlorine atoms appeared at 98.4 p.p.m. The conservation of the carbonyl group was also confirmed by the IR absorption at 1720 cm-1. The mass spectrum of the compound confirmed the proposed structure exhibiting a molecular ion peak at m/z 304 and the base peak at m/z 136, which originated from the monoterpene fragment.

The X-ray single-crystal analysis of the title compound clearly shows the absolute configuration at atoms C1 and C7 to be (R, R)(Fig.1).

Related literature top

For synthetic details, see: Boualy et al. (2011); Dragutan et al. (2007). For related structures, see: Boualy et al. (2009, 2011); Ziyat et al. (2004, 2006). For the distribution of caraway (Carum carvi L.), see: Carvalho da & Fonseca da (2006); Hornok (1992). For biological activity, see: Farag et al. (1989); Juaristi & Soloschonok (2005); Nagashima et al. (2003); Reynolds (1987); Saxena et al. (1987); Zheng et al. (1992). For carvone derivatives having olfactory properties, see: Buch & Wuest (1969); Aurrecoechea & Okamura (1987); Torii et al. (1983).

Experimental top

The synthesis of the title compound (Boualy et al., 2011) is illustrated in Fig. 3. A mixture of Fe(acac)3 (4.87 mg, 0.0138 mmol), NEt3 (4.485 mg, 0.044 mmol), (R)-Carvone (207.30 mg, 1.38 mmol) and CCl4 (849.09 mg, 5.52 mmol), was stirred in 353 K in 5 mL of toluene for 6 h and then hydrolyzed by addition of 20 mL of water. The organic layer was separated and the aqueous layer was washed with 3 × 10 mL of dichloromethane. The combined organic extracts were dried over Na2SO4 and concentred in a rotary evaporator at reduced pressure. Column chromatography (hexane / ethyl acetate: 5:1 v/v) of the residue on silica gel gave 285.76 mg (0.94 mmol, 68%) of the title compound as a colourless solid. Recrystallization in chloroform at rt afforded colourless rod-like crystals suitable for X-ray crystallographic analysis. M. p. 411 K; [α]20D = +14.2 (c = 1.01, CHCl3); 1H NMR (300 MHz, CDCl3): δ = 1.70 (S, 3H); 1.85 (S, 3H), 2.24–2.67 (m, 5H), 3.35 (S, éH), 6.50 (m, 1H); 13C NMR (75 MHz, CDCl3): δ = 15.55 (CH3–), 27.37 (CH3–), 27.89 (–CH2–), 39.83 (–CH2–), 45.74 (–CH–), 62.50 (–CH2—CCl3), 73.31 (–C—Cl), 96.15 (–CCl3), 135.68 (=Cq), 142.52 (=CH), 197.26 (C=O); MS (EI, 70 eV): m/z (%) = 304 [M+].

Refinement top

C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.98, 0.97 and 0.96 Å for CH(allyl), CH(methine), CH2, and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms and = 1.2 for other H-atoms.

Structure description top

Caraway (Carum carvi L.) is naturally found in Northern and Central Europe, Siberia, Turkey, Iran, India and North Africa (Carvalho da & Fonseca da, 2006). The main constituent (50–70%) of the essential Caraway oil is (4S)-(+)-carvone (Hornok, 1992). This monoterpene exhibits some interesting biological activities, such as antimicrobial (Farag et al., 1989), nematicidal (Saxena et al., 1987), antitumor (Zheng et al., 1992) and plant growth regulatory activities (Reynolds, 1987). In fact, many syntheses from carvone were reported in order to prepare new compounds having olfactory properties suitable in various fields (Buch & Wuest, 1969; Aurrecoechea & Okamura, 1987; Torii et al., 1983).

The Kharasch addition or atom transfer radical addition (ATRA) is a synthetically useful process for functionalizing organic compounds by means of halogen derivatives (Dragutan et al., 2007). They are applied in the synthesis of polyfunctional acyclic and heterocyclic compounds, such as β-aminoacids (Juaristi & Soloschonok, 2005) and alkaloids (Nagashima et al., 2003). As a part of our interest in the synthesis of optically actives polyhalogenated products from terpenes (Boualy et al., 2009; Ziyat et al., 2004; Ziyat et al., 2006; Boualy et al., 2011) we report herein on the synthesis and crystal structure of the title compound. It is a new polyhalogenated terpene from (R)-carvone, which could be a valuable precursor for the synthesis of new polyfunctional terpenic compounds.

The title compound (Fig. 1) was obtained as a colourless solid by addition of tetrachloromethane to (R)-carvone catalyzed by Fe(acac)3 in toluene at 353 K (Boualy et al., 2011). The two chiral centres, C1 and C7, have R absolute configurations (Fig. 1). The cyclohex-2-enone ring (C1—C6) has an envelope conformation with the chiral C atom, C1, displaced by 0.633 (2) Å from the mean plane through the other five C atoms [C2—C6; maximum deviation 0.036 (2) Å]. In the molecule there is a short C2—H2A···Cl1 contact (H2a···Cl1 = 2.72 Å; C2···Cl1 = 3.167 (2) Å).

In the crystal, C—H···O interactions (Table 1 and Fig. 2) are present and lead to the formation of helical chains propagating along [100].

The structure of the title molecule was also characterized by 1H, 13C NMR spectroscopy and by mass spectroscopy. 1H NMR data of the isolated product indicated the presence of an olefinic proton at 6.77 p.p.m. corresponding to the group (CCH), which indicated also the absence of the olefinic protons of the group (CCH2). In the 13C NMR spectrum, the signal of the carbonyl group was observed at δ = 199 p.p.m., the olefinic carbons appeared at 144.5 and 135.5 p.p.m. and the quaternary carbon containing three chlorine atoms appeared at 98.4 p.p.m. The conservation of the carbonyl group was also confirmed by the IR absorption at 1720 cm-1. The mass spectrum of the compound confirmed the proposed structure exhibiting a molecular ion peak at m/z 304 and the base peak at m/z 136, which originated from the monoterpene fragment.

The X-ray single-crystal analysis of the title compound clearly shows the absolute configuration at atoms C1 and C7 to be (R, R)(Fig.1).

For synthetic details, see: Boualy et al. (2011); Dragutan et al. (2007). For related structures, see: Boualy et al. (2009, 2011); Ziyat et al. (2004, 2006). For the distribution of caraway (Carum carvi L.), see: Carvalho da & Fonseca da (2006); Hornok (1992). For biological activity, see: Farag et al. (1989); Juaristi & Soloschonok (2005); Nagashima et al. (2003); Reynolds (1987); Saxena et al. (1987); Zheng et al. (1992). For carvone derivatives having olfactory properties, see: Buch & Wuest (1969); Aurrecoechea & Okamura (1987); Torii et al. (1983).

Computing details top

Data collection: EXPOSE in IPDS-I (Stoe & Cie, 2004); cell refinement: CELL in IPDS-I (Stoe & Cie, 2004); data reduction: INTEGRATE in IPDS-I (Stoe & Cie, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, showing the crystallographic atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound, showing the C—H···O interactions (dashed lines) leading to the formation of helical chains propagating along [100].
[Figure 3] Fig. 3. Synthesis of the title compound (Boualy et al., 2011).
(R)-2-Methyl-5-[(R)-2,4,4,4-tetrachlorobutan-2-yl]cyclohex-2-enone top
Crystal data top
C11H14Cl4OF(000) = 624
Mr = 304.02Dx = 1.478 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6130 reflections
a = 6.4976 (6) Åθ = 2.5–21.9°
b = 13.3343 (16) ŵ = 0.84 mm1
c = 15.7648 (14) ÅT = 293 K
V = 1365.9 (2) Å3Rod, colourless
Z = 40.38 × 0.27 × 0.20 mm
Data collection top
Stoe IPDS
diffractometer
2431 independent reflections
Radiation source: fine-focus sealed tube1662 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ rotation scansθmax = 25.1°, θmin = 2.6°
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
h = 77
Tmin = 0.963, Tmax = 1.000k = 1515
9786 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0338P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.87(Δ/σ)max < 0.001
2431 reflectionsΔρmax = 0.21 e Å3
148 parametersΔρmin = 0.19 e Å3
0 restraintsAbsolute structure: Flack (1983), 1005 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (7)
Crystal data top
C11H14Cl4OV = 1365.9 (2) Å3
Mr = 304.02Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.4976 (6) ŵ = 0.84 mm1
b = 13.3343 (16) ÅT = 293 K
c = 15.7648 (14) Å0.38 × 0.27 × 0.20 mm
Data collection top
Stoe IPDS
diffractometer
2431 independent reflections
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
1662 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 1.000Rint = 0.033
9786 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.063Δρmax = 0.21 e Å3
S = 0.87Δρmin = 0.19 e Å3
2431 reflectionsAbsolute structure: Flack (1983), 1005 Friedel pairs
148 parametersAbsolute structure parameter: 0.00 (7)
0 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.83987 (14)0.40824 (6)0.52522 (6)0.0812 (3)
Cl20.52828 (15)0.48377 (7)0.24964 (5)0.0845 (3)
Cl30.23706 (13)0.38341 (7)0.35431 (5)0.0834 (3)
Cl40.65044 (18)0.31020 (7)0.34378 (6)0.1061 (4)
O10.8569 (3)0.77674 (13)0.61294 (12)0.0671 (7)
C10.5690 (4)0.55138 (18)0.56903 (14)0.0423 (8)
C20.7126 (4)0.63646 (17)0.54387 (15)0.0474 (9)
C30.7060 (4)0.72331 (18)0.60355 (14)0.0471 (9)
C40.5098 (4)0.74598 (18)0.64494 (14)0.0502 (9)
C50.3492 (5)0.6861 (2)0.63074 (14)0.0545 (10)
C60.3522 (4)0.59286 (19)0.57915 (15)0.0518 (9)
C70.5809 (4)0.45906 (18)0.51053 (15)0.0474 (9)
C80.5589 (4)0.49132 (17)0.41742 (13)0.0468 (9)
C90.4989 (4)0.41885 (19)0.34799 (16)0.0561 (9)
C100.4985 (6)0.8381 (2)0.69942 (18)0.0788 (14)
C110.4329 (5)0.3768 (2)0.54069 (17)0.0696 (10)
H10.612900.529000.625400.0510*
H2A0.852300.611000.541300.0570*
H2B0.675700.659500.487500.0570*
H50.224500.704300.655200.0650*
H6A0.295000.606800.523500.0620*
H6B0.266100.542700.606100.0620*
H8A0.458700.545200.416300.0560*
H8B0.689700.520500.400900.0560*
H10A0.526100.896300.665400.1180*
H10B0.598800.833500.744000.1180*
H10C0.363500.843400.723700.1180*
H11A0.456500.363400.599700.1050*
H11B0.456100.316800.508400.1050*
H11C0.293500.398800.532800.1050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0681 (6)0.0751 (5)0.1004 (6)0.0255 (5)0.0196 (5)0.0134 (4)
Cl20.0987 (7)0.1091 (7)0.0457 (3)0.0243 (5)0.0049 (4)0.0112 (4)
Cl30.0705 (6)0.1037 (6)0.0760 (5)0.0304 (4)0.0028 (5)0.0140 (5)
Cl40.1214 (8)0.0882 (6)0.1088 (7)0.0334 (6)0.0023 (6)0.0402 (6)
O10.0625 (14)0.0576 (11)0.0812 (12)0.0165 (11)0.0107 (11)0.0027 (9)
C10.0386 (17)0.0511 (14)0.0371 (12)0.0032 (12)0.0011 (10)0.0052 (10)
C20.0364 (16)0.0561 (15)0.0498 (14)0.0051 (12)0.0052 (12)0.0003 (12)
C30.0510 (19)0.0434 (14)0.0469 (13)0.0009 (13)0.0095 (13)0.0082 (11)
C40.0541 (18)0.0535 (15)0.0429 (12)0.0091 (14)0.0050 (14)0.0011 (12)
C50.0459 (18)0.0702 (17)0.0473 (15)0.0167 (15)0.0057 (13)0.0083 (13)
C60.0377 (16)0.0712 (17)0.0464 (14)0.0053 (15)0.0029 (12)0.0042 (12)
C70.0454 (18)0.0475 (14)0.0493 (13)0.0012 (12)0.0038 (11)0.0022 (11)
C80.0461 (17)0.0507 (15)0.0436 (12)0.0038 (13)0.0023 (12)0.0030 (11)
C90.0516 (18)0.0648 (16)0.0519 (14)0.0021 (14)0.0015 (14)0.0167 (13)
C100.093 (3)0.066 (2)0.0774 (19)0.0220 (19)0.0065 (19)0.0139 (16)
C110.089 (2)0.0573 (16)0.0624 (16)0.0234 (16)0.0038 (17)0.0118 (14)
Geometric parameters (Å, º) top
Cl1—C71.829 (3)C8—C91.511 (3)
Cl2—C91.786 (3)C1—H10.9800
Cl3—C91.769 (3)C2—H2A0.9700
Cl4—C91.753 (3)C2—H2B0.9700
O1—C31.221 (3)C5—H50.9300
C1—C21.522 (3)C6—H6A0.9700
C1—C61.522 (4)C6—H6B0.9700
C1—C71.540 (3)C8—H8A0.9700
C2—C31.493 (3)C8—H8B0.9700
C3—C41.464 (4)C10—H10A0.9600
C4—C51.333 (4)C10—H10B0.9600
C4—C101.501 (4)C10—H10C0.9600
C5—C61.486 (4)C11—H11A0.9600
C7—C81.536 (3)C11—H11B0.9600
C7—C111.534 (4)C11—H11C0.9600
C2—C1—C6108.9 (2)C1—C2—H2B109.00
C2—C1—C7114.2 (2)C3—C2—H2A109.00
C6—C1—C7113.6 (2)C3—C2—H2B109.00
C1—C2—C3113.4 (2)H2A—C2—H2B108.00
O1—C3—C2120.4 (2)C4—C5—H5117.00
O1—C3—C4121.7 (2)C6—C5—H5117.00
C2—C3—C4117.8 (2)C1—C6—H6A109.00
C3—C4—C5118.9 (2)C1—C6—H6B109.00
C3—C4—C10117.8 (2)C5—C6—H6A109.00
C5—C4—C10123.2 (3)C5—C6—H6B109.00
C4—C5—C6125.7 (3)H6A—C6—H6B108.00
C1—C6—C5111.9 (2)C7—C8—H8A107.00
Cl1—C7—C1105.46 (17)C7—C8—H8B107.00
Cl1—C7—C8108.08 (17)C9—C8—H8A107.00
Cl1—C7—C11105.82 (18)C9—C8—H8B107.00
C1—C7—C8110.10 (19)H8A—C8—H8B107.00
C1—C7—C11110.8 (2)C4—C10—H10A109.00
C8—C7—C11116.0 (2)C4—C10—H10B109.00
C7—C8—C9122.5 (2)C4—C10—H10C109.00
Cl2—C9—Cl3106.34 (14)H10A—C10—H10B109.00
Cl2—C9—Cl4107.92 (14)H10A—C10—H10C110.00
Cl2—C9—C8106.93 (17)H10B—C10—H10C109.00
Cl3—C9—Cl4108.76 (14)C7—C11—H11A109.00
Cl3—C9—C8112.22 (18)C7—C11—H11B109.00
Cl4—C9—C8114.27 (18)C7—C11—H11C109.00
C2—C1—H1107.00H11A—C11—H11B109.00
C6—C1—H1107.00H11A—C11—H11C109.00
C7—C1—H1107.00H11B—C11—H11C110.00
C1—C2—H2A109.00
C6—C1—C2—C354.6 (3)O1—C3—C4—C100.4 (3)
C7—C1—C2—C3177.3 (2)C2—C3—C4—C53.0 (3)
C2—C1—C6—C547.4 (3)C2—C3—C4—C10175.2 (2)
C7—C1—C6—C5175.77 (19)C3—C4—C5—C63.5 (4)
C2—C1—C7—Cl165.6 (2)C10—C4—C5—C6178.5 (2)
C2—C1—C7—C850.8 (3)C4—C5—C6—C120.2 (3)
C2—C1—C7—C11179.6 (2)Cl1—C7—C8—C984.7 (3)
C6—C1—C7—Cl1168.79 (16)C1—C7—C8—C9160.6 (2)
C6—C1—C7—C874.8 (3)C11—C7—C8—C933.9 (3)
C6—C1—C7—C1154.8 (3)C7—C8—C9—Cl2171.8 (2)
C1—C2—C3—O1151.4 (2)C7—C8—C9—Cl371.9 (3)
C1—C2—C3—C433.0 (3)C7—C8—C9—Cl452.5 (3)
O1—C3—C4—C5178.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.972.513.394 (3)152
Symmetry code: (i) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC11H14Cl4O
Mr304.02
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.4976 (6), 13.3343 (16), 15.7648 (14)
V3)1365.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.38 × 0.27 × 0.20
Data collection
DiffractometerStoe IPDS
Absorption correctionMulti-scan
(MULscanABS in PLATON; Spek, 2009)
Tmin, Tmax0.963, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9786, 2431, 1662
Rint0.033
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.063, 0.87
No. of reflections2431
No. of parameters148
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19
Absolute structureFlack (1983), 1005 Friedel pairs
Absolute structure parameter0.00 (7)

Computer programs: EXPOSE in IPDS-I (Stoe & Cie, 2004), CELL in IPDS-I (Stoe & Cie, 2004), INTEGRATE in IPDS-I (Stoe & Cie, 2004), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.972.513.394 (3)152
Symmetry code: (i) x1/2, y+3/2, z+1.
 

Acknowledgements

HSE thanks the XRD Application Laboratory of the CSEM, Neuchâtel, for access to the X-ray diffraction equipment.

References

First citationAurrecoechea, J. M. & Okamura, W. H. (1987). Tetrahedron Lett. 28, 4947–4950.  CrossRef CAS Web of Science Google Scholar
First citationBoualy, B., El Firdoussi, L., Ait Ali, M., Karim, A. & Spannenberg, A. (2009). Z. Kristallogr. New Cryst. Struct. 224, 631–632.  CAS Google Scholar
First citationBoualy, B., Harrad, M. A., El Firdoussi, L., Ait Ali, M., El Houssame, S. & Karim, A. (2011). Catal. Commun. 12, 1295–1297.  Web of Science CrossRef CAS Google Scholar
First citationBuch, G. & Wuest, H. (1969). J. Org. Chem. 34, 857–860.  Google Scholar
First citationCarvalho da, C. C. C. R. & Fonseca da, M. M. R. (2006). Food Chem. 95, 413–422.  Google Scholar
First citationDragutan, V., Dragutan, I., Delaude, L. & Demonceau, A. (2007). Coord. Chem. Rev. 251, 765–794.  Web of Science CrossRef CAS Google Scholar
First citationFarag, R. S., Daw, Z. Y. & Abo-Raya, S. H. (1989). J. Food Sci. 54, 74–76.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHornok, L. (1992). In Cultivation and Processing of Medicinal Plants. Chichester, UK: John Wiley and Sons.  Google Scholar
First citationJuaristi, E. & Soloschonok, V. A. (2005). In Enantioselective Synthesis of β-Amino Acids. Canada: Wiley Interscience.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNagashima, H., Gondo, M., Masuda, S., Kondo, H., Yamaguchi, Y. & Matsubara, K. (2003). Chem. Commun. 3, 442–443.  Web of Science CSD CrossRef Google Scholar
First citationReynolds, T. (1987). Ann. Bot. (Lond.), 60, 215–223.  CAS Google Scholar
First citationSaxena, D. B., Goswami, B. K. & Tomar, S. S. (1987). Indian Perfumer, 31, 150–154.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2004). IPDS-I. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTorii, S., Inokuchi, T. & Oi, R. (1983). J. Org. Chem. 48, 1944–1951.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, G. Q., Kenney, P. M. & Lam, L. K. (1992). J. Agric. Food Chem. 40, 751–755.  CrossRef CAS Web of Science Google Scholar
First citationZiyat, H., Ait Itto, M. Y., Ait Ali, M., Riahi, A., Karim, A. & Daran, J. C. (2006). Arkivoc, CXII, 152–160.  CrossRef Google Scholar
First citationZiyat, H., El Houssame, S., Ait Ali, M., Ait Itto, M. Y., Karim, A., Wartchow, R. & Butenschoen, H. (2004). Z. Naturforsch. Teil B, 59, 1177–1179.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds