organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[2-(3-Fluoro­phen­yl)ethen­yl]quinolin-8-yl acetate

aSchool of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: tigerhuo1974@yahoo.com.cn

(Received 14 May 2012; accepted 3 July 2012; online 10 July 2012)

In the crystal of the title compound, C19H14FNO2, the mol­ecules are linked by C—H⋯O hydrogen bonds in translational chains along the b axis. The dihedral angles formed by the quinoline system with the fluoro­benzene ring and the acet­oxy group are 8.15 (3) and 77.42 (4)°, respectively.

Related literature

For the synthetic procedure, see: Zeng et al. (2006[Zeng, H., OuYang, X., Wang, T., Yuan, G., Zhang, G. & Zhang, X. (2006). Cryst. Growth Des. 6, 1697-1702.]).

[Scheme 1]

Experimental

Crystal data
  • C19H14FNO2

  • Mr = 307.31

  • Monoclinic, P 21 /c

  • a = 17.628 (3) Å

  • b = 5.2641 (9) Å

  • c = 16.062 (3) Å

  • β = 100.528 (2)°

  • V = 1465.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 110 K

  • 0.35 × 0.24 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.972, Tmax = 0.982

  • 8139 measured reflections

  • 3177 independent reflections

  • 2663 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.134

  • S = 1.02

  • 3177 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1D⋯O2i 0.98 (1) 2.54 (1) 3.495 (2) 166 (2)
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 2008[Bruker (2008). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The (E)-2-[2-(3-fluorophenyl)ethenyl]-8-acetoxyquinoline was prepared via a reaction of 2-methyl-8-hydroxyquinaldine with 3-fluorobenzaldehyde according to Zeng et al. (2006). The molecular structure is shown on Fig. 1. There are non- classical intermolecular hydrogen bonds C–H···O between carbonyl oxygen and the methyl group (C···O = 3.495 (2) Å; C–H···O = 166°) connecting molecules into chains along the b axis.

Related literature top

For the synthetic procedure, see: Zeng et al. (2006).

Experimental top

The title compound was prepared by a method reported in the literature, see: Zeng et al. (2006). The crystals were obtained by dissolving the compound (0.1 g) in dichloromethane (5 ml) and then evaporating the solvent slowly at room temperature for about 3 days.

Refinement top

All H atoms were refined as riding atoms with isotropic displacement parameters 1.2 times larger or 1.5 times larger (methyl H) than the corresponding host carbon atoms. The methyl H atoms' positions were set based using AFIX 33 instruction in SHELXL97 (Sheldrick, 2008)). The C—H distances were kept at 0.95 Å (0.98 Å for methyl hydrogens).

Structure description top

The (E)-2-[2-(3-fluorophenyl)ethenyl]-8-acetoxyquinoline was prepared via a reaction of 2-methyl-8-hydroxyquinaldine with 3-fluorobenzaldehyde according to Zeng et al. (2006). The molecular structure is shown on Fig. 1. There are non- classical intermolecular hydrogen bonds C–H···O between carbonyl oxygen and the methyl group (C···O = 3.495 (2) Å; C–H···O = 166°) connecting molecules into chains along the b axis.

For the synthetic procedure, see: Zeng et al. (2006).

Computing details top

Data collection: SMART [or APEX2?] (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound.
(E)-2-[2-(3-Fluorophenyl)ethenyl]quinolin-8-yl acetate top
Crystal data top
C19H14FNO2F(000) = 640
Mr = 307.31Dx = 1.393 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8139 reflections
a = 17.628 (3) Åθ = 2.4–27.1°
b = 5.2641 (9) ŵ = 0.10 mm1
c = 16.062 (3) ÅT = 110 K
β = 100.528 (2)°Plate, colorless
V = 1465.4 (4) Å30.35 × 0.24 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3177 independent reflections
Radiation source: fine-focus sealed tube2663 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scansθmax = 27.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2222
Tmin = 0.972, Tmax = 0.982k = 66
8139 measured reflectionsl = 2016
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0792P)2 + 0.6625P]
where P = (Fo2 + 2Fc2)/3
3177 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C19H14FNO2V = 1465.4 (4) Å3
Mr = 307.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.628 (3) ŵ = 0.10 mm1
b = 5.2641 (9) ÅT = 110 K
c = 16.062 (3) Å0.35 × 0.24 × 0.18 mm
β = 100.528 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3177 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2663 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.982Rint = 0.017
8139 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.02Δρmax = 0.67 e Å3
3177 reflectionsΔρmin = 0.26 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34904 (6)0.31492 (19)0.74280 (6)0.0242 (2)
N10.26746 (7)0.0961 (2)0.66528 (7)0.0220 (3)
F10.13987 (6)0.95702 (19)0.54984 (6)0.0398 (3)
O20.36690 (7)0.0337 (2)0.85047 (7)0.0308 (3)
C90.22819 (8)0.2876 (3)0.62482 (8)0.0225 (3)
C80.34042 (8)0.0532 (3)0.65088 (8)0.0213 (3)
C190.02215 (9)0.7381 (3)0.58416 (9)0.0279 (3)
H19A0.00090.85810.55230.033*
C70.37520 (8)0.2014 (3)0.59403 (8)0.0225 (3)
C140.02131 (8)0.5360 (3)0.62403 (9)0.0236 (3)
C170.13480 (8)0.5983 (3)0.63768 (9)0.0279 (3)
H17A0.18740.62010.64200.033*
C30.38386 (8)0.1525 (3)0.69226 (8)0.0224 (3)
C120.14966 (8)0.3207 (3)0.64139 (9)0.0239 (3)
H12A0.13140.19680.67600.029*
C110.33106 (8)0.4031 (3)0.55183 (8)0.0248 (3)
H11A0.35170.50700.51310.030*
C40.45559 (8)0.2107 (3)0.67758 (9)0.0254 (3)
H4A0.48280.35190.70530.031*
C60.45038 (8)0.1410 (3)0.58087 (9)0.0263 (3)
H6A0.47390.24200.54360.032*
C50.48937 (8)0.0617 (3)0.62139 (9)0.0277 (3)
H5A0.53950.10210.61160.033*
C100.25884 (8)0.4474 (3)0.56703 (9)0.0248 (3)
H10A0.22890.58350.53940.030*
C160.09130 (8)0.3979 (3)0.67832 (9)0.0279 (3)
H16A0.11460.28100.71100.033*
C180.09877 (9)0.7629 (3)0.59126 (9)0.0275 (3)
C150.01447 (8)0.3665 (3)0.67175 (9)0.0252 (3)
H15A0.01410.22870.69990.030*
C130.10159 (8)0.5092 (3)0.61214 (9)0.0262 (3)
H13A0.12110.63860.58060.031*
C20.34043 (8)0.2298 (3)0.82022 (9)0.0241 (3)
C10.29471 (9)0.4184 (3)0.86069 (11)0.0334 (4)
H1B0.28870.35640.91660.050*
H1C0.24370.44030.82510.050*
H1D0.32180.58180.86680.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0275 (5)0.0202 (5)0.0253 (5)0.0016 (4)0.0058 (4)0.0001 (4)
N10.0229 (6)0.0225 (6)0.0209 (6)0.0027 (4)0.0049 (4)0.0021 (4)
F10.0423 (6)0.0331 (5)0.0408 (6)0.0137 (4)0.0008 (4)0.0013 (4)
O20.0405 (6)0.0254 (6)0.0286 (5)0.0033 (5)0.0118 (5)0.0030 (4)
C90.0236 (6)0.0245 (7)0.0190 (6)0.0022 (5)0.0028 (5)0.0035 (5)
C80.0225 (6)0.0221 (7)0.0192 (6)0.0030 (5)0.0039 (5)0.0043 (5)
C190.0344 (8)0.0259 (7)0.0238 (7)0.0037 (6)0.0065 (6)0.0017 (6)
C70.0245 (7)0.0250 (7)0.0183 (6)0.0044 (5)0.0044 (5)0.0046 (5)
C140.0273 (7)0.0232 (7)0.0198 (6)0.0022 (5)0.0029 (5)0.0034 (5)
C170.0227 (7)0.0292 (8)0.0302 (7)0.0035 (6)0.0007 (6)0.0087 (6)
C30.0254 (7)0.0213 (7)0.0207 (6)0.0044 (5)0.0050 (5)0.0031 (5)
C120.0245 (7)0.0261 (7)0.0213 (6)0.0015 (6)0.0050 (5)0.0006 (5)
C110.0297 (7)0.0269 (7)0.0184 (6)0.0051 (6)0.0061 (5)0.0002 (5)
C40.0250 (7)0.0252 (7)0.0253 (7)0.0018 (5)0.0025 (5)0.0044 (5)
C60.0266 (7)0.0313 (8)0.0227 (7)0.0052 (6)0.0089 (5)0.0040 (6)
C50.0232 (7)0.0348 (8)0.0259 (7)0.0002 (6)0.0065 (6)0.0070 (6)
C100.0275 (7)0.0252 (7)0.0208 (6)0.0009 (6)0.0017 (5)0.0011 (5)
C160.0265 (7)0.0267 (8)0.0301 (7)0.0028 (6)0.0042 (6)0.0021 (6)
C180.0319 (7)0.0233 (7)0.0244 (7)0.0082 (6)0.0025 (6)0.0044 (5)
C150.0256 (7)0.0220 (7)0.0266 (7)0.0016 (5)0.0015 (6)0.0011 (5)
C130.0288 (7)0.0260 (7)0.0245 (7)0.0007 (6)0.0070 (6)0.0008 (5)
C20.0239 (6)0.0222 (7)0.0272 (7)0.0039 (5)0.0070 (5)0.0016 (5)
C10.0351 (8)0.0267 (8)0.0424 (9)0.0000 (6)0.0177 (7)0.0047 (7)
Geometric parameters (Å, º) top
O1—C21.3561 (17)C3—C41.3627 (19)
O1—C31.3962 (17)C12—C131.334 (2)
N1—C91.3241 (19)C12—H12A0.9500
N1—C81.3667 (17)C11—C101.360 (2)
F1—C181.3550 (17)C11—H11A0.9500
O2—C21.1986 (18)C4—C51.407 (2)
C9—C101.430 (2)C4—H4A0.9500
C9—C121.4669 (19)C6—C51.368 (2)
C8—C31.419 (2)C6—H6A0.9500
C8—C71.4221 (19)C5—H5A0.9500
C19—C181.382 (2)C10—H10A0.9500
C19—C141.396 (2)C16—C151.387 (2)
C19—H19A0.9500C16—H16A0.9500
C7—C111.414 (2)C15—H15A0.9500
C7—C61.4157 (19)C13—H13A0.9500
C14—C151.399 (2)C2—C11.500 (2)
C14—C131.469 (2)C1—H1B0.9800
C17—C181.372 (2)C1—H1C0.9800
C17—C161.394 (2)C1—H1D0.9800
C17—H17A0.9500
C2—O1—C3117.75 (11)C5—C4—H4A120.0
C9—N1—C8117.80 (12)C5—C6—C7120.43 (13)
N1—C9—C10122.74 (13)C5—C6—H6A119.8
N1—C9—C12115.29 (12)C7—C6—H6A119.8
C10—C9—C12121.95 (13)C6—C5—C4120.35 (13)
N1—C8—C3119.39 (12)C6—C5—H5A119.8
N1—C8—C7123.20 (13)C4—C5—H5A119.8
C3—C8—C7117.39 (12)C11—C10—C9119.54 (13)
C18—C19—C14119.78 (14)C11—C10—H10A120.2
C18—C19—H19A120.1C9—C10—H10A120.2
C14—C19—H19A120.1C15—C16—C17121.03 (14)
C11—C7—C6123.02 (13)C15—C16—H16A119.5
C11—C7—C8117.10 (12)C17—C16—H16A119.5
C6—C7—C8119.87 (13)F1—C18—C17118.95 (14)
C19—C14—C15118.19 (13)F1—C18—C19118.26 (14)
C19—C14—C13118.33 (13)C17—C18—C19122.79 (14)
C15—C14—C13123.46 (13)C16—C15—C14120.65 (14)
C18—C17—C16117.54 (14)C16—C15—H15A119.7
C18—C17—H17A121.2C14—C15—H15A119.7
C16—C17—H17A121.2C12—C13—C14126.22 (14)
C4—C3—O1118.91 (13)C12—C13—H13A116.9
C4—C3—C8121.92 (13)C14—C13—H13A116.9
O1—C3—C8118.86 (12)O2—C2—O1123.76 (13)
C13—C12—C9125.75 (14)O2—C2—C1126.49 (14)
C13—C12—H12A117.1O1—C2—C1109.74 (12)
C9—C12—H12A117.1C2—C1—H1B109.5
C10—C11—C7119.61 (13)C2—C1—H1C109.5
C10—C11—H11A120.2H1B—C1—H1C109.5
C7—C11—H11A120.2C2—C1—H1D109.5
C3—C4—C5120.02 (14)H1B—C1—H1D109.5
C3—C4—H4A120.0H1C—C1—H1D109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1D···O2i0.98 (1)2.54 (1)3.495 (2)166 (2)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H14FNO2
Mr307.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)17.628 (3), 5.2641 (9), 16.062 (3)
β (°) 100.528 (2)
V3)1465.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.24 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.972, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
8139, 3177, 2663
Rint0.017
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.134, 1.02
No. of reflections3177
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.26

Computer programs: SMART [or APEX2?] (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1D···O2i0.98 (0)2.54 (0)3.495 (2)166 (2)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant Nos. 20802010 and 21172047) and the 211 project of Guangdong Province.

References

First citationBruker (2008). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, H., OuYang, X., Wang, T., Yuan, G., Zhang, G. & Zhang, X. (2006). Cryst. Growth Des. 6, 1697–1702.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds