organic compounds
4-Hydroxymethyl-10-methoxy-17,22-dioxapentacyclo[21.2.2.213,16.13,7.011,30]triaconta-1(25),3,5,7(30),8,10,13,15,23,26,28-undecaene-2,12-dione acetone monosolvate
aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp
In the title compound, C30H26O6·C3H6O, the syn-oriented benzoyl groups are nearly parallel to each other; the dihedral angle between their benzene rings is 15.9 (1)°. They form dihedral angles of 72.5 (1) and 84.3 (1)° with the naphthalene system. In the crystal, molecules are linked into a three-dimensional architecture by C—H⋯O and C—H⋯π interactions.
Related literature
For electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For applications of related molecules, see; Okamoto et al. (2012). For the structures of closely related compounds, see: Hijikata et al. (2010); Mitsui et al. (2010); Sasagawa et al. (2011); Watanabe et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: Il Milione (Burla, et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536812033521/ld2069sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812033521/ld2069Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812033521/ld2069Isup3.cml
The title compound was prepared by SN2 reaction of 1,8-bis(4-hydroxybenzoyl)-2,7-dimethoxynaphthalene (1.0 mmol, 428 mg) with 1,4-dibromobutane (1.0 mmol, 215 mg) in N,N-dimethylacetamide (DMAc; 25.0 ml) with potassium carbonate (5.0 mmol, 691 mg). [The precursor, 1,8-bis(4-hydroxybenzoyl)-2,7-dimethoxynaphthalene, was obtained via SNAr reaction of 1,8-bis(4-fluorobenzoyl)-2,7-dimethoxynaphthalene with sodium hydroxide.] After the reaction, the mixture was stirred at 333 K for 48 h, it was poured into water and extracted with CHCl3. The combined extracts were washed with 2M aqueous NaOH followed with brine. The organic layers were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give the crude product, which was purified by
(silica gel, CHCl3; isolated yield 47%). The pure product was crystallized from acetone to yield single crystals.1H NMR δ (300 MHz, CDCl3): 1.78–1.93(4H, m),3.72(6H, s), 4.10–4.27(4H, m) 6.31(2H, dd, J=8.5, 2.4 Hz), 6.63(2H, dd, J=8.9, 2.4 Hz), 6.88(2H, dd, J=8.5, 2.0 Hz), 7.20(2H, d, J=8.9 Hz), 7.87(2H, dd, J=8.9, 2.0 Hz), 7.92(2H, d, J=8.9 Hz) p.p.m.
13C NMR δ (75 MHz, CDCl3): 22.49, 56.59, 66.80, 111.15, 113.77, 115.45, 121.81, 125.10, 128.81, 129.93, 131.24, 131.69, 133.82, 156.01, 160.90, 193.86 p.p.m.
IR (KBr): 1668 (C=O), 1600, 1509, 1460 (Ar, naphthalene), 1263 (=C—O—C) cm-1.
HRMS (m/z): [M + H]+ calcd for C30H27O6, 483.1808 found, 483.1836.
m.p. 537.5–538.8 K
All H atoms were put in calculated positions and treated as riding on their parent atoms, with C—H = 0.95(aromatic C—H), 0.98(methyl), 0.99(methylene) Å, and Uĩso(H) = 1.2 Ueq(aromatic C, methyl C, methylene C). The positions of methyl hydrogens were rotationally optimized.
In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto, Mitsui et al., 2011). As one of applications, the authors have integrated the resulting molecular unit to poly(ether ketone)backbone via nucleophilic aromatic substitution
(Okamoto et al., 2012). Furthermore we have also reported the crystal structures of several 1,8-diaroylated naphthalene analogues exemplified by (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorobenzoyl)dimethanone (Watanabe et al., 2010) and [8-(4-butoxybenzoyl)-2,7-dimethoxynaphthalen-1-yl](4-butoxyphenyl)methanone (Sasagawa et al., 2011). These molecules have essentially same non-coplanarly features. The aroyl groups at the 1,8-positions of the naphthalene rings in these molecules are twisted in almost perpendicular fashion, but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. On the other hand, 1,8-bis(4-chlorobenzoyl)-7-methoxynaphthalene-2-ol ethanol monosolvate (Mitsui et al., 2010) and 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene (Hijikata et al., 2010) have apparently different spatial organizations. The aroyl groups attached to the naphthalene ring are oriented in the same directions. As a part of our continuous study on the molecular structures of this kind of molecules, the X-ray of the title compound containing a 1,8-diaroylenenaphthalene moiety is discussed in this article.The crystal packing is stabilized by intermolecular C—H···O hydrogen bonding between the oxygen atom (O2) of the carbonyl group of the adjacent molecule and one hydrogen atom (H3) on the naphthalene ring along the a axis (C3—H3···O2i= 2.47 Å; Table 1). Furthermore, two intermolecular C—H···O interactions, between the oxygen atom (O3) of the methoxy group and one hydrogen atom (H7) on the naphthalene ring, and between the oxygen atom (O1) of the carbonyl group and one hydrogen atom (H6) on the naphthalene ring, are observed along the c axis (C7—H7···O3ii= 2.59 Å, C6—H6···O1ii= 2.38 Å; Table 1). Moreover, the title compounds and acetones are linked by two C—H···O interactions and C—H···π interaction forming a three-dimensional architecture. The C—H···O interactions (C14—H14···O5iii= 2.40 Å, C21—H21···O1SiV= 2.54 Å; Fig. 2 and Table 1) and the C—H···π interaction (C2Sv—H2S2v···Cg= 2.86 Å; Fig. 2 and Table 1) also contribute to the stabilization of the and crystal structure.
For electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For applications of related molecules, see; Okamoto et al. (2012). For the structures of closely related compounds, see: Hijikata et al. (2010); Mitsui et al. (2010); Sasagawa et al. (2011); Watanabe et al. (2010).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: Il Milione (Burla, et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids | |
Fig. 2. The dimeric associates of title compound. The C—H···O and C—H···π interactions are shown as dashed lines. |
C30H26O6·C3H6O | Dx = 1.280 Mg m−3 |
Mr = 540.59 | Melting point = 537.5–538.8 K |
Orthorhombic, Pbca | Cu Kα radiation, λ = 1.54187 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 92773 reflections |
a = 15.4948 (3) Å | θ = 3.4–68.3° |
b = 16.1272 (3) Å | µ = 0.73 mm−1 |
c = 22.4430 (4) Å | T = 193 K |
V = 5608.23 (18) Å3 | Block, colorless |
Z = 8 | 0.50 × 0.45 × 0.40 mm |
F(000) = 2288 |
Rigaku R-AXIS RAPID diffractometer | 5132 independent reflections |
Radiation source: rotating anode | 4829 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
Detector resolution: 10.000 pixels mm-1 | θmax = 68.3°, θmin = 3.9° |
ω scans | h = −18→18 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −19→19 |
Tmin = 0.712, Tmax = 0.759 | l = −27→27 |
99441 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.0495P)2 + 1.7635P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
5132 reflections | Δρmax = 0.20 e Å−3 |
366 parameters | Δρmin = −0.19 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/6(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00160 (9) |
C30H26O6·C3H6O | V = 5608.23 (18) Å3 |
Mr = 540.59 | Z = 8 |
Orthorhombic, Pbca | Cu Kα radiation |
a = 15.4948 (3) Å | µ = 0.73 mm−1 |
b = 16.1272 (3) Å | T = 193 K |
c = 22.4430 (4) Å | 0.50 × 0.45 × 0.40 mm |
Rigaku R-AXIS RAPID diffractometer | 5132 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 4829 reflections with I > 2σ(I) |
Tmin = 0.712, Tmax = 0.759 | Rint = 0.021 |
99441 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.098 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.20 e Å−3 |
5132 reflections | Δρmin = −0.19 e Å−3 |
366 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.07047 (5) | 0.27102 (5) | 0.20944 (4) | 0.0347 (2) | |
O2 | 1.19956 (5) | 0.17013 (6) | 0.14801 (4) | 0.0365 (2) | |
O3 | 0.85352 (6) | 0.25079 (6) | 0.23241 (4) | 0.0408 (2) | |
O4 | 1.19863 (7) | −0.01523 (6) | 0.13445 (5) | 0.0546 (3) | |
O5 | 0.89572 (6) | 0.42949 (5) | −0.01715 (4) | 0.0411 (2) | |
O6 | 1.01931 (7) | 0.19019 (6) | −0.10484 (4) | 0.0521 (3) | |
O1S | 0.72978 (11) | 0.11706 (9) | 0.09895 (8) | 0.0950 (5) | |
C1 | 0.96632 (7) | 0.16581 (7) | 0.20049 (5) | 0.0284 (2) | |
C2 | 0.88697 (8) | 0.17239 (7) | 0.22823 (5) | 0.0324 (3) | |
C3 | 0.84625 (8) | 0.10363 (8) | 0.25505 (5) | 0.0378 (3) | |
H3 | 0.7913 | 0.1093 | 0.2734 | 0.045* | |
C4 | 0.88732 (9) | 0.02911 (8) | 0.25413 (6) | 0.0392 (3) | |
H4 | 0.8608 | −0.0171 | 0.2729 | 0.047* | |
C5 | 0.96831 (8) | 0.01832 (8) | 0.22606 (5) | 0.0351 (3) | |
C6 | 1.00846 (10) | −0.06012 (8) | 0.22537 (6) | 0.0434 (3) | |
H6 | 0.9814 | −0.1052 | 0.2452 | 0.052* | |
C7 | 1.08489 (10) | −0.07290 (8) | 0.19709 (7) | 0.0463 (3) | |
H7 | 1.1115 | −0.1260 | 0.1978 | 0.056* | |
C8 | 1.12400 (9) | −0.00658 (8) | 0.16673 (6) | 0.0400 (3) | |
C9 | 1.08822 (8) | 0.07214 (7) | 0.16682 (5) | 0.0315 (3) | |
C10 | 1.00922 (8) | 0.08721 (7) | 0.19760 (5) | 0.0295 (3) | |
C11 | 1.00809 (7) | 0.24613 (7) | 0.18132 (5) | 0.0274 (2) | |
C12 | 0.97305 (7) | 0.29312 (7) | 0.13029 (5) | 0.0276 (2) | |
C13 | 1.01308 (8) | 0.36739 (7) | 0.11391 (5) | 0.0319 (3) | |
H13 | 1.0598 | 0.3879 | 0.1371 | 0.038* | |
C14 | 0.98588 (8) | 0.41120 (7) | 0.06475 (6) | 0.0349 (3) | |
H14 | 1.0139 | 0.4614 | 0.0539 | 0.042* | |
C15 | 0.91706 (8) | 0.38176 (7) | 0.03089 (5) | 0.0328 (3) | |
C16 | 0.87467 (8) | 0.30933 (8) | 0.04747 (6) | 0.0341 (3) | |
H16 | 0.8264 | 0.2902 | 0.0253 | 0.041* | |
C17 | 0.90344 (8) | 0.26532 (7) | 0.09658 (5) | 0.0312 (3) | |
H17 | 0.8752 | 0.2153 | 0.1074 | 0.037* | |
C18 | 1.13496 (7) | 0.13598 (7) | 0.12938 (5) | 0.0293 (2) | |
C19 | 1.10244 (7) | 0.15208 (7) | 0.06846 (5) | 0.0299 (3) | |
C20 | 1.13965 (8) | 0.21529 (7) | 0.03479 (6) | 0.0334 (3) | |
H20 | 1.1838 | 0.2483 | 0.0520 | 0.040* | |
C21 | 1.11380 (8) | 0.23109 (8) | −0.02314 (6) | 0.0385 (3) | |
H21 | 1.1399 | 0.2744 | −0.0455 | 0.046* | |
C22 | 1.04891 (9) | 0.18246 (8) | −0.04813 (6) | 0.0394 (3) | |
C23 | 1.01050 (9) | 0.11965 (8) | −0.01486 (6) | 0.0414 (3) | |
H23 | 0.9659 | 0.0870 | −0.0320 | 0.050* | |
C24 | 1.03688 (8) | 0.10465 (7) | 0.04282 (6) | 0.0361 (3) | |
H24 | 1.0103 | 0.0617 | 0.0652 | 0.043* | |
C25 | 0.76197 (9) | 0.25914 (10) | 0.22669 (7) | 0.0496 (4) | |
H25A | 0.7472 | 0.3177 | 0.2212 | 0.060* | |
H25B | 0.7339 | 0.2382 | 0.2628 | 0.060* | |
H25C | 0.7421 | 0.2272 | 0.1922 | 0.060* | |
C26 | 1.22703 (12) | −0.09660 (10) | 0.12000 (10) | 0.0656 (5) | |
H26A | 1.1788 | −0.1284 | 0.1034 | 0.079* | |
H26B | 1.2482 | −0.1241 | 0.1561 | 0.079* | |
H26C | 1.2737 | −0.0934 | 0.0906 | 0.079* | |
C27 | 0.84853 (8) | 0.39230 (9) | −0.06580 (6) | 0.0410 (3) | |
H27A | 0.8372 | 0.4352 | −0.0964 | 0.049* | |
H27B | 0.7921 | 0.3725 | −0.0508 | 0.049* | |
C28 | 0.89555 (9) | 0.32062 (9) | −0.09454 (6) | 0.0409 (3) | |
H28A | 0.8645 | 0.3045 | −0.1313 | 0.049* | |
H28B | 0.8942 | 0.2726 | −0.0671 | 0.049* | |
C29 | 0.98906 (9) | 0.33975 (9) | −0.11025 (6) | 0.0435 (3) | |
H29A | 0.9906 | 0.3864 | −0.1389 | 0.052* | |
H29B | 1.0199 | 0.3574 | −0.0738 | 0.052* | |
C30 | 1.03545 (11) | 0.26622 (10) | −0.13715 (6) | 0.0531 (4) | |
H30A | 1.0165 | 0.2592 | −0.1790 | 0.064* | |
H30B | 1.0983 | 0.2774 | −0.1374 | 0.064* | |
C1S | 0.73688 (11) | 0.04533 (11) | 0.11251 (9) | 0.0641 (4) | |
C2S | 0.68285 (14) | 0.00854 (15) | 0.16044 (10) | 0.0800 (6) | |
H2S1 | 0.7202 | −0.0168 | 0.1906 | 0.096* | |
H2S2 | 0.6450 | −0.0339 | 0.1434 | 0.096* | |
H2S3 | 0.6477 | 0.0520 | 0.1789 | 0.096* | |
C3S | 0.80147 (16) | −0.00945 (16) | 0.08399 (14) | 0.1037 (8) | |
H3S1 | 0.8474 | −0.0222 | 0.1125 | 0.124* | |
H3S2 | 0.8262 | 0.0186 | 0.0492 | 0.124* | |
H3S3 | 0.7735 | −0.0610 | 0.0713 | 0.124* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0305 (4) | 0.0346 (4) | 0.0390 (5) | −0.0018 (3) | −0.0044 (4) | −0.0020 (3) |
O2 | 0.0293 (4) | 0.0451 (5) | 0.0350 (5) | −0.0036 (4) | −0.0012 (4) | −0.0012 (4) |
O3 | 0.0337 (5) | 0.0391 (5) | 0.0494 (5) | −0.0001 (4) | 0.0108 (4) | −0.0077 (4) |
O4 | 0.0438 (6) | 0.0353 (5) | 0.0847 (8) | 0.0101 (4) | 0.0133 (5) | −0.0011 (5) |
O5 | 0.0472 (5) | 0.0364 (5) | 0.0398 (5) | −0.0068 (4) | −0.0094 (4) | 0.0096 (4) |
O6 | 0.0694 (7) | 0.0524 (6) | 0.0345 (5) | 0.0088 (5) | −0.0144 (5) | −0.0026 (4) |
O1S | 0.0980 (11) | 0.0695 (9) | 0.1174 (13) | 0.0063 (8) | −0.0003 (10) | 0.0117 (9) |
C1 | 0.0308 (6) | 0.0314 (6) | 0.0229 (5) | −0.0028 (5) | −0.0010 (4) | 0.0000 (4) |
C2 | 0.0335 (6) | 0.0363 (6) | 0.0273 (6) | −0.0032 (5) | 0.0012 (5) | −0.0037 (5) |
C3 | 0.0359 (6) | 0.0472 (7) | 0.0304 (6) | −0.0097 (5) | 0.0056 (5) | −0.0015 (5) |
C4 | 0.0458 (7) | 0.0416 (7) | 0.0302 (6) | −0.0135 (6) | 0.0016 (5) | 0.0064 (5) |
C5 | 0.0420 (7) | 0.0343 (6) | 0.0291 (6) | −0.0062 (5) | −0.0040 (5) | 0.0051 (5) |
C6 | 0.0535 (8) | 0.0325 (6) | 0.0441 (7) | −0.0062 (6) | −0.0064 (6) | 0.0118 (6) |
C7 | 0.0508 (8) | 0.0294 (6) | 0.0585 (9) | 0.0048 (6) | −0.0075 (7) | 0.0076 (6) |
C8 | 0.0361 (7) | 0.0342 (6) | 0.0497 (8) | 0.0037 (5) | −0.0038 (6) | 0.0016 (6) |
C9 | 0.0319 (6) | 0.0304 (6) | 0.0322 (6) | 0.0010 (5) | −0.0044 (5) | 0.0022 (5) |
C10 | 0.0328 (6) | 0.0309 (6) | 0.0247 (5) | −0.0023 (5) | −0.0048 (4) | 0.0025 (4) |
C11 | 0.0263 (5) | 0.0274 (5) | 0.0284 (6) | 0.0015 (4) | 0.0039 (4) | −0.0052 (4) |
C12 | 0.0285 (6) | 0.0261 (5) | 0.0282 (6) | 0.0000 (4) | 0.0038 (4) | −0.0022 (4) |
C13 | 0.0323 (6) | 0.0307 (6) | 0.0326 (6) | −0.0056 (5) | −0.0011 (5) | −0.0026 (5) |
C14 | 0.0393 (7) | 0.0287 (6) | 0.0367 (6) | −0.0078 (5) | 0.0006 (5) | 0.0019 (5) |
C15 | 0.0347 (6) | 0.0316 (6) | 0.0319 (6) | 0.0003 (5) | 0.0008 (5) | 0.0027 (5) |
C16 | 0.0314 (6) | 0.0364 (6) | 0.0345 (6) | −0.0063 (5) | −0.0037 (5) | 0.0005 (5) |
C17 | 0.0328 (6) | 0.0285 (6) | 0.0325 (6) | −0.0056 (5) | 0.0030 (5) | 0.0006 (5) |
C18 | 0.0260 (5) | 0.0284 (6) | 0.0334 (6) | 0.0047 (4) | 0.0024 (5) | −0.0027 (5) |
C19 | 0.0274 (6) | 0.0290 (6) | 0.0334 (6) | 0.0048 (4) | 0.0003 (5) | −0.0021 (5) |
C20 | 0.0288 (6) | 0.0340 (6) | 0.0373 (6) | 0.0015 (5) | −0.0015 (5) | 0.0003 (5) |
C21 | 0.0378 (7) | 0.0398 (7) | 0.0377 (7) | 0.0046 (5) | 0.0009 (5) | 0.0068 (5) |
C22 | 0.0444 (7) | 0.0412 (7) | 0.0327 (6) | 0.0116 (6) | −0.0060 (5) | −0.0047 (5) |
C23 | 0.0449 (7) | 0.0357 (7) | 0.0436 (7) | 0.0001 (6) | −0.0114 (6) | −0.0072 (5) |
C24 | 0.0368 (6) | 0.0306 (6) | 0.0410 (7) | 0.0003 (5) | −0.0035 (5) | −0.0012 (5) |
C25 | 0.0373 (7) | 0.0528 (8) | 0.0588 (9) | 0.0057 (6) | 0.0047 (6) | 0.0065 (7) |
C26 | 0.0530 (9) | 0.0409 (8) | 0.1029 (14) | 0.0106 (7) | 0.0068 (9) | −0.0143 (9) |
C27 | 0.0364 (7) | 0.0479 (7) | 0.0387 (7) | −0.0037 (6) | −0.0100 (5) | 0.0098 (6) |
C28 | 0.0409 (7) | 0.0469 (7) | 0.0350 (7) | −0.0063 (6) | −0.0092 (5) | 0.0073 (6) |
C29 | 0.0406 (7) | 0.0512 (8) | 0.0388 (7) | −0.0013 (6) | −0.0050 (6) | 0.0134 (6) |
C30 | 0.0586 (9) | 0.0698 (10) | 0.0309 (7) | 0.0094 (8) | −0.0038 (6) | 0.0079 (7) |
C1S | 0.0513 (9) | 0.0580 (10) | 0.0830 (12) | −0.0041 (8) | −0.0127 (9) | −0.0068 (9) |
C2S | 0.0652 (12) | 0.0906 (14) | 0.0844 (14) | −0.0182 (10) | −0.0137 (10) | 0.0009 (11) |
C3S | 0.0761 (15) | 0.0973 (17) | 0.138 (2) | 0.0054 (13) | 0.0116 (15) | −0.0289 (16) |
O1—C11 | 1.2222 (14) | C17—H17 | 0.9500 |
O2—C18 | 1.2166 (14) | C18—C19 | 1.4800 (16) |
O3—C2 | 1.3697 (15) | C19—C20 | 1.3939 (17) |
O3—C25 | 1.4306 (16) | C19—C24 | 1.3959 (17) |
O4—C8 | 1.3717 (17) | C20—C21 | 1.3841 (18) |
O4—C26 | 1.4215 (17) | C20—H20 | 0.9500 |
O5—C15 | 1.3654 (15) | C21—C22 | 1.3930 (19) |
O5—C27 | 1.4445 (16) | C21—H21 | 0.9500 |
O6—C22 | 1.3586 (16) | C22—C23 | 1.392 (2) |
O6—C30 | 1.4463 (19) | C23—C24 | 1.3787 (18) |
O1S—C1S | 1.201 (2) | C23—H23 | 0.9500 |
C1—C2 | 1.3822 (16) | C24—H24 | 0.9500 |
C1—C10 | 1.4328 (16) | C25—H25A | 0.9800 |
C1—C11 | 1.5107 (15) | C25—H25B | 0.9800 |
C2—C3 | 1.4109 (17) | C25—H25C | 0.9800 |
C3—C4 | 1.3600 (19) | C26—H26A | 0.9800 |
C3—H3 | 0.9500 | C26—H26B | 0.9800 |
C4—C5 | 1.4149 (19) | C26—H26C | 0.9800 |
C4—H4 | 0.9500 | C27—C28 | 1.511 (2) |
C5—C6 | 1.4098 (19) | C27—H27A | 0.9900 |
C5—C10 | 1.4297 (16) | C27—H27B | 0.9900 |
C6—C7 | 1.359 (2) | C28—C29 | 1.5227 (19) |
C6—H6 | 0.9500 | C28—H28A | 0.9900 |
C7—C8 | 1.4057 (19) | C28—H28B | 0.9900 |
C7—H7 | 0.9500 | C29—C30 | 1.512 (2) |
C8—C9 | 1.3852 (17) | C29—H29A | 0.9900 |
C9—C10 | 1.4266 (17) | C29—H29B | 0.9900 |
C9—C18 | 1.5134 (16) | C30—H30A | 0.9900 |
C11—C12 | 1.4766 (16) | C30—H30B | 0.9900 |
C12—C17 | 1.3917 (16) | C1S—C3S | 1.481 (3) |
C12—C13 | 1.3980 (16) | C1S—C2S | 1.487 (3) |
C13—C14 | 1.3764 (17) | C2S—H2S1 | 0.9800 |
C13—H13 | 0.9500 | C2S—H2S2 | 0.9800 |
C14—C15 | 1.3927 (17) | C2S—H2S3 | 0.9800 |
C14—H14 | 0.9500 | C3S—H3S1 | 0.9800 |
C15—C16 | 1.3908 (17) | C3S—H3S2 | 0.9800 |
C16—C17 | 1.3846 (17) | C3S—H3S3 | 0.9800 |
C16—H16 | 0.9500 | ||
C2—O3—C25 | 117.13 (10) | C19—C20—H20 | 119.2 |
C8—O4—C26 | 118.39 (12) | C20—C21—C22 | 118.91 (12) |
C15—O5—C27 | 119.04 (10) | C20—C21—H21 | 120.5 |
C22—O6—C30 | 119.28 (11) | C22—C21—H21 | 120.5 |
C2—C1—C10 | 120.07 (10) | O6—C22—C23 | 115.15 (12) |
C2—C1—C11 | 116.33 (10) | O6—C22—C21 | 124.69 (13) |
C10—C1—C11 | 123.16 (10) | C23—C22—C21 | 120.15 (12) |
O3—C2—C1 | 116.00 (10) | C24—C23—C22 | 120.31 (12) |
O3—C2—C3 | 121.81 (11) | C24—C23—H23 | 119.8 |
C1—C2—C3 | 121.98 (11) | C22—C23—H23 | 119.8 |
C4—C3—C2 | 118.61 (12) | C23—C24—C19 | 120.44 (12) |
C4—C3—H3 | 120.7 | C23—C24—H24 | 119.8 |
C2—C3—H3 | 120.7 | C19—C24—H24 | 119.8 |
C3—C4—C5 | 122.04 (11) | O3—C25—H25A | 109.5 |
C3—C4—H4 | 119.0 | O3—C25—H25B | 109.5 |
C5—C4—H4 | 119.0 | H25A—C25—H25B | 109.5 |
C6—C5—C4 | 120.45 (12) | O3—C25—H25C | 109.5 |
C6—C5—C10 | 119.78 (12) | H25A—C25—H25C | 109.5 |
C4—C5—C10 | 119.77 (11) | H25B—C25—H25C | 109.5 |
C7—C6—C5 | 121.72 (12) | O4—C26—H26A | 109.5 |
C7—C6—H6 | 119.1 | O4—C26—H26B | 109.5 |
C5—C6—H6 | 119.1 | H26A—C26—H26B | 109.5 |
C6—C7—C8 | 119.11 (12) | O4—C26—H26C | 109.5 |
C6—C7—H7 | 120.4 | H26A—C26—H26C | 109.5 |
C8—C7—H7 | 120.4 | H26B—C26—H26C | 109.5 |
O4—C8—C9 | 115.56 (11) | O5—C27—C28 | 113.35 (10) |
O4—C8—C7 | 122.82 (12) | O5—C27—H27A | 108.9 |
C9—C8—C7 | 121.61 (13) | C28—C27—H27A | 108.9 |
C8—C9—C10 | 120.01 (11) | O5—C27—H27B | 108.9 |
C8—C9—C18 | 115.55 (11) | C28—C27—H27B | 108.9 |
C10—C9—C18 | 124.31 (10) | H27A—C27—H27B | 107.7 |
C9—C10—C5 | 117.68 (11) | C27—C28—C29 | 113.75 (11) |
C9—C10—C1 | 124.80 (10) | C27—C28—H28A | 108.8 |
C5—C10—C1 | 117.49 (11) | C29—C28—H28A | 108.8 |
O1—C11—C12 | 121.52 (10) | C27—C28—H28B | 108.8 |
O1—C11—C1 | 118.25 (10) | C29—C28—H28B | 108.8 |
C12—C11—C1 | 120.23 (10) | H28A—C28—H28B | 107.7 |
C17—C12—C13 | 118.49 (11) | C30—C29—C28 | 112.69 (13) |
C17—C12—C11 | 122.76 (10) | C30—C29—H29A | 109.1 |
C13—C12—C11 | 118.72 (10) | C28—C29—H29A | 109.1 |
C14—C13—C12 | 120.98 (11) | C30—C29—H29B | 109.1 |
C14—C13—H13 | 119.5 | C28—C29—H29B | 109.1 |
C12—C13—H13 | 119.5 | H29A—C29—H29B | 107.8 |
C13—C14—C15 | 119.79 (11) | O6—C30—C29 | 112.49 (12) |
C13—C14—H14 | 120.1 | O6—C30—H30A | 109.1 |
C15—C14—H14 | 120.1 | C29—C30—H30A | 109.1 |
O5—C15—C16 | 124.78 (11) | O6—C30—H30B | 109.1 |
O5—C15—C14 | 115.09 (10) | C29—C30—H30B | 109.1 |
C16—C15—C14 | 120.13 (11) | H30A—C30—H30B | 107.8 |
C17—C16—C15 | 119.44 (11) | O1S—C1S—C3S | 121.8 (2) |
C17—C16—H16 | 120.3 | O1S—C1S—C2S | 121.1 (2) |
C15—C16—H16 | 120.3 | C3S—C1S—C2S | 117.1 (2) |
C16—C17—C12 | 121.13 (11) | C1S—C2S—H2S1 | 109.5 |
C16—C17—H17 | 119.4 | C1S—C2S—H2S2 | 109.5 |
C12—C17—H17 | 119.4 | H2S1—C2S—H2S2 | 109.5 |
O2—C18—C19 | 121.20 (11) | C1S—C2S—H2S3 | 109.5 |
O2—C18—C9 | 120.73 (10) | H2S1—C2S—H2S3 | 109.5 |
C19—C18—C9 | 117.99 (10) | H2S2—C2S—H2S3 | 109.5 |
C20—C19—C24 | 118.57 (11) | C1S—C3S—H3S1 | 109.5 |
C20—C19—C18 | 119.23 (11) | H3S1—C3S—H3S2 | 109.5 |
C24—C19—C18 | 122.18 (11) | H3S1—C3S—H3S3 | 109.5 |
C21—C20—C19 | 121.61 (12) | H3S2—C3S—H3S3 | 109.5 |
C21—C20—H20 | 119.2 | ||
C25—O3—C2—C1 | 144.21 (12) | O1—C11—C12—C13 | 0.48 (16) |
C25—O3—C2—C3 | −40.90 (17) | C1—C11—C12—C13 | 179.74 (10) |
C10—C1—C2—O3 | 175.75 (10) | C17—C12—C13—C14 | −1.57 (17) |
C11—C1—C2—O3 | 3.16 (15) | C11—C12—C13—C14 | 176.45 (11) |
C10—C1—C2—C3 | 0.87 (17) | C12—C13—C14—C15 | 0.49 (18) |
C11—C1—C2—C3 | −171.72 (11) | C27—O5—C15—C16 | −22.73 (18) |
O3—C2—C3—C4 | −173.61 (11) | C27—O5—C15—C14 | 158.29 (11) |
C1—C2—C3—C4 | 0.97 (18) | C13—C14—C15—O5 | −179.49 (11) |
C2—C3—C4—C5 | −1.43 (19) | C13—C14—C15—C16 | 1.47 (19) |
C3—C4—C5—C6 | −179.21 (12) | O5—C15—C16—C17 | 178.76 (12) |
C3—C4—C5—C10 | 0.05 (19) | C14—C15—C16—C17 | −2.30 (19) |
C4—C5—C6—C7 | 177.84 (13) | C15—C16—C17—C12 | 1.20 (18) |
C10—C5—C6—C7 | −1.4 (2) | C13—C12—C17—C16 | 0.71 (17) |
C5—C6—C7—C8 | −1.3 (2) | C11—C12—C17—C16 | −177.22 (11) |
C26—O4—C8—C9 | −164.56 (14) | C8—C9—C18—O2 | −80.03 (15) |
C26—O4—C8—C7 | 14.4 (2) | C10—C9—C18—O2 | 104.23 (14) |
C6—C7—C8—O4 | −176.42 (13) | C8—C9—C18—C19 | 96.73 (13) |
C6—C7—C8—C9 | 2.5 (2) | C10—C9—C18—C19 | −79.01 (14) |
O4—C8—C9—C10 | 178.17 (11) | O2—C18—C19—C20 | −8.52 (16) |
C7—C8—C9—C10 | −0.8 (2) | C9—C18—C19—C20 | 174.74 (10) |
O4—C8—C9—C18 | 2.23 (17) | O2—C18—C19—C24 | 169.87 (11) |
C7—C8—C9—C18 | −176.74 (12) | C9—C18—C19—C24 | −6.87 (16) |
C8—C9—C10—C5 | −1.91 (17) | C24—C19—C20—C21 | −0.75 (18) |
C18—C9—C10—C5 | 173.65 (11) | C18—C19—C20—C21 | 177.70 (11) |
C8—C9—C10—C1 | −179.77 (11) | C19—C20—C21—C22 | 0.07 (18) |
C18—C9—C10—C1 | −4.20 (18) | C30—O6—C22—C23 | 162.23 (12) |
C6—C5—C10—C9 | 3.00 (17) | C30—O6—C22—C21 | −18.9 (2) |
C4—C5—C10—C9 | −176.27 (11) | C20—C21—C22—O6 | −178.25 (12) |
C6—C5—C10—C1 | −178.99 (11) | C20—C21—C22—C23 | 0.59 (19) |
C4—C5—C10—C1 | 1.75 (16) | O6—C22—C23—C24 | 178.38 (12) |
C2—C1—C10—C9 | 175.67 (11) | C21—C22—C23—C24 | −0.6 (2) |
C11—C1—C10—C9 | −12.26 (17) | C22—C23—C24—C19 | −0.13 (19) |
C2—C1—C10—C5 | −2.18 (16) | C20—C19—C24—C23 | 0.77 (18) |
C11—C1—C10—C5 | 169.88 (10) | C18—C19—C24—C23 | −177.63 (11) |
C2—C1—C11—O1 | 107.36 (12) | C15—O5—C27—C28 | −59.83 (15) |
C10—C1—C11—O1 | −64.98 (14) | O5—C27—C28—C29 | −49.10 (15) |
C2—C1—C11—C12 | −71.92 (13) | C27—C28—C29—C30 | 178.19 (11) |
C10—C1—C11—C12 | 115.74 (12) | C22—O6—C30—C29 | −65.93 (17) |
O1—C11—C12—C17 | 178.41 (11) | C28—C29—C30—O6 | −45.27 (16) |
C1—C11—C12—C17 | −2.33 (16) |
Cg is the centroid of the C12–C17 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O2i | 0.95 | 2.47 | 3.3241 (15) | 150 |
C6—H6···O1ii | 0.95 | 2.38 | 3.3245 (16) | 172 |
C7—H7···O3ii | 0.95 | 2.59 | 3.3910 (17) | 143 |
C14—H14···O5iii | 0.95 | 2.40 | 3.3328 (15) | 169 |
C21—H21···O1Siv | 0.95 | 2.54 | 3.482 (2) | 172 |
C2S—H2S2···Cgv | 0.98 | 2.86 | 3.830 (2) | 171 |
Symmetry codes: (i) x−1/2, y, −z+1/2; (ii) −x+2, y−1/2, −z+1/2; (iii) −x+2, −y+1, −z; (iv) x+1/2, −y+1/2, −z; (v) −x+3/2, y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C30H26O6·C3H6O |
Mr | 540.59 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 193 |
a, b, c (Å) | 15.4948 (3), 16.1272 (3), 22.4430 (4) |
V (Å3) | 5608.23 (18) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 0.73 |
Crystal size (mm) | 0.50 × 0.45 × 0.40 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.712, 0.759 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 99441, 5132, 4829 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.098, 1.05 |
No. of reflections | 5132 |
No. of parameters | 366 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.19 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku, 2010), Il Milione (Burla, et al., 2007), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).
Cg is the centroid of the C12–C17 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O2i | 0.95 | 2.47 | 3.3241 (15) | 150 |
C6—H6···O1ii | 0.95 | 2.38 | 3.3245 (16) | 172 |
C7—H7···O3ii | 0.95 | 2.59 | 3.3910 (17) | 143 |
C14—H14···O5iii | 0.95 | 2.40 | 3.3328 (15) | 169 |
C21—H21···O1Siv | 0.95 | 2.54 | 3.482 (2) | 172 |
C2S—H2S2···Cgv | 0.98 | 2.86 | 3.830 (2) | 171 |
Symmetry codes: (i) x−1/2, y, −z+1/2; (ii) −x+2, y−1/2, −z+1/2; (iii) −x+2, −y+1, −z; (iv) x+1/2, −y+1/2, −z; (v) −x+3/2, y−1/2, z. |
Acknowledgements
The authors would express their gratitude to Master Toyokazu Muto, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture and Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for their technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA. Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902–o2903. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mitsui, R., Nagasawa, A., Noguchi, K., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o1790. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okamoto, A., Hijikata, D., Sakai, N. & Yonezawa, N. (2012). Polym. J. In the press. Google Scholar
Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284. Web of Science CrossRef CAS Google Scholar
Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915. Web of Science CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sasagawa, K., Muto, T., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o3354. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Watanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o329. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto, Mitsui et al., 2011). As one of applications, the authors have integrated the resulting molecular unit to poly(ether ketone)backbone via nucleophilic aromatic substitution polycondensation (Okamoto et al., 2012). Furthermore we have also reported the crystal structures of several 1,8-diaroylated naphthalene analogues exemplified by (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorobenzoyl)dimethanone (Watanabe et al., 2010) and [8-(4-butoxybenzoyl)-2,7-dimethoxynaphthalen-1-yl](4-butoxyphenyl)methanone (Sasagawa et al., 2011). These molecules have essentially same non-coplanarly features. The aroyl groups at the 1,8-positions of the naphthalene rings in these molecules are twisted in almost perpendicular fashion, but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. On the other hand, 1,8-bis(4-chlorobenzoyl)-7-methoxynaphthalene-2-ol ethanol monosolvate (Mitsui et al., 2010) and 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene (Hijikata et al., 2010) have apparently different spatial organizations. The aroyl groups attached to the naphthalene ring are oriented in the same directions. As a part of our continuous study on the molecular structures of this kind of molecules, the X-ray crystal structure of the title compound containing a 1,8-diaroylenenaphthalene moiety is discussed in this article.
The crystal packing is stabilized by intermolecular C—H···O hydrogen bonding between the oxygen atom (O2) of the carbonyl group of the adjacent molecule and one hydrogen atom (H3) on the naphthalene ring along the a axis (C3—H3···O2i= 2.47 Å; Table 1). Furthermore, two intermolecular C—H···O interactions, between the oxygen atom (O3) of the methoxy group and one hydrogen atom (H7) on the naphthalene ring, and between the oxygen atom (O1) of the carbonyl group and one hydrogen atom (H6) on the naphthalene ring, are observed along the c axis (C7—H7···O3ii= 2.59 Å, C6—H6···O1ii= 2.38 Å; Table 1). Moreover, the title compounds and acetones are linked by two C—H···O interactions and C—H···π interaction forming a three-dimensional architecture. The C—H···O interactions (C14—H14···O5iii= 2.40 Å, C21—H21···O1SiV= 2.54 Å; Fig. 2 and Table 1) and the C—H···π interaction (C2Sv—H2S2v···Cg= 2.86 Å; Fig. 2 and Table 1) also contribute to the stabilization of the molecular conformation and crystal structure.