organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hy­dr­oxy­methyl-10-meth­­oxy-17,22-dioxa­penta­cyclo­[21.2.2.213,16.13,7.011,30]triaconta-1(25),3,5,7(30),8,10,13,15,23,26,28-undeca­ene-2,12-dione acetone monosolvate

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 19 July 2012; accepted 25 July 2012; online 28 July 2012)

In the title compound, C30H26O6·C3H6O, the syn-oriented benzoyl groups are nearly parallel to each other; the dihedral angle between their benzene rings is 15.9 (1)°. They form dihedral angles of 72.5 (1) and 84.3 (1)° with the naphthalene system. In the crystal, mol­ecules are linked into a three-dimensional architecture by C—H⋯O and C—H⋯π inter­actions.

Related literature

For electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). For applications of related mol­ecules, see; Okamoto et al. (2012[Okamoto, A., Hijikata, D., Sakai, N. & Yonezawa, N. (2012). Polym. J. In the press.]). For the structures of closely related compounds, see: Hijikata et al. (2010[Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902-o2903.]); Mitsui et al. (2010[Mitsui, R., Nagasawa, A., Noguchi, K., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o1790.]); Sasagawa et al. (2011[Sasagawa, K., Muto, T., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o3354.]); Watanabe et al. (2010[Watanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o329.]).

[Scheme 1]

Experimental

Crystal data
  • C30H26O6·C3H6O

  • Mr = 540.59

  • Orthorhombic, P b c a

  • a = 15.4948 (3) Å

  • b = 16.1272 (3) Å

  • c = 22.4430 (4) Å

  • V = 5608.23 (18) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.73 mm−1

  • T = 193 K

  • 0.50 × 0.45 × 0.40 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.712, Tmax = 0.759

  • 99441 measured reflections

  • 5132 independent reflections

  • 4829 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.05

  • 5132 reflections

  • 366 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.95 2.47 3.3241 (15) 150
C6—H6⋯O1ii 0.95 2.38 3.3245 (16) 172
C7—H7⋯O3ii 0.95 2.59 3.3910 (17) 143
C14—H14⋯O5iii 0.95 2.40 3.3328 (15) 169
C21—H21⋯O1Siv 0.95 2.54 3.482 (2) 172
C2S—H2S2⋯Cgv 0.98 2.86 3.830 (2) 171
Symmetry codes: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+2, -y+1, -z; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: Il Milione (Burla, et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto, Mitsui et al., 2011). As one of applications, the authors have integrated the resulting molecular unit to poly(ether ketone)backbone via nucleophilic aromatic substitution polycondensation (Okamoto et al., 2012). Furthermore we have also reported the crystal structures of several 1,8-diaroylated naphthalene analogues exemplified by (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorobenzoyl)dimethanone (Watanabe et al., 2010) and [8-(4-butoxybenzoyl)-2,7-dimethoxynaphthalen-1-yl](4-butoxyphenyl)methanone (Sasagawa et al., 2011). These molecules have essentially same non-coplanarly features. The aroyl groups at the 1,8-positions of the naphthalene rings in these molecules are twisted in almost perpendicular fashion, but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. On the other hand, 1,8-bis(4-chlorobenzoyl)-7-methoxynaphthalene-2-ol ethanol monosolvate (Mitsui et al., 2010) and 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene (Hijikata et al., 2010) have apparently different spatial organizations. The aroyl groups attached to the naphthalene ring are oriented in the same directions. As a part of our continuous study on the molecular structures of this kind of molecules, the X-ray crystal structure of the title compound containing a 1,8-diaroylenenaphthalene moiety is discussed in this article.

The crystal packing is stabilized by intermolecular C—H···O hydrogen bonding between the oxygen atom (O2) of the carbonyl group of the adjacent molecule and one hydrogen atom (H3) on the naphthalene ring along the a axis (C3—H3···O2i= 2.47 Å; Table 1). Furthermore, two intermolecular C—H···O interactions, between the oxygen atom (O3) of the methoxy group and one hydrogen atom (H7) on the naphthalene ring, and between the oxygen atom (O1) of the carbonyl group and one hydrogen atom (H6) on the naphthalene ring, are observed along the c axis (C7—H7···O3ii= 2.59 Å, C6—H6···O1ii= 2.38 Å; Table 1). Moreover, the title compounds and acetones are linked by two C—H···O interactions and C—H···π interaction forming a three-dimensional architecture. The C—H···O interactions (C14—H14···O5iii= 2.40 Å, C21—H21···O1SiV= 2.54 Å; Fig. 2 and Table 1) and the C—H···π interaction (C2Sv—H2S2v···Cg= 2.86 Å; Fig. 2 and Table 1) also contribute to the stabilization of the molecular conformation and crystal structure.

Related literature top

For electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For applications of related molecules, see; Okamoto et al. (2012). For the structures of closely related compounds, see: Hijikata et al. (2010); Mitsui et al. (2010); Sasagawa et al. (2011); Watanabe et al. (2010).

Experimental top

The title compound was prepared by SN2 reaction of 1,8-bis(4-hydroxybenzoyl)-2,7-dimethoxynaphthalene (1.0 mmol, 428 mg) with 1,4-dibromobutane (1.0 mmol, 215 mg) in N,N-dimethylacetamide (DMAc; 25.0 ml) with potassium carbonate (5.0 mmol, 691 mg). [The precursor, 1,8-bis(4-hydroxybenzoyl)-2,7-dimethoxynaphthalene, was obtained via SNAr reaction of 1,8-bis(4-fluorobenzoyl)-2,7-dimethoxynaphthalene with sodium hydroxide.] After the reaction, the mixture was stirred at 333 K for 48 h, it was poured into water and extracted with CHCl3. The combined extracts were washed with 2M aqueous NaOH followed with brine. The organic layers were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give the crude product, which was purified by column chromatography (silica gel, CHCl3; isolated yield 47%). The pure product was crystallized from acetone to yield single crystals.

1H NMR δ (300 MHz, CDCl3): 1.78–1.93(4H, m),3.72(6H, s), 4.10–4.27(4H, m) 6.31(2H, dd, J=8.5, 2.4 Hz), 6.63(2H, dd, J=8.9, 2.4 Hz), 6.88(2H, dd, J=8.5, 2.0 Hz), 7.20(2H, d, J=8.9 Hz), 7.87(2H, dd, J=8.9, 2.0 Hz), 7.92(2H, d, J=8.9 Hz) p.p.m.

13C NMR δ (75 MHz, CDCl3): 22.49, 56.59, 66.80, 111.15, 113.77, 115.45, 121.81, 125.10, 128.81, 129.93, 131.24, 131.69, 133.82, 156.01, 160.90, 193.86 p.p.m.

IR (KBr): 1668 (C=O), 1600, 1509, 1460 (Ar, naphthalene), 1263 (=C—O—C) cm-1.

HRMS (m/z): [M + H]+ calcd for C30H27O6, 483.1808 found, 483.1836.

m.p. 537.5–538.8 K

Refinement top

All H atoms were put in calculated positions and treated as riding on their parent atoms, with C—H = 0.95(aromatic C—H), 0.98(methyl), 0.99(methylene) Å, and Uĩso(H) = 1.2 Ueq(aromatic C, methyl C, methylene C). The positions of methyl hydrogens were rotationally optimized.

Structure description top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto, Mitsui et al., 2011). As one of applications, the authors have integrated the resulting molecular unit to poly(ether ketone)backbone via nucleophilic aromatic substitution polycondensation (Okamoto et al., 2012). Furthermore we have also reported the crystal structures of several 1,8-diaroylated naphthalene analogues exemplified by (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorobenzoyl)dimethanone (Watanabe et al., 2010) and [8-(4-butoxybenzoyl)-2,7-dimethoxynaphthalen-1-yl](4-butoxyphenyl)methanone (Sasagawa et al., 2011). These molecules have essentially same non-coplanarly features. The aroyl groups at the 1,8-positions of the naphthalene rings in these molecules are twisted in almost perpendicular fashion, but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. On the other hand, 1,8-bis(4-chlorobenzoyl)-7-methoxynaphthalene-2-ol ethanol monosolvate (Mitsui et al., 2010) and 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene (Hijikata et al., 2010) have apparently different spatial organizations. The aroyl groups attached to the naphthalene ring are oriented in the same directions. As a part of our continuous study on the molecular structures of this kind of molecules, the X-ray crystal structure of the title compound containing a 1,8-diaroylenenaphthalene moiety is discussed in this article.

The crystal packing is stabilized by intermolecular C—H···O hydrogen bonding between the oxygen atom (O2) of the carbonyl group of the adjacent molecule and one hydrogen atom (H3) on the naphthalene ring along the a axis (C3—H3···O2i= 2.47 Å; Table 1). Furthermore, two intermolecular C—H···O interactions, between the oxygen atom (O3) of the methoxy group and one hydrogen atom (H7) on the naphthalene ring, and between the oxygen atom (O1) of the carbonyl group and one hydrogen atom (H6) on the naphthalene ring, are observed along the c axis (C7—H7···O3ii= 2.59 Å, C6—H6···O1ii= 2.38 Å; Table 1). Moreover, the title compounds and acetones are linked by two C—H···O interactions and C—H···π interaction forming a three-dimensional architecture. The C—H···O interactions (C14—H14···O5iii= 2.40 Å, C21—H21···O1SiV= 2.54 Å; Fig. 2 and Table 1) and the C—H···π interaction (C2Sv—H2S2v···Cg= 2.86 Å; Fig. 2 and Table 1) also contribute to the stabilization of the molecular conformation and crystal structure.

For electrophilic aromatic aroylation of the naphthalene core, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For applications of related molecules, see; Okamoto et al. (2012). For the structures of closely related compounds, see: Hijikata et al. (2010); Mitsui et al. (2010); Sasagawa et al. (2011); Watanabe et al. (2010).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: Il Milione (Burla, et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids
[Figure 2] Fig. 2. The dimeric associates of title compound. The C—H···O and C—H···π interactions are shown as dashed lines.
4-Hydroxymethyl-10-methoxy-17,22- dioxapentacyclo[21.2.2.213,16.13,7.011,30]triaconta- 1(25),3,5,7(30),8,10,13,15,23,26,28-undecaene-2,12-dione acetone monosolvate top
Crystal data top
C30H26O6·C3H6ODx = 1.280 Mg m3
Mr = 540.59Melting point = 537.5–538.8 K
Orthorhombic, PbcaCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ac 2abCell parameters from 92773 reflections
a = 15.4948 (3) Åθ = 3.4–68.3°
b = 16.1272 (3) ŵ = 0.73 mm1
c = 22.4430 (4) ÅT = 193 K
V = 5608.23 (18) Å3Block, colorless
Z = 80.50 × 0.45 × 0.40 mm
F(000) = 2288
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5132 independent reflections
Radiation source: rotating anode4829 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 10.000 pixels mm-1θmax = 68.3°, θmin = 3.9°
ω scansh = 1818
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1919
Tmin = 0.712, Tmax = 0.759l = 2727
99441 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0495P)2 + 1.7635P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5132 reflectionsΔρmax = 0.20 e Å3
366 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/6(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00160 (9)
Crystal data top
C30H26O6·C3H6OV = 5608.23 (18) Å3
Mr = 540.59Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 15.4948 (3) ŵ = 0.73 mm1
b = 16.1272 (3) ÅT = 193 K
c = 22.4430 (4) Å0.50 × 0.45 × 0.40 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5132 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
4829 reflections with I > 2σ(I)
Tmin = 0.712, Tmax = 0.759Rint = 0.021
99441 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
5132 reflectionsΔρmin = 0.19 e Å3
366 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.07047 (5)0.27102 (5)0.20944 (4)0.0347 (2)
O21.19956 (5)0.17013 (6)0.14801 (4)0.0365 (2)
O30.85352 (6)0.25079 (6)0.23241 (4)0.0408 (2)
O41.19863 (7)0.01523 (6)0.13445 (5)0.0546 (3)
O50.89572 (6)0.42949 (5)0.01715 (4)0.0411 (2)
O61.01931 (7)0.19019 (6)0.10484 (4)0.0521 (3)
O1S0.72978 (11)0.11706 (9)0.09895 (8)0.0950 (5)
C10.96632 (7)0.16581 (7)0.20049 (5)0.0284 (2)
C20.88697 (8)0.17239 (7)0.22823 (5)0.0324 (3)
C30.84625 (8)0.10363 (8)0.25505 (5)0.0378 (3)
H30.79130.10930.27340.045*
C40.88732 (9)0.02911 (8)0.25413 (6)0.0392 (3)
H40.86080.01710.27290.047*
C50.96831 (8)0.01832 (8)0.22606 (5)0.0351 (3)
C61.00846 (10)0.06012 (8)0.22537 (6)0.0434 (3)
H60.98140.10520.24520.052*
C71.08489 (10)0.07290 (8)0.19709 (7)0.0463 (3)
H71.11150.12600.19780.056*
C81.12400 (9)0.00658 (8)0.16673 (6)0.0400 (3)
C91.08822 (8)0.07214 (7)0.16682 (5)0.0315 (3)
C101.00922 (8)0.08721 (7)0.19760 (5)0.0295 (3)
C111.00809 (7)0.24613 (7)0.18132 (5)0.0274 (2)
C120.97305 (7)0.29312 (7)0.13029 (5)0.0276 (2)
C131.01308 (8)0.36739 (7)0.11391 (5)0.0319 (3)
H131.05980.38790.13710.038*
C140.98588 (8)0.41120 (7)0.06475 (6)0.0349 (3)
H141.01390.46140.05390.042*
C150.91706 (8)0.38176 (7)0.03089 (5)0.0328 (3)
C160.87467 (8)0.30933 (8)0.04747 (6)0.0341 (3)
H160.82640.29020.02530.041*
C170.90344 (8)0.26532 (7)0.09658 (5)0.0312 (3)
H170.87520.21530.10740.037*
C181.13496 (7)0.13598 (7)0.12938 (5)0.0293 (2)
C191.10244 (7)0.15208 (7)0.06846 (5)0.0299 (3)
C201.13965 (8)0.21529 (7)0.03479 (6)0.0334 (3)
H201.18380.24830.05200.040*
C211.11380 (8)0.23109 (8)0.02314 (6)0.0385 (3)
H211.13990.27440.04550.046*
C221.04891 (9)0.18246 (8)0.04813 (6)0.0394 (3)
C231.01050 (9)0.11965 (8)0.01486 (6)0.0414 (3)
H230.96590.08700.03200.050*
C241.03688 (8)0.10465 (7)0.04282 (6)0.0361 (3)
H241.01030.06170.06520.043*
C250.76197 (9)0.25914 (10)0.22669 (7)0.0496 (4)
H25A0.74720.31770.22120.060*
H25B0.73390.23820.26280.060*
H25C0.74210.22720.19220.060*
C261.22703 (12)0.09660 (10)0.12000 (10)0.0656 (5)
H26A1.17880.12840.10340.079*
H26B1.24820.12410.15610.079*
H26C1.27370.09340.09060.079*
C270.84853 (8)0.39230 (9)0.06580 (6)0.0410 (3)
H27A0.83720.43520.09640.049*
H27B0.79210.37250.05080.049*
C280.89555 (9)0.32062 (9)0.09454 (6)0.0409 (3)
H28A0.86450.30450.13130.049*
H28B0.89420.27260.06710.049*
C290.98906 (9)0.33975 (9)0.11025 (6)0.0435 (3)
H29A0.99060.38640.13890.052*
H29B1.01990.35740.07380.052*
C301.03545 (11)0.26622 (10)0.13715 (6)0.0531 (4)
H30A1.01650.25920.17900.064*
H30B1.09830.27740.13740.064*
C1S0.73688 (11)0.04533 (11)0.11251 (9)0.0641 (4)
C2S0.68285 (14)0.00854 (15)0.16044 (10)0.0800 (6)
H2S10.72020.01680.19060.096*
H2S20.64500.03390.14340.096*
H2S30.64770.05200.17890.096*
C3S0.80147 (16)0.00945 (16)0.08399 (14)0.1037 (8)
H3S10.84740.02220.11250.124*
H3S20.82620.01860.04920.124*
H3S30.77350.06100.07130.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0305 (4)0.0346 (4)0.0390 (5)0.0018 (3)0.0044 (4)0.0020 (3)
O20.0293 (4)0.0451 (5)0.0350 (5)0.0036 (4)0.0012 (4)0.0012 (4)
O30.0337 (5)0.0391 (5)0.0494 (5)0.0001 (4)0.0108 (4)0.0077 (4)
O40.0438 (6)0.0353 (5)0.0847 (8)0.0101 (4)0.0133 (5)0.0011 (5)
O50.0472 (5)0.0364 (5)0.0398 (5)0.0068 (4)0.0094 (4)0.0096 (4)
O60.0694 (7)0.0524 (6)0.0345 (5)0.0088 (5)0.0144 (5)0.0026 (4)
O1S0.0980 (11)0.0695 (9)0.1174 (13)0.0063 (8)0.0003 (10)0.0117 (9)
C10.0308 (6)0.0314 (6)0.0229 (5)0.0028 (5)0.0010 (4)0.0000 (4)
C20.0335 (6)0.0363 (6)0.0273 (6)0.0032 (5)0.0012 (5)0.0037 (5)
C30.0359 (6)0.0472 (7)0.0304 (6)0.0097 (5)0.0056 (5)0.0015 (5)
C40.0458 (7)0.0416 (7)0.0302 (6)0.0135 (6)0.0016 (5)0.0064 (5)
C50.0420 (7)0.0343 (6)0.0291 (6)0.0062 (5)0.0040 (5)0.0051 (5)
C60.0535 (8)0.0325 (6)0.0441 (7)0.0062 (6)0.0064 (6)0.0118 (6)
C70.0508 (8)0.0294 (6)0.0585 (9)0.0048 (6)0.0075 (7)0.0076 (6)
C80.0361 (7)0.0342 (6)0.0497 (8)0.0037 (5)0.0038 (6)0.0016 (6)
C90.0319 (6)0.0304 (6)0.0322 (6)0.0010 (5)0.0044 (5)0.0022 (5)
C100.0328 (6)0.0309 (6)0.0247 (5)0.0023 (5)0.0048 (4)0.0025 (4)
C110.0263 (5)0.0274 (5)0.0284 (6)0.0015 (4)0.0039 (4)0.0052 (4)
C120.0285 (6)0.0261 (5)0.0282 (6)0.0000 (4)0.0038 (4)0.0022 (4)
C130.0323 (6)0.0307 (6)0.0326 (6)0.0056 (5)0.0011 (5)0.0026 (5)
C140.0393 (7)0.0287 (6)0.0367 (6)0.0078 (5)0.0006 (5)0.0019 (5)
C150.0347 (6)0.0316 (6)0.0319 (6)0.0003 (5)0.0008 (5)0.0027 (5)
C160.0314 (6)0.0364 (6)0.0345 (6)0.0063 (5)0.0037 (5)0.0005 (5)
C170.0328 (6)0.0285 (6)0.0325 (6)0.0056 (5)0.0030 (5)0.0006 (5)
C180.0260 (5)0.0284 (6)0.0334 (6)0.0047 (4)0.0024 (5)0.0027 (5)
C190.0274 (6)0.0290 (6)0.0334 (6)0.0048 (4)0.0003 (5)0.0021 (5)
C200.0288 (6)0.0340 (6)0.0373 (6)0.0015 (5)0.0015 (5)0.0003 (5)
C210.0378 (7)0.0398 (7)0.0377 (7)0.0046 (5)0.0009 (5)0.0068 (5)
C220.0444 (7)0.0412 (7)0.0327 (6)0.0116 (6)0.0060 (5)0.0047 (5)
C230.0449 (7)0.0357 (7)0.0436 (7)0.0001 (6)0.0114 (6)0.0072 (5)
C240.0368 (6)0.0306 (6)0.0410 (7)0.0003 (5)0.0035 (5)0.0012 (5)
C250.0373 (7)0.0528 (8)0.0588 (9)0.0057 (6)0.0047 (6)0.0065 (7)
C260.0530 (9)0.0409 (8)0.1029 (14)0.0106 (7)0.0068 (9)0.0143 (9)
C270.0364 (7)0.0479 (7)0.0387 (7)0.0037 (6)0.0100 (5)0.0098 (6)
C280.0409 (7)0.0469 (7)0.0350 (7)0.0063 (6)0.0092 (5)0.0073 (6)
C290.0406 (7)0.0512 (8)0.0388 (7)0.0013 (6)0.0050 (6)0.0134 (6)
C300.0586 (9)0.0698 (10)0.0309 (7)0.0094 (8)0.0038 (6)0.0079 (7)
C1S0.0513 (9)0.0580 (10)0.0830 (12)0.0041 (8)0.0127 (9)0.0068 (9)
C2S0.0652 (12)0.0906 (14)0.0844 (14)0.0182 (10)0.0137 (10)0.0009 (11)
C3S0.0761 (15)0.0973 (17)0.138 (2)0.0054 (13)0.0116 (15)0.0289 (16)
Geometric parameters (Å, º) top
O1—C111.2222 (14)C17—H170.9500
O2—C181.2166 (14)C18—C191.4800 (16)
O3—C21.3697 (15)C19—C201.3939 (17)
O3—C251.4306 (16)C19—C241.3959 (17)
O4—C81.3717 (17)C20—C211.3841 (18)
O4—C261.4215 (17)C20—H200.9500
O5—C151.3654 (15)C21—C221.3930 (19)
O5—C271.4445 (16)C21—H210.9500
O6—C221.3586 (16)C22—C231.392 (2)
O6—C301.4463 (19)C23—C241.3787 (18)
O1S—C1S1.201 (2)C23—H230.9500
C1—C21.3822 (16)C24—H240.9500
C1—C101.4328 (16)C25—H25A0.9800
C1—C111.5107 (15)C25—H25B0.9800
C2—C31.4109 (17)C25—H25C0.9800
C3—C41.3600 (19)C26—H26A0.9800
C3—H30.9500C26—H26B0.9800
C4—C51.4149 (19)C26—H26C0.9800
C4—H40.9500C27—C281.511 (2)
C5—C61.4098 (19)C27—H27A0.9900
C5—C101.4297 (16)C27—H27B0.9900
C6—C71.359 (2)C28—C291.5227 (19)
C6—H60.9500C28—H28A0.9900
C7—C81.4057 (19)C28—H28B0.9900
C7—H70.9500C29—C301.512 (2)
C8—C91.3852 (17)C29—H29A0.9900
C9—C101.4266 (17)C29—H29B0.9900
C9—C181.5134 (16)C30—H30A0.9900
C11—C121.4766 (16)C30—H30B0.9900
C12—C171.3917 (16)C1S—C3S1.481 (3)
C12—C131.3980 (16)C1S—C2S1.487 (3)
C13—C141.3764 (17)C2S—H2S10.9800
C13—H130.9500C2S—H2S20.9800
C14—C151.3927 (17)C2S—H2S30.9800
C14—H140.9500C3S—H3S10.9800
C15—C161.3908 (17)C3S—H3S20.9800
C16—C171.3846 (17)C3S—H3S30.9800
C16—H160.9500
C2—O3—C25117.13 (10)C19—C20—H20119.2
C8—O4—C26118.39 (12)C20—C21—C22118.91 (12)
C15—O5—C27119.04 (10)C20—C21—H21120.5
C22—O6—C30119.28 (11)C22—C21—H21120.5
C2—C1—C10120.07 (10)O6—C22—C23115.15 (12)
C2—C1—C11116.33 (10)O6—C22—C21124.69 (13)
C10—C1—C11123.16 (10)C23—C22—C21120.15 (12)
O3—C2—C1116.00 (10)C24—C23—C22120.31 (12)
O3—C2—C3121.81 (11)C24—C23—H23119.8
C1—C2—C3121.98 (11)C22—C23—H23119.8
C4—C3—C2118.61 (12)C23—C24—C19120.44 (12)
C4—C3—H3120.7C23—C24—H24119.8
C2—C3—H3120.7C19—C24—H24119.8
C3—C4—C5122.04 (11)O3—C25—H25A109.5
C3—C4—H4119.0O3—C25—H25B109.5
C5—C4—H4119.0H25A—C25—H25B109.5
C6—C5—C4120.45 (12)O3—C25—H25C109.5
C6—C5—C10119.78 (12)H25A—C25—H25C109.5
C4—C5—C10119.77 (11)H25B—C25—H25C109.5
C7—C6—C5121.72 (12)O4—C26—H26A109.5
C7—C6—H6119.1O4—C26—H26B109.5
C5—C6—H6119.1H26A—C26—H26B109.5
C6—C7—C8119.11 (12)O4—C26—H26C109.5
C6—C7—H7120.4H26A—C26—H26C109.5
C8—C7—H7120.4H26B—C26—H26C109.5
O4—C8—C9115.56 (11)O5—C27—C28113.35 (10)
O4—C8—C7122.82 (12)O5—C27—H27A108.9
C9—C8—C7121.61 (13)C28—C27—H27A108.9
C8—C9—C10120.01 (11)O5—C27—H27B108.9
C8—C9—C18115.55 (11)C28—C27—H27B108.9
C10—C9—C18124.31 (10)H27A—C27—H27B107.7
C9—C10—C5117.68 (11)C27—C28—C29113.75 (11)
C9—C10—C1124.80 (10)C27—C28—H28A108.8
C5—C10—C1117.49 (11)C29—C28—H28A108.8
O1—C11—C12121.52 (10)C27—C28—H28B108.8
O1—C11—C1118.25 (10)C29—C28—H28B108.8
C12—C11—C1120.23 (10)H28A—C28—H28B107.7
C17—C12—C13118.49 (11)C30—C29—C28112.69 (13)
C17—C12—C11122.76 (10)C30—C29—H29A109.1
C13—C12—C11118.72 (10)C28—C29—H29A109.1
C14—C13—C12120.98 (11)C30—C29—H29B109.1
C14—C13—H13119.5C28—C29—H29B109.1
C12—C13—H13119.5H29A—C29—H29B107.8
C13—C14—C15119.79 (11)O6—C30—C29112.49 (12)
C13—C14—H14120.1O6—C30—H30A109.1
C15—C14—H14120.1C29—C30—H30A109.1
O5—C15—C16124.78 (11)O6—C30—H30B109.1
O5—C15—C14115.09 (10)C29—C30—H30B109.1
C16—C15—C14120.13 (11)H30A—C30—H30B107.8
C17—C16—C15119.44 (11)O1S—C1S—C3S121.8 (2)
C17—C16—H16120.3O1S—C1S—C2S121.1 (2)
C15—C16—H16120.3C3S—C1S—C2S117.1 (2)
C16—C17—C12121.13 (11)C1S—C2S—H2S1109.5
C16—C17—H17119.4C1S—C2S—H2S2109.5
C12—C17—H17119.4H2S1—C2S—H2S2109.5
O2—C18—C19121.20 (11)C1S—C2S—H2S3109.5
O2—C18—C9120.73 (10)H2S1—C2S—H2S3109.5
C19—C18—C9117.99 (10)H2S2—C2S—H2S3109.5
C20—C19—C24118.57 (11)C1S—C3S—H3S1109.5
C20—C19—C18119.23 (11)H3S1—C3S—H3S2109.5
C24—C19—C18122.18 (11)H3S1—C3S—H3S3109.5
C21—C20—C19121.61 (12)H3S2—C3S—H3S3109.5
C21—C20—H20119.2
C25—O3—C2—C1144.21 (12)O1—C11—C12—C130.48 (16)
C25—O3—C2—C340.90 (17)C1—C11—C12—C13179.74 (10)
C10—C1—C2—O3175.75 (10)C17—C12—C13—C141.57 (17)
C11—C1—C2—O33.16 (15)C11—C12—C13—C14176.45 (11)
C10—C1—C2—C30.87 (17)C12—C13—C14—C150.49 (18)
C11—C1—C2—C3171.72 (11)C27—O5—C15—C1622.73 (18)
O3—C2—C3—C4173.61 (11)C27—O5—C15—C14158.29 (11)
C1—C2—C3—C40.97 (18)C13—C14—C15—O5179.49 (11)
C2—C3—C4—C51.43 (19)C13—C14—C15—C161.47 (19)
C3—C4—C5—C6179.21 (12)O5—C15—C16—C17178.76 (12)
C3—C4—C5—C100.05 (19)C14—C15—C16—C172.30 (19)
C4—C5—C6—C7177.84 (13)C15—C16—C17—C121.20 (18)
C10—C5—C6—C71.4 (2)C13—C12—C17—C160.71 (17)
C5—C6—C7—C81.3 (2)C11—C12—C17—C16177.22 (11)
C26—O4—C8—C9164.56 (14)C8—C9—C18—O280.03 (15)
C26—O4—C8—C714.4 (2)C10—C9—C18—O2104.23 (14)
C6—C7—C8—O4176.42 (13)C8—C9—C18—C1996.73 (13)
C6—C7—C8—C92.5 (2)C10—C9—C18—C1979.01 (14)
O4—C8—C9—C10178.17 (11)O2—C18—C19—C208.52 (16)
C7—C8—C9—C100.8 (2)C9—C18—C19—C20174.74 (10)
O4—C8—C9—C182.23 (17)O2—C18—C19—C24169.87 (11)
C7—C8—C9—C18176.74 (12)C9—C18—C19—C246.87 (16)
C8—C9—C10—C51.91 (17)C24—C19—C20—C210.75 (18)
C18—C9—C10—C5173.65 (11)C18—C19—C20—C21177.70 (11)
C8—C9—C10—C1179.77 (11)C19—C20—C21—C220.07 (18)
C18—C9—C10—C14.20 (18)C30—O6—C22—C23162.23 (12)
C6—C5—C10—C93.00 (17)C30—O6—C22—C2118.9 (2)
C4—C5—C10—C9176.27 (11)C20—C21—C22—O6178.25 (12)
C6—C5—C10—C1178.99 (11)C20—C21—C22—C230.59 (19)
C4—C5—C10—C11.75 (16)O6—C22—C23—C24178.38 (12)
C2—C1—C10—C9175.67 (11)C21—C22—C23—C240.6 (2)
C11—C1—C10—C912.26 (17)C22—C23—C24—C190.13 (19)
C2—C1—C10—C52.18 (16)C20—C19—C24—C230.77 (18)
C11—C1—C10—C5169.88 (10)C18—C19—C24—C23177.63 (11)
C2—C1—C11—O1107.36 (12)C15—O5—C27—C2859.83 (15)
C10—C1—C11—O164.98 (14)O5—C27—C28—C2949.10 (15)
C2—C1—C11—C1271.92 (13)C27—C28—C29—C30178.19 (11)
C10—C1—C11—C12115.74 (12)C22—O6—C30—C2965.93 (17)
O1—C11—C12—C17178.41 (11)C28—C29—C30—O645.27 (16)
C1—C11—C12—C172.33 (16)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.952.473.3241 (15)150
C6—H6···O1ii0.952.383.3245 (16)172
C7—H7···O3ii0.952.593.3910 (17)143
C14—H14···O5iii0.952.403.3328 (15)169
C21—H21···O1Siv0.952.543.482 (2)172
C2S—H2S2···Cgv0.982.863.830 (2)171
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+2, y1/2, z+1/2; (iii) x+2, y+1, z; (iv) x+1/2, y+1/2, z; (v) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC30H26O6·C3H6O
Mr540.59
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)193
a, b, c (Å)15.4948 (3), 16.1272 (3), 22.4430 (4)
V3)5608.23 (18)
Z8
Radiation typeCu Kα
µ (mm1)0.73
Crystal size (mm)0.50 × 0.45 × 0.40
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.712, 0.759
No. of measured, independent and
observed [I > 2σ(I)] reflections
99441, 5132, 4829
Rint0.021
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.05
No. of reflections5132
No. of parameters366
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.19

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku, 2010), Il Milione (Burla, et al., 2007), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.952.473.3241 (15)150
C6—H6···O1ii0.952.383.3245 (16)172
C7—H7···O3ii0.952.593.3910 (17)143
C14—H14···O5iii0.952.403.3328 (15)169
C21—H21···O1Siv0.952.543.482 (2)172
C2S—H2S2···Cgv0.982.863.830 (2)171
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+2, y1/2, z+1/2; (iii) x+2, y+1, z; (iv) x+1/2, y+1/2, z; (v) x+3/2, y1/2, z.
 

Acknowledgements

The authors would express their gratitude to Master Toyokazu Muto, Department of Organic and Polymer Mat­erials Chemistry, Graduate School, Tokyo University of Agriculture and Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for their technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902–o2903.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMitsui, R., Nagasawa, A., Noguchi, K., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o1790.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A., Hijikata, D., Sakai, N. & Yonezawa, N. (2012). Polym. J. In the press.  Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSasagawa, K., Muto, T., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o3354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o329.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds