metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The triclinic form of di-μ-aqua-bis­­[di­aqua­bis­­(thio­cyanato-κN)iron(II)]–1,4-bis­­(4H-1,2,4-triazol-4-yl)benzene (1/3)

aTianjin Key Laboratory of Structure and Performance for Functional Molecule, Tianjin Normal University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: qsdingbin@yahoo.com.cn

(Received 26 May 2012; accepted 9 June 2012; online 10 July 2012)

In the title compound, [Fe2(NCS)4(H2O)6]·3C10H8N6, the centrosymmetric dinuclear complex contains two FeII ions bridged by two aqua ligand O atoms, forming a four-membered ring. The slightly distorted octa­hedral coordination environment of the two FeII ions is completed by two monodentate aqua ligands and two thio­cyanate ligands. One of the 1,4-bis­(4H-1,2,4-triazol-4-yl)benzene mol­ecules lies across an inversion center. In the crystal, O—H⋯N hydrogen bonds connect the components, forming a two-dimensional network parallel to (011). In addition, ππ stacking inter­actions involving the benzene and triazole rings, with centroid–centroid distances in the range 3.502 (5)—3.787 (6) Å, connect the two-dimensional hydrogen-bonded network into a three-dimensional network.

Related literature

For details of compounds containing a diiron center, see: Hsu et al. (1999[Hsu, H. F., Dong, Y., Shu, L., Young, V. G. Jr & Que, L. Jr (1999). J. Am. Chem. Soc. 121, 5230-5237.]); Zheng et al. (1999[Zheng, H., Zang, Y., Dong, Y., Young, V. G. Jr & Que, L. Jr (1999). J. Am. Chem. Soc. 121, 2226-2235.]); MacMurdo et al. (2000[MacMurdo, V. L., Zheng, H. & Que, L. Jr (2000). Inorg. Chem. 39, 2254-2255.]); Yoon et al. (2004[Yoon, S., Kelly, A. E. & Lippard, S. J. (2004). Polyhedron, 23, 2805-2812.]). For related multicompent di­oxy­gen dependent enzymes including toluene mono­oxygenase, see: Sazinsky et al. (2004[Sazinsky, M. H., Bard, J., Di Donato, A. & Lippard, S. J. (2004). J. Biol. Chem. 279, 30600-30610.]). For related multicompent di­oxy­gen dependent enzymes including the R2 subunit of ribonucleotide reductase, see: Nordlund & Eklund (1993[Nordlund, P. & Eklund, H. (1993). J. Mol. Biol. 232, 123-164.]); Stubbe & Van der Donk (1998[Stubbe, J. & Van der Donk, W. A. (1998). Chem. Rev. 98, 705-762.]). For the monoclinic form of the title compound, see: Liu et al. (2012[Liu, Y.-Y., Yang, P. & Ding, B. (2012). Acta Cryst. E68, m1036-m1037.]).

[Scheme 1]

.

Experimental

Crystal data
  • [Fe2(NCS)4(H2O)6]·3C10H8N6

  • Mr = 1088.79

  • Triclinic, [P \overline 1]

  • a = 7.8335 (6) Å

  • b = 10.9081 (8) Å

  • c = 13.8067 (10) Å

  • α = 68.999 (1)°

  • β = 84.952 (1)°

  • γ = 83.355 (1)°

  • V = 1092.62 (14) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 173 K

  • 0.18 × 0.14 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.851, Tmax = 0.889

  • 5619 measured reflections

  • 3827 independent reflections

  • 3435 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.077

  • S = 1.03

  • 3827 reflections

  • 307 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—N10 2.0865 (18)
Fe1—N11 2.0968 (18)
Fe1—O3 2.1011 (15)
Fe1—O1 2.1097 (14)
Fe1—O2i 2.2552 (14)
Fe1—O2 2.2748 (15)
Symmetry code: (i) -x+2, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N3ii 0.84 1.94 2.784 (2) 177
O1—H1B⋯N6iii 0.84 1.94 2.774 (2) 175
O2—H2A⋯N8i 0.99 1.86 2.838 (2) 168
O2—H2B⋯N9ii 0.99 1.85 2.824 (2) 168
O3—H3A⋯N5iv 0.84 2.01 2.843 (2) 174
O3—H3B⋯N2 0.84 2.00 2.834 (2) 174
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x+1, y, z; (iii) x+1, y+1, z-1; (iv) x, y+1, z-1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The diiron unit, with a carboxylate-rich coordination environment, continues to attract considerable attention due to the enzyme catalysis activity, which occurs in related multicompent dioxygen dependent enzymes, including toluene monooxy-genase (Sazinsky et al., 2004) and the R2 subunit of ribonucleotide reductase (Stubbe & Van der Donk, 1998; Nordlund & Eklund, 1993). With the development of compounds that contain the diiron center, the structure of a series of Fe2(II,II) (MacMurdo et al., 2000), Fe2(III,III) (Zheng et al., 1999) and Fe2(III,IV) (Hsu et al., 1999) complexes with a central Fe2O2 four-membered ring have been obtained. Compared to the chelating to iron atoms with carboxylic oxygen atoms, it is rarely reported that the four-membered center includes both aqua oxygen atoms. In order to explore further details of the coordinated environment of the diiron system, the title complex was synthesized and its crystal structure is presented herein.

The molecular structure of the title complex is shown in Fig. 1. The dinuclear complex structure comprises two FeII ions related by a crystallographic inversion center and bridged by two aqua oxygen atoms to form a four-membered core. Both FeII ions are in a slightly distorted octahedral coordination environment. The separation between the FeII ions is 3.487 (1) Å, compared to 3.0430 (7) Å reported previously (Yoon et al., 2004) possibly owing to the absence of the carboxylate ligands in the title compound. Moreover, the Fe···Fe distance is comparatively different from that of diiron compounds containing higher valences of iron (MacMurdo et al., 2000; Zheng et al., 1999; Hsu et al., 1999). In the crystal, O—H···N hydrogen bonds connect the components of the structure to form a two-dimensional network parallel to (011) (see Fig. 2). In addition, π···π stacking interactions involving the benzene and triazole rings with centroid to centroid distances in the range 3.502 (5)—3.787 (6) Å connect the two-dimensional hydrogen-bonded network into a three-dimensional network.

Related literature top

For details of compounds containing a diiron center, see: Hsu et al. (1999); Zheng et al. (1999); MacMurdo et al. (2000); Yoon et al. (2004). For related multicompent dioxygen dependent enzymes including toluene monooxy-genase, see: Sazinsky et al. (2004). For related multicompent dioxygen dependent enzymes including the R2 subunit of ribonucleotide reductase, see: Nordlund & Eklund (1993); Stubbe & Van der Donk (1998). For the monoclinic form of the title compound, see: Liu et al. (2012).

Experimental top

The compound was synthesized under hydrothermal conditions. A mixture of L (L = 1,4-Bis(4H-1,2,4-triazol-4-yl)benzene) (0.3 mmol, 0.0636 g), FeSO4.7H2O (0.1 mmol, 0.028 g), KSCN (0.2 mmol, 0.019 g) and water (10 ml) was placed in a 25 ml acid digestion bomb and heated at 393 K for two days, then cooled to room temperature over three days. After being washed by 5 ml water twice, colorless block-shaped crystals of the title compound were obtained.

Refinement top

The water H atoms were located in a Fourier difference map and refined subject to an O—H restraint 0.88 (1) Å and an H···H restraint of 1.42 (2) Å. Other H atoms were allowed to ride on their parent atoms with C—H distances of 0.93 Å (Uiso(H) = 1.2Ueq(C)).

Structure description top

The diiron unit, with a carboxylate-rich coordination environment, continues to attract considerable attention due to the enzyme catalysis activity, which occurs in related multicompent dioxygen dependent enzymes, including toluene monooxy-genase (Sazinsky et al., 2004) and the R2 subunit of ribonucleotide reductase (Stubbe & Van der Donk, 1998; Nordlund & Eklund, 1993). With the development of compounds that contain the diiron center, the structure of a series of Fe2(II,II) (MacMurdo et al., 2000), Fe2(III,III) (Zheng et al., 1999) and Fe2(III,IV) (Hsu et al., 1999) complexes with a central Fe2O2 four-membered ring have been obtained. Compared to the chelating to iron atoms with carboxylic oxygen atoms, it is rarely reported that the four-membered center includes both aqua oxygen atoms. In order to explore further details of the coordinated environment of the diiron system, the title complex was synthesized and its crystal structure is presented herein.

The molecular structure of the title complex is shown in Fig. 1. The dinuclear complex structure comprises two FeII ions related by a crystallographic inversion center and bridged by two aqua oxygen atoms to form a four-membered core. Both FeII ions are in a slightly distorted octahedral coordination environment. The separation between the FeII ions is 3.487 (1) Å, compared to 3.0430 (7) Å reported previously (Yoon et al., 2004) possibly owing to the absence of the carboxylate ligands in the title compound. Moreover, the Fe···Fe distance is comparatively different from that of diiron compounds containing higher valences of iron (MacMurdo et al., 2000; Zheng et al., 1999; Hsu et al., 1999). In the crystal, O—H···N hydrogen bonds connect the components of the structure to form a two-dimensional network parallel to (011) (see Fig. 2). In addition, π···π stacking interactions involving the benzene and triazole rings with centroid to centroid distances in the range 3.502 (5)—3.787 (6) Å connect the two-dimensional hydrogen-bonded network into a three-dimensional network.

For details of compounds containing a diiron center, see: Hsu et al. (1999); Zheng et al. (1999); MacMurdo et al. (2000); Yoon et al. (2004). For related multicompent dioxygen dependent enzymes including toluene monooxy-genase, see: Sazinsky et al. (2004). For related multicompent dioxygen dependent enzymes including the R2 subunit of ribonucleotide reductase, see: Nordlund & Eklund (1993); Stubbe & Van der Donk (1998). For the monoclinic form of the title compound, see: Liu et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Unlabeled atoms in the dinuclear complex and one of the 1,4-Bis(4H-1,2,4-triazol-4-yl)benzene tri-solvate molecules are related by the symmetry codes (-x+2, -y+1, -z) and (-x+1, -y, -z+1), respectively.
[Figure 2] Fig. 2. The two-dimensional layered structure of the title complex. Purple Dashed lines indicate donor acceptor distances of the hydrogen bonds. H atoms are not shown.
Di-µ-aqua-bis[diaquabis(thiocyanato-κN)iron(II)]– 1,4-bis(4H-1,2,4-triazol-4-yl)benzene (1/3) top
Crystal data top
[Fe2(NCS)4(H2O)6]·3C10H8N6Z = 1
Mr = 1088.79F(000) = 558
Triclinic, P1Dx = 1.655 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8335 (6) ÅCell parameters from 2875 reflections
b = 10.9081 (8) Åθ = 3.0–28.4°
c = 13.8067 (10) ŵ = 0.93 mm1
α = 68.999 (1)°T = 173 K
β = 84.952 (1)°Block, colourless
γ = 83.355 (1)°0.18 × 0.14 × 0.13 mm
V = 1092.62 (14) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3827 independent reflections
Radiation source: fine-focus sealed tube3435 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.851, Tmax = 0.889k = 912
5619 measured reflectionsl = 1516
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0345P)2 + 0.7404P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.30 e Å3
3827 reflectionsΔρmin = 0.43 e Å3
307 parameters
Crystal data top
[Fe2(NCS)4(H2O)6]·3C10H8N6γ = 83.355 (1)°
Mr = 1088.79V = 1092.62 (14) Å3
Triclinic, P1Z = 1
a = 7.8335 (6) ÅMo Kα radiation
b = 10.9081 (8) ŵ = 0.93 mm1
c = 13.8067 (10) ÅT = 173 K
α = 68.999 (1)°0.18 × 0.14 × 0.13 mm
β = 84.952 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3827 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3435 reflections with I > 2σ(I)
Tmin = 0.851, Tmax = 0.889Rint = 0.019
5619 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0312 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
3827 reflectionsΔρmin = 0.43 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.93995 (4)0.61553 (3)0.06003 (2)0.01245 (10)
S10.94951 (7)0.98407 (6)0.27085 (4)0.01874 (14)
S20.94707 (7)0.29730 (6)0.41566 (4)0.01899 (14)
O11.08753 (19)0.72399 (15)0.11568 (11)0.0168 (3)
H1A1.15030.68590.16620.025*
H1B1.14320.78290.07210.025*
O21.17972 (18)0.51345 (14)0.00652 (10)0.0135 (3)
H2A1.24970.57740.04690.020*
H2B1.25170.46050.06530.020*
O30.68912 (19)0.68356 (15)0.09608 (11)0.0172 (3)
H3A0.62640.74240.05350.026*
H3B0.62370.64110.14520.026*
N10.3803 (2)0.43716 (17)0.42713 (13)0.0149 (4)
N20.4701 (2)0.55412 (18)0.26843 (13)0.0166 (4)
N30.2969 (2)0.58853 (19)0.28071 (14)0.0212 (4)
N40.3748 (2)0.05660 (17)0.83062 (13)0.0133 (4)
N50.4598 (2)0.11802 (18)0.96406 (13)0.0165 (4)
N60.2857 (2)0.08517 (18)0.97992 (14)0.0188 (4)
N70.5005 (2)0.19396 (17)0.29899 (13)0.0116 (4)
N80.5907 (2)0.33244 (18)0.14775 (13)0.0151 (4)
N90.4119 (2)0.34901 (17)0.15464 (13)0.0150 (4)
N100.9418 (2)0.76782 (18)0.08416 (14)0.0164 (4)
N110.9443 (2)0.46757 (18)0.20753 (14)0.0168 (4)
C10.5168 (3)0.4650 (2)0.35647 (16)0.0172 (5)
H10.63070.42470.36960.021*
C20.2474 (3)0.5182 (2)0.37532 (17)0.0207 (5)
H20.13320.52310.40410.025*
C30.3786 (3)0.3430 (2)0.53126 (16)0.0138 (4)
C40.2299 (3)0.3324 (2)0.59539 (16)0.0173 (5)
H40.12910.38880.57080.021*
C50.2281 (3)0.2398 (2)0.69513 (16)0.0159 (5)
H50.12640.23250.73900.019*
C60.3758 (3)0.1580 (2)0.73034 (15)0.0135 (4)
C70.5257 (3)0.1709 (2)0.66666 (16)0.0160 (5)
H70.62750.11610.69170.019*
C80.5268 (3)0.2630 (2)0.56752 (16)0.0159 (5)
H80.62910.27170.52410.019*
C90.5101 (3)0.0323 (2)0.87559 (16)0.0167 (5)
H90.62440.03140.84620.020*
C100.2392 (3)0.0185 (2)0.89994 (16)0.0173 (5)
H100.12600.06140.89130.021*
C110.6395 (3)0.2405 (2)0.23378 (16)0.0146 (5)
H110.75600.20980.24930.017*
C120.3619 (3)0.2663 (2)0.24462 (16)0.0144 (5)
H120.24520.25730.26920.017*
C130.5004 (3)0.0950 (2)0.40112 (15)0.0119 (4)
C140.3452 (3)0.0654 (2)0.45848 (16)0.0147 (5)
H140.23980.11010.42970.018*
C150.6553 (3)0.0293 (2)0.44258 (16)0.0147 (5)
H150.76080.04930.40320.018*
C160.9452 (3)0.8577 (2)0.16137 (16)0.0128 (4)
C170.9453 (3)0.3973 (2)0.29352 (16)0.0139 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01271 (17)0.01269 (17)0.01021 (16)0.00163 (13)0.00107 (12)0.00164 (13)
S10.0169 (3)0.0181 (3)0.0141 (3)0.0007 (2)0.0003 (2)0.0026 (2)
S20.0171 (3)0.0201 (3)0.0129 (3)0.0002 (2)0.0008 (2)0.0019 (2)
O10.0173 (8)0.0179 (8)0.0124 (7)0.0047 (6)0.0022 (6)0.0008 (6)
O20.0135 (7)0.0140 (8)0.0103 (7)0.0012 (6)0.0013 (6)0.0008 (6)
O30.0154 (8)0.0180 (8)0.0118 (7)0.0000 (6)0.0011 (6)0.0017 (6)
N10.0184 (10)0.0130 (9)0.0108 (9)0.0002 (8)0.0013 (8)0.0015 (7)
N20.0207 (10)0.0147 (10)0.0144 (9)0.0022 (8)0.0001 (8)0.0050 (8)
N30.0197 (10)0.0221 (11)0.0194 (10)0.0035 (8)0.0049 (8)0.0029 (8)
N40.0148 (9)0.0123 (9)0.0118 (8)0.0008 (8)0.0006 (7)0.0033 (7)
N50.0194 (10)0.0140 (9)0.0153 (9)0.0001 (8)0.0028 (8)0.0041 (8)
N60.0207 (10)0.0175 (10)0.0161 (9)0.0044 (8)0.0018 (8)0.0024 (8)
N70.0128 (9)0.0110 (9)0.0100 (8)0.0010 (7)0.0014 (7)0.0023 (7)
N80.0150 (9)0.0140 (9)0.0149 (9)0.0017 (8)0.0024 (7)0.0028 (8)
N90.0164 (10)0.0130 (9)0.0139 (9)0.0017 (8)0.0032 (7)0.0022 (8)
N100.0132 (10)0.0173 (10)0.0171 (9)0.0003 (8)0.0016 (8)0.0042 (8)
N110.0143 (10)0.0187 (10)0.0162 (9)0.0023 (8)0.0004 (8)0.0043 (8)
C10.0179 (12)0.0184 (12)0.0156 (11)0.0025 (9)0.0015 (9)0.0066 (9)
C20.0167 (12)0.0229 (13)0.0179 (11)0.0020 (10)0.0011 (10)0.0014 (10)
C30.0172 (11)0.0125 (11)0.0131 (10)0.0031 (9)0.0010 (9)0.0055 (9)
C40.0140 (11)0.0176 (12)0.0161 (11)0.0034 (9)0.0016 (9)0.0020 (9)
C50.0121 (11)0.0179 (12)0.0150 (10)0.0004 (9)0.0025 (9)0.0034 (9)
C60.0178 (11)0.0121 (11)0.0119 (10)0.0026 (9)0.0019 (9)0.0049 (9)
C70.0151 (11)0.0154 (11)0.0165 (11)0.0022 (9)0.0026 (9)0.0050 (9)
C80.0135 (11)0.0171 (11)0.0159 (11)0.0011 (9)0.0010 (9)0.0050 (9)
C90.0182 (12)0.0160 (11)0.0156 (11)0.0008 (9)0.0043 (9)0.0051 (9)
C100.0154 (12)0.0182 (12)0.0161 (11)0.0025 (9)0.0014 (9)0.0029 (9)
C110.0134 (11)0.0164 (11)0.0130 (10)0.0021 (9)0.0000 (9)0.0040 (9)
C120.0149 (11)0.0144 (11)0.0130 (10)0.0001 (9)0.0030 (9)0.0037 (9)
C130.0151 (11)0.0104 (10)0.0105 (10)0.0022 (9)0.0026 (8)0.0032 (8)
C140.0114 (11)0.0158 (11)0.0153 (10)0.0000 (9)0.0023 (9)0.0036 (9)
C150.0125 (11)0.0165 (11)0.0137 (10)0.0018 (9)0.0014 (9)0.0039 (9)
C160.0104 (10)0.0146 (10)0.0131 (9)0.0001 (9)0.0005 (8)0.0048 (7)
C170.0121 (11)0.0137 (11)0.0148 (9)0.0002 (9)0.0003 (9)0.0041 (8)
Geometric parameters (Å, º) top
Fe1—N102.0865 (18)N7—C131.436 (3)
Fe1—N112.0968 (18)N8—C111.304 (3)
Fe1—O32.1011 (15)N8—N91.391 (3)
Fe1—O12.1097 (14)N9—C121.305 (3)
Fe1—O2i2.2552 (14)N10—C161.162 (3)
Fe1—O22.2748 (15)N11—C171.160 (3)
S1—C161.641 (2)C1—H10.9500
S2—C171.648 (2)C2—H20.9500
O1—H1A0.8401C3—C81.384 (3)
O1—H1B0.8401C3—C41.389 (3)
O2—Fe1i2.2552 (14)C4—C51.385 (3)
O2—H2A0.9900C4—H40.9500
O2—H2B0.9900C5—C61.386 (3)
O3—H3A0.8401C5—H50.9500
O3—H3B0.8401C6—C71.393 (3)
N1—C21.357 (3)C7—C81.377 (3)
N1—C11.366 (3)C7—H70.9500
N1—C31.437 (3)C8—H80.9500
N2—C11.306 (3)C9—H90.9500
N2—N31.377 (3)C10—H100.9500
N3—C21.306 (3)C11—H110.9500
N4—C101.362 (3)C12—H120.9500
N4—C91.377 (3)C13—C151.393 (3)
N4—C61.430 (3)C13—C141.396 (3)
N5—C91.305 (3)C14—C15ii1.386 (3)
N5—N61.388 (3)C14—H140.9500
N6—C101.308 (3)C15—C14ii1.386 (3)
N7—C111.372 (3)C15—H150.9500
N7—C121.373 (3)
N10—Fe1—N11177.40 (7)N1—C1—H1124.5
N10—Fe1—O390.67 (6)N3—C2—N1111.2 (2)
N11—Fe1—O389.72 (6)N3—C2—H2124.4
N10—Fe1—O188.84 (6)N1—C2—H2124.4
N11—Fe1—O188.55 (6)C8—C3—C4120.1 (2)
O3—Fe1—O1101.03 (6)C8—C3—N1119.39 (19)
N10—Fe1—O2i91.03 (6)C4—C3—N1120.48 (19)
N11—Fe1—O2i91.56 (6)C5—C4—C3120.2 (2)
O3—Fe1—O2i87.55 (6)C5—C4—H4119.9
O1—Fe1—O2i171.43 (6)C3—C4—H4119.9
N10—Fe1—O289.61 (6)C4—C5—C6119.4 (2)
N11—Fe1—O290.60 (6)C4—C5—H5120.3
O3—Fe1—O2166.90 (5)C6—C5—H5120.3
O1—Fe1—O292.07 (6)C5—C6—C7120.17 (19)
O2i—Fe1—O279.35 (5)C5—C6—N4120.60 (19)
Fe1—O1—H1A120.8C7—C6—N4119.19 (19)
Fe1—O1—H1B118.2C8—C7—C6120.2 (2)
H1A—O1—H1B106.9C8—C7—H7119.9
Fe1i—O2—Fe1100.65 (5)C6—C7—H7119.9
Fe1i—O2—H2A111.6C7—C8—C3119.8 (2)
Fe1—O2—H2A111.6C7—C8—H8120.1
Fe1i—O2—H2B111.6C3—C8—H8120.1
Fe1—O2—H2B111.6N5—C9—N4110.8 (2)
H2A—O2—H2B109.4N5—C9—H9124.6
Fe1—O3—H3A124.5N4—C9—H9124.6
Fe1—O3—H3B125.3N6—C10—N4111.0 (2)
H3A—O3—H3B106.9N6—C10—H10124.5
C2—N1—C1103.71 (18)N4—C10—H10124.5
C2—N1—C3128.44 (19)N8—C11—N7111.06 (19)
C1—N1—C3127.84 (18)N8—C11—H11124.5
C1—N2—N3106.87 (18)N7—C11—H11124.5
C2—N3—N2107.16 (18)N9—C12—N7110.95 (19)
C10—N4—C9104.00 (18)N9—C12—H12124.5
C10—N4—C6128.60 (18)N7—C12—H12124.5
C9—N4—C6127.22 (18)C15—C13—C14120.34 (19)
C9—N5—N6107.03 (17)C15—C13—N7119.82 (19)
C10—N6—N5107.25 (18)C14—C13—N7119.84 (18)
C11—N7—C12103.73 (17)C15ii—C14—C13120.01 (19)
C11—N7—C13128.06 (17)C15ii—C14—H14120.0
C12—N7—C13128.19 (18)C13—C14—H14120.0
C11—N8—N9107.13 (17)C14ii—C15—C13119.7 (2)
C12—N9—N8107.12 (17)C14ii—C15—H15120.2
C16—N10—Fe1175.78 (17)C13—C15—H15120.2
C17—N11—Fe1172.21 (17)N10—C16—S1179.6 (2)
N2—C1—N1111.1 (2)N11—C17—S2179.9 (3)
N2—C1—H1124.5
N10—Fe1—O2—Fe1i91.12 (6)C4—C5—C6—N4176.34 (18)
N11—Fe1—O2—Fe1i91.48 (6)C10—N4—C6—C55.2 (3)
O3—Fe1—O2—Fe1i0.2 (3)C9—N4—C6—C5179.4 (2)
O1—Fe1—O2—Fe1i179.95 (5)C10—N4—C6—C7172.6 (2)
O2i—Fe1—O2—Fe1i0.0C9—N4—C6—C71.7 (3)
C1—N2—N3—C20.2 (2)C5—C6—C7—C81.5 (3)
C9—N5—N6—C100.3 (2)N4—C6—C7—C8176.30 (18)
C11—N8—N9—C120.1 (2)C6—C7—C8—C30.1 (3)
N11—Fe1—N10—C1618 (3)C4—C3—C8—C71.4 (3)
O3—Fe1—N10—C1680 (2)N1—C3—C8—C7178.93 (18)
O1—Fe1—N10—C1621 (2)N6—N5—C9—N40.7 (2)
O2i—Fe1—N10—C16168 (2)C10—N4—C9—N50.8 (2)
O2—Fe1—N10—C16113 (2)C6—N4—C9—N5174.65 (18)
N10—Fe1—N11—C1734 (2)N5—N6—C10—N40.2 (2)
O3—Fe1—N11—C1764.2 (12)C9—N4—C10—N60.6 (2)
O1—Fe1—N11—C1736.9 (12)C6—N4—C10—N6174.75 (18)
O2i—Fe1—N11—C17151.7 (12)N9—N8—C11—N70.0 (2)
O2—Fe1—N11—C17128.9 (12)C12—N7—C11—N80.0 (2)
N3—N2—C1—N10.7 (2)C13—N7—C11—N8178.74 (18)
C2—N1—C1—N20.9 (2)N8—N9—C12—N70.1 (2)
C3—N1—C1—N2178.46 (18)C11—N7—C12—N90.1 (2)
N2—N3—C2—N10.3 (3)C13—N7—C12—N9178.79 (18)
C1—N1—C2—N30.7 (2)C11—N7—C13—C153.3 (3)
C3—N1—C2—N3178.62 (19)C12—N7—C13—C15178.31 (19)
C2—N1—C3—C8175.7 (2)C11—N7—C13—C14176.49 (19)
C1—N1—C3—C83.5 (3)C12—N7—C13—C141.9 (3)
C2—N1—C3—C44.6 (3)C15—C13—C14—C15ii0.3 (3)
C1—N1—C3—C4176.2 (2)N7—C13—C14—C15ii179.45 (18)
C8—C3—C4—C51.4 (3)C14—C13—C15—C14ii0.3 (3)
N1—C3—C4—C5178.86 (19)N7—C13—C15—C14ii179.45 (18)
C3—C4—C5—C60.0 (3)Fe1—N10—C16—S1174 (100)
C4—C5—C6—C71.4 (3)Fe1—N11—C17—S2123 (100)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N3iii0.841.942.784 (2)177
O1—H1B···N6iv0.841.942.774 (2)175
O2—H2A···N8i0.991.862.838 (2)168
O2—H2B···N9iii0.991.852.824 (2)168
O3—H3A···N5v0.842.012.843 (2)174
O3—H3B···N20.842.002.834 (2)174
Symmetry codes: (i) x+2, y+1, z; (iii) x+1, y, z; (iv) x+1, y+1, z1; (v) x, y+1, z1.

Experimental details

Crystal data
Chemical formula[Fe2(NCS)4(H2O)6]·3C10H8N6
Mr1088.79
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.8335 (6), 10.9081 (8), 13.8067 (10)
α, β, γ (°)68.999 (1), 84.952 (1), 83.355 (1)
V3)1092.62 (14)
Z1
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.18 × 0.14 × 0.13
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.851, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
5619, 3827, 3435
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.077, 1.03
No. of reflections3827
No. of parameters307
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.43

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Fe1—N102.0865 (18)Fe1—O12.1097 (14)
Fe1—N112.0968 (18)Fe1—O2i2.2552 (14)
Fe1—O32.1011 (15)Fe1—O22.2748 (15)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N3ii0.841.942.784 (2)176.7
O1—H1B···N6iii0.841.942.774 (2)175.4
O2—H2A···N8i0.991.862.838 (2)168.4
O2—H2B···N9ii0.991.852.824 (2)167.9
O3—H3A···N5iv0.842.012.843 (2)174.2
O3—H3B···N20.842.002.834 (2)174.1
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1, z1; (iv) x, y+1, z1.
 

Acknowledgements

This work was supported financially by Tianjin Educational Committee (20090504, 20110311) and Tianjin Normal University (1E0402B).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHsu, H. F., Dong, Y., Shu, L., Young, V. G. Jr & Que, L. Jr (1999). J. Am. Chem. Soc. 121, 5230–5237.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y.-Y., Yang, P. & Ding, B. (2012). Acta Cryst. E68, m1036–m1037.  CSD CrossRef IUCr Journals Google Scholar
First citationMacMurdo, V. L., Zheng, H. & Que, L. Jr (2000). Inorg. Chem. 39, 2254–2255.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNordlund, P. & Eklund, H. (1993). J. Mol. Biol. 232, 123–164.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSazinsky, M. H., Bard, J., Di Donato, A. & Lippard, S. J. (2004). J. Biol. Chem. 279, 30600–30610.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStubbe, J. & Van der Donk, W. A. (1998). Chem. Rev. 98, 705–762.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoon, S., Kelly, A. E. & Lippard, S. J. (2004). Polyhedron, 23, 2805–2812.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, H., Zang, Y., Dong, Y., Young, V. G. Jr & Que, L. Jr (1999). J. Am. Chem. Soc. 121, 2226–2235.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds