metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{μ-2-[(3-Amino-2,2-di­methyl­prop­yl)imino­meth­yl]-6-meth­­oxy­phenolato-1:2κ5O1,O6:N,N′,O1}{2-[(3-amino-2,2-di­methyl­prop­yl)imino­meth­yl]-6-meth­­oxy­phenolato-1κ3N,N′,O1}-μ-azido-1:2κ2N:N-azido-2κN-methanol-2κO-dinickel(II)

aDepartment of Chemistry, Saveh Branch, Islamic Azad University, Saveh, Iran, bDepartment of Chemistry, K. N. Toosi University of Technology, PO Box 16315-1618, Tehran, Iran, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and dChemistry Department and Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 25 June 2012; accepted 29 June 2012; online 4 July 2012)

Two distinct coordination geometries are found in the binuclear title complex, [Ni2(C13H19N2O2)2(N3)2(CH3OH)], as one Schiff base ligand is penta­dentate, coordinating via the anti­cipated oxide O, imine N and amine N atoms (as for the second, tridentate, ligand) but the oxide O is bridging and coordination also occurs through the meth­oxy O atom. The NiII atoms are linked by a μ2-oxide atom and one end of a μ2-azide ligand, forming an Ni2ON core. The coordination geometry for the NiII atom coordinated by the tridentate ligand is completed by the meth­oxy O atom derived from the penta­dentate ligand, with the resulting N3O3 donor set defining a fac octa­hedron. The second NiII atom has its cis-octa­hedral N4O2 coordination geometry completed by the imine N and amine N atoms of the penta­dentate Schiff base ligand, a terminally coordinated azide N and a methanol O atom. The arrangement is stabilized by an intra­molecular hydrogen bond between the methanol H and the oxide O atom. Linear supra­molecular chains along the a axis are formed in the crystal packing whereby two amine H atoms from different amine atoms hydrogen bond to the terminal N atom of the monodentate azide ligand.

Related literature

For background to azido derivatives of tridentate Schiff base NiII complexes, see: Ribas et al. (1999[Ribas, J., Escuer, A., Monfort, M., Vicente, R., Cortés, R., Lezama, L. & Rojo, T. (1999). Coord. Chem. Rev. 193-195, 1027-1068.]); Koner et al. (2009[Koner, R., Hazra, S., Fleck, M., Jana, A., Lucas, C. R. & Mohanta, S. (2009). Eur. J. Inorg. Chem. pp. 4982-4988.]); Biswas et al. (2011[Biswas, R., Kar, P., Song, Y. & Ghosh, A. (2011). Dalton Trans. 40, 5324-5331.]). For a related structure, see: Ghaemi et al. (2012[Ghaemi, A., Rayati, S., Fayyazi, K., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m993-m994.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C13H19N2O2)2(N3)2(CH4O)]

  • Mr = 704.13

  • Monoclinic, P 21 /n

  • a = 8.0907 (2) Å

  • b = 18.5230 (4) Å

  • c = 21.1162 (4) Å

  • β = 96.674 (2)°

  • V = 3143.11 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.25 mm−1

  • T = 100 K

  • 0.24 × 0.18 × 0.18 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.753, Tmax = 0.806

  • 21789 measured reflections

  • 7266 independent reflections

  • 6115 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.076

  • S = 1.01

  • 7266 reflections

  • 417 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O2 2.0155 (14)
Ni1—O3 2.2589 (13)
Ni1—O4 2.0201 (13)
Ni1—N1 2.0166 (16)
Ni1—N2 2.0621 (17)
Ni1—N5 2.0862 (16)
Ni2—O4 2.0451 (13)
Ni2—O5 2.1364 (14)
Ni2—N3 2.0478 (16)
Ni2—N5 2.1505 (16)
Ni2—N4 2.0797 (16)
Ni2—N8 2.0715 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O2 0.83 (1) 1.80 (1) 2.604 (2) 161 (3)
N2—H22⋯N10i 0.88 (1) 2.32 (2) 3.121 (2) 153 (2)
N4—H42⋯N10i 0.87 (1) 2.19 (1) 3.040 (2) 165 (2)
Symmetry code: (i) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The design and magnetism of polynuclear complexes containing paramagnetic centres connected through pseudo-halide bridges have attracted significant recent interest owing to their importance in understanding the basics of magnetic interactions and magneto-structural correlations with relevance to condensed matter physics, materials chemistry and coordination chemistry. Amongst these materials investigated, and relevant to the present report describing the crystal structure determination of the title complex (I), are azido derivatives of tridentate Schiff base NiII structures (Ribas et al., 1999; Koner et al., 2009; Biswas et al., 2011). Recently, we described the structure of a centrosymmetric CuII complex which featured asymmetrically bridging azido ligands and a tridentate mode of coordination of the Schiff base ligand (Ghaemi et al., 2012). Herein, a related binuclear NiII complex (I) is described.

In the binuclear complex (I), Fig. 1, the NiII atoms are bridged by a µ2-oxido atom and one end of a µ2-azido ligand to generate a Ni2ON core. The coordination geometry for the Ni1 atom is completed by a methoxy-O atom derived from the same ligand that provides the µ2-oxido bridge and the oxido-O, imine-O and amine-N donor atoms derived from a tridentate uninegative Schiff base ligand. The coordination geometry about the Ni2 atom is completed by the imine-N and amine-N atoms of the original Schiff base ligand, indicating that this is pentadentate, a terminally coordinate azido-N and a methanol-O atom. The N3O3 donor set for the Ni1 atom defines a fac-octahedron, whereas the N4O2 donor set for the Ni2 atom defines a cis-octahedron. Table 1 collects the Ni—L bond lengths and shows that the µ2-oxido bridge is symmetric but some asymmetry is present in the µ2-azido bridge. The longest Ni—O bond lengths for each Ni atom involves methoxy-O (Ni1) and methanol-O (Ni2). As expected, the Ni—N(terminal azide) bond is shorter than the Ni—N bridging distances. The Ni—N(imine) bond lengths are the shorter of the Ni—N bond lengths for the two environments.

Hydrogen bonding occurs in the structure, Table 1. The methanol-H forms an intramolecular hydrogen bond to the oxido-O2 atom to close six-membered {···HONiONiO} and {···HONiNNiO} synthons, Fig. 2. Two of the amine-H atoms form hydrogen bonds to the terminal-N10 atom of the monodentate azido ligand to form eight-membered {···HNNiONiNH···N} and {···HNNiNNiNH···N} synthons, Fig. 2, and a linear supramolecular chain along the a axis, Fig. 3.

Related literature top

For background to azido derivatives of tridentate Schiff base NiII complexes, see: Ribas et al. (1999); Koner et al. (2009); Biswas et al. (2011). For a related structure, see: Ghaemi et al. (2012).

Experimental top

To prepare this complex, a methanolic solution (40 ml) of 2,2'-dimethylpropylenediamine (1 mmol, 0.102 g) was first mixed with 2-hydroxy-3-methoxybenzaldehyde (2 mmol, 0.304 g) under stirring to prepare the desired Schiff-base in situ. Stirring was continued for 30 min. Then, Cu(NO3)2.3H2O (0.120 g, 0.5 mmol) and Ni(NO3)2.6H2O (0.145 g, 0.5 mmol) dissolved in methanol (20 ml) was added to the solution and the resulting mixture was stirred for about 10 min. Finally, an aqueous solution of NaN3 (2 ml, 8 mmol, 0.52 g) was added drop-wise to the resulting mixture with continuous stirring, and the solution was filtered. Dark-green crystals were formed within few days from the filtered solution. Analysis confirmed the formation of a di-nickel(II) complex rather than the anticipated hetero-metallic complex, as confirmed by X-ray crystallography. Anal. Calc. for C27H42N10Ni2O5: C, 46.06; H, 6.01; N, 19.89. Found: C, 45.93; H, 5.85; N, 19.76%. IR (KBr) [cm-1]: νas(N3) 2047, 2068 vs, ν(CN) 1620 s, ν(CC) 1540 s, ν(C—O) 1224 m, ν(O—H) 3340 b. Yield: 56%, M.pt: 544–548 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.99 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The hydroxyl-H and amine-H H-atoms were located from a difference map and refined with O—H = 0.84±0.01 Å and N—H = 0.88±0.01 Å, respectively, and with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N).

Structure description top

The design and magnetism of polynuclear complexes containing paramagnetic centres connected through pseudo-halide bridges have attracted significant recent interest owing to their importance in understanding the basics of magnetic interactions and magneto-structural correlations with relevance to condensed matter physics, materials chemistry and coordination chemistry. Amongst these materials investigated, and relevant to the present report describing the crystal structure determination of the title complex (I), are azido derivatives of tridentate Schiff base NiII structures (Ribas et al., 1999; Koner et al., 2009; Biswas et al., 2011). Recently, we described the structure of a centrosymmetric CuII complex which featured asymmetrically bridging azido ligands and a tridentate mode of coordination of the Schiff base ligand (Ghaemi et al., 2012). Herein, a related binuclear NiII complex (I) is described.

In the binuclear complex (I), Fig. 1, the NiII atoms are bridged by a µ2-oxido atom and one end of a µ2-azido ligand to generate a Ni2ON core. The coordination geometry for the Ni1 atom is completed by a methoxy-O atom derived from the same ligand that provides the µ2-oxido bridge and the oxido-O, imine-O and amine-N donor atoms derived from a tridentate uninegative Schiff base ligand. The coordination geometry about the Ni2 atom is completed by the imine-N and amine-N atoms of the original Schiff base ligand, indicating that this is pentadentate, a terminally coordinate azido-N and a methanol-O atom. The N3O3 donor set for the Ni1 atom defines a fac-octahedron, whereas the N4O2 donor set for the Ni2 atom defines a cis-octahedron. Table 1 collects the Ni—L bond lengths and shows that the µ2-oxido bridge is symmetric but some asymmetry is present in the µ2-azido bridge. The longest Ni—O bond lengths for each Ni atom involves methoxy-O (Ni1) and methanol-O (Ni2). As expected, the Ni—N(terminal azide) bond is shorter than the Ni—N bridging distances. The Ni—N(imine) bond lengths are the shorter of the Ni—N bond lengths for the two environments.

Hydrogen bonding occurs in the structure, Table 1. The methanol-H forms an intramolecular hydrogen bond to the oxido-O2 atom to close six-membered {···HONiONiO} and {···HONiNNiO} synthons, Fig. 2. Two of the amine-H atoms form hydrogen bonds to the terminal-N10 atom of the monodentate azido ligand to form eight-membered {···HNNiONiNH···N} and {···HNNiNNiNH···N} synthons, Fig. 2, and a linear supramolecular chain along the a axis, Fig. 3.

For background to azido derivatives of tridentate Schiff base NiII complexes, see: Ribas et al. (1999); Koner et al. (2009); Biswas et al. (2011). For a related structure, see: Ghaemi et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the hydrogen bonding in (I) showing the formation of seven- and eight-membered synthons. The O—H···O and N—H···N hydrogen bonds are shown as orange and blue dashed lines, respectively.
[Figure 3] Fig. 3. A view of the supramolecular chain in (I) propagated along the a axis. The O—H···O and N—H···N hydrogen bonds are shown as orange and blue dashed lines, respectively.
{µ-2-[(3-Amino-2,2-dimethylpropyl)iminomethyl]-6-methoxyphenolato- 1:2κ5O1,O6:N,N',O1}{2-[(3-amino- 2,2-dimethylpropyl)iminomethyl]-6-methoxyphenolato-1κ3N,N', O1}-µ-azido-1:2κ2N:N-azido-2κN- methanol-2κO-dinickel(II) top
Crystal data top
[Ni2(C13H19N2O2)2(N3)2(CH4O)]F(000) = 1480
Mr = 704.13Dx = 1.488 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9647 reflections
a = 8.0907 (2) Åθ = 2.4–27.5°
b = 18.5230 (4) ŵ = 1.25 mm1
c = 21.1162 (4) ÅT = 100 K
β = 96.674 (2)°Prism, green
V = 3143.11 (12) Å30.24 × 0.18 × 0.18 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
7266 independent reflections
Radiation source: SuperNova (Mo) X-ray Source6115 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.4°
ω scanh = 109
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 2423
Tmin = 0.753, Tmax = 0.806l = 2027
21789 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0296P)2 + 2.1117P]
where P = (Fo2 + 2Fc2)/3
7266 reflections(Δ/σ)max = 0.001
417 parametersΔρmax = 0.49 e Å3
5 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Ni2(C13H19N2O2)2(N3)2(CH4O)]V = 3143.11 (12) Å3
Mr = 704.13Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0907 (2) ŵ = 1.25 mm1
b = 18.5230 (4) ÅT = 100 K
c = 21.1162 (4) Å0.24 × 0.18 × 0.18 mm
β = 96.674 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
7266 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
6115 reflections with I > 2σ(I)
Tmin = 0.753, Tmax = 0.806Rint = 0.031
21789 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0315 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.49 e Å3
7266 reflectionsΔρmin = 0.44 e Å3
417 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.76377 (3)0.497301 (13)0.206798 (11)0.01246 (7)
Ni20.60168 (3)0.568768 (13)0.320859 (11)0.01225 (7)
O10.30566 (18)0.34321 (8)0.21466 (7)0.0224 (3)
O20.55396 (17)0.43769 (7)0.19832 (6)0.0175 (3)
O30.88920 (17)0.39094 (7)0.23383 (6)0.0169 (3)
O40.77159 (16)0.49200 (7)0.30265 (6)0.0123 (3)
O50.40544 (18)0.49563 (7)0.28883 (7)0.0174 (3)
H50.438 (3)0.4697 (12)0.2606 (9)0.038 (8)*
N10.7467 (2)0.50350 (8)0.11091 (7)0.0141 (3)
N20.9982 (2)0.54253 (9)0.21894 (8)0.0158 (3)
H211.072 (2)0.5079 (9)0.2186 (11)0.020 (6)*
H221.007 (3)0.5592 (12)0.2581 (6)0.032 (7)*
N30.63088 (19)0.53036 (9)0.41241 (7)0.0146 (3)
N40.7772 (2)0.64761 (9)0.34998 (8)0.0146 (3)
H410.778 (3)0.6781 (9)0.3171 (7)0.012 (5)*
H420.8797 (15)0.6324 (13)0.3523 (12)0.034 (7)*
N50.6386 (2)0.59256 (9)0.22382 (7)0.0152 (3)
N60.5399 (2)0.61611 (9)0.18170 (8)0.0157 (3)
N70.4510 (2)0.63934 (10)0.14030 (9)0.0279 (4)
N80.4217 (2)0.64681 (9)0.32858 (8)0.0197 (4)
N90.2826 (2)0.63245 (9)0.33620 (8)0.0170 (3)
N100.1456 (2)0.62014 (11)0.34411 (10)0.0305 (5)
C10.3810 (3)0.28869 (12)0.25635 (11)0.0339 (6)
H1A0.33120.28940.29650.051*
H1B0.50080.29790.26500.051*
H1C0.36290.24130.23610.051*
C20.3687 (2)0.34659 (11)0.15632 (9)0.0177 (4)
C30.3041 (3)0.30317 (11)0.10674 (10)0.0196 (4)
H30.22140.26850.11340.024*
C40.3589 (3)0.30964 (11)0.04667 (10)0.0213 (4)
H40.31480.27920.01260.026*
C50.4770 (3)0.36038 (11)0.03738 (9)0.0188 (4)
H5A0.51270.36550.00370.023*
C60.5466 (2)0.40518 (10)0.08773 (9)0.0152 (4)
C70.4949 (2)0.39842 (10)0.14951 (9)0.0151 (4)
C80.6576 (2)0.46182 (10)0.07183 (9)0.0158 (4)
H80.66570.46910.02780.019*
C90.8245 (2)0.56541 (10)0.08267 (9)0.0154 (4)
H9A0.76210.60950.09180.018*
H9B0.81180.55900.03580.018*
C101.0093 (2)0.57828 (10)0.10513 (9)0.0164 (4)
C111.0368 (2)0.60104 (10)0.17535 (9)0.0163 (4)
H11A1.15420.61590.18620.020*
H11B0.96560.64330.18170.020*
C121.1134 (3)0.51171 (11)0.09389 (10)0.0220 (4)
H12A1.23050.52130.10890.033*
H12B1.10210.50050.04820.033*
H12C1.07430.47060.11730.033*
C131.0618 (3)0.64185 (12)0.06528 (10)0.0232 (5)
H13A1.17970.65260.07760.035*
H13B0.99480.68440.07290.035*
H13C1.04420.62920.01990.035*
C140.9007 (3)0.33467 (11)0.18754 (9)0.0204 (4)
H14A0.95900.29300.20820.031*
H14B0.96250.35250.15340.031*
H14C0.78860.32020.16940.031*
C150.8407 (2)0.36947 (10)0.29201 (9)0.0151 (4)
C160.8521 (3)0.29996 (11)0.31517 (10)0.0200 (4)
H160.89520.26260.29090.024*
C170.7998 (3)0.28455 (11)0.37473 (10)0.0206 (4)
H170.80560.23650.39060.025*
C180.7403 (2)0.33867 (11)0.40992 (9)0.0180 (4)
H180.70660.32780.45050.022*
C190.7280 (2)0.41017 (10)0.38728 (9)0.0146 (4)
C200.7773 (2)0.42644 (10)0.32705 (9)0.0129 (4)
C210.6803 (2)0.46681 (10)0.42907 (9)0.0149 (4)
H21A0.68650.45560.47320.018*
C220.6171 (3)0.58335 (11)0.46303 (9)0.0181 (4)
H22A0.61660.55790.50420.022*
H22B0.51040.60960.45420.022*
C230.7622 (3)0.63805 (11)0.46827 (9)0.0187 (4)
C240.7553 (2)0.68694 (10)0.40948 (9)0.0169 (4)
H24A0.64660.71210.40390.020*
H24B0.84330.72410.41700.020*
C250.7405 (3)0.68711 (12)0.52552 (10)0.0301 (5)
H25A0.74420.65780.56430.045*
H25B0.63300.71200.51820.045*
H25C0.83030.72280.53060.045*
C260.9292 (3)0.59914 (12)0.47949 (10)0.0244 (5)
H26A0.93070.56780.51690.037*
H26B1.01900.63470.48680.037*
H26C0.94520.56990.44200.037*
C270.3146 (3)0.45380 (12)0.33012 (10)0.0216 (4)
H27A0.23090.42460.30450.032*
H27B0.25930.48620.35770.032*
H27C0.39140.42200.35640.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01189 (13)0.01354 (12)0.01216 (12)0.00137 (9)0.00225 (9)0.00016 (9)
Ni20.01019 (12)0.01284 (12)0.01395 (12)0.00028 (9)0.00238 (9)0.00016 (9)
O10.0190 (8)0.0268 (8)0.0220 (7)0.0050 (6)0.0044 (6)0.0041 (6)
O20.0159 (7)0.0219 (7)0.0147 (6)0.0061 (6)0.0026 (5)0.0028 (6)
O30.0204 (7)0.0150 (7)0.0162 (7)0.0005 (6)0.0061 (5)0.0026 (5)
O40.0124 (6)0.0121 (6)0.0128 (6)0.0007 (5)0.0029 (5)0.0007 (5)
O50.0150 (7)0.0192 (7)0.0187 (7)0.0035 (6)0.0053 (6)0.0009 (6)
N10.0121 (8)0.0156 (8)0.0150 (8)0.0007 (6)0.0030 (6)0.0012 (6)
N20.0155 (9)0.0180 (8)0.0144 (8)0.0009 (7)0.0033 (7)0.0001 (7)
N30.0108 (8)0.0171 (8)0.0164 (8)0.0018 (6)0.0040 (6)0.0016 (7)
N40.0117 (8)0.0161 (8)0.0165 (8)0.0001 (7)0.0038 (6)0.0013 (7)
N50.0138 (8)0.0174 (8)0.0145 (8)0.0021 (7)0.0019 (6)0.0017 (6)
N60.0129 (8)0.0142 (8)0.0207 (8)0.0034 (7)0.0041 (7)0.0006 (7)
N70.0202 (10)0.0327 (10)0.0290 (10)0.0018 (8)0.0049 (8)0.0104 (9)
N80.0109 (8)0.0179 (8)0.0304 (9)0.0021 (7)0.0029 (7)0.0006 (7)
N90.0153 (9)0.0165 (8)0.0187 (8)0.0028 (7)0.0001 (7)0.0052 (7)
N100.0156 (9)0.0310 (11)0.0468 (12)0.0016 (8)0.0107 (8)0.0135 (9)
C10.0513 (16)0.0271 (12)0.0223 (11)0.0001 (11)0.0005 (11)0.0040 (10)
C20.0154 (10)0.0186 (10)0.0188 (10)0.0019 (8)0.0007 (8)0.0023 (8)
C30.0158 (10)0.0141 (9)0.0281 (11)0.0027 (8)0.0016 (8)0.0001 (8)
C40.0233 (11)0.0167 (10)0.0223 (10)0.0013 (8)0.0034 (9)0.0044 (8)
C50.0212 (11)0.0198 (10)0.0146 (9)0.0032 (8)0.0006 (8)0.0024 (8)
C60.0142 (10)0.0140 (9)0.0169 (9)0.0009 (8)0.0005 (7)0.0003 (8)
C70.0136 (9)0.0144 (9)0.0164 (9)0.0025 (7)0.0020 (7)0.0003 (8)
C80.0158 (10)0.0186 (10)0.0129 (9)0.0041 (8)0.0017 (7)0.0004 (8)
C90.0160 (10)0.0161 (9)0.0144 (9)0.0006 (8)0.0033 (7)0.0024 (8)
C100.0157 (10)0.0182 (10)0.0160 (9)0.0009 (8)0.0046 (7)0.0025 (8)
C110.0158 (10)0.0166 (9)0.0169 (9)0.0019 (8)0.0036 (7)0.0003 (8)
C120.0202 (11)0.0271 (11)0.0199 (10)0.0021 (9)0.0067 (8)0.0019 (9)
C130.0176 (10)0.0275 (11)0.0246 (11)0.0047 (9)0.0030 (8)0.0080 (9)
C140.0242 (11)0.0195 (10)0.0186 (10)0.0016 (9)0.0076 (8)0.0051 (8)
C150.0130 (9)0.0174 (9)0.0151 (9)0.0003 (8)0.0025 (7)0.0012 (8)
C160.0233 (11)0.0142 (9)0.0223 (10)0.0026 (8)0.0020 (8)0.0028 (8)
C170.0250 (11)0.0138 (9)0.0225 (10)0.0001 (8)0.0001 (8)0.0039 (8)
C180.0183 (10)0.0195 (10)0.0157 (9)0.0012 (8)0.0002 (8)0.0035 (8)
C190.0121 (9)0.0157 (9)0.0156 (9)0.0006 (7)0.0003 (7)0.0004 (8)
C200.0095 (9)0.0130 (9)0.0157 (9)0.0013 (7)0.0007 (7)0.0007 (7)
C210.0133 (9)0.0192 (10)0.0125 (9)0.0031 (8)0.0031 (7)0.0014 (8)
C220.0217 (11)0.0192 (10)0.0147 (9)0.0026 (8)0.0075 (8)0.0008 (8)
C230.0222 (11)0.0178 (10)0.0163 (9)0.0005 (8)0.0030 (8)0.0038 (8)
C240.0162 (10)0.0152 (9)0.0196 (10)0.0000 (8)0.0038 (8)0.0043 (8)
C250.0452 (15)0.0250 (11)0.0212 (11)0.0049 (11)0.0093 (10)0.0086 (9)
C260.0217 (11)0.0240 (11)0.0254 (11)0.0002 (9)0.0055 (9)0.0009 (9)
C270.0165 (10)0.0256 (11)0.0233 (10)0.0035 (8)0.0046 (8)0.0013 (9)
Geometric parameters (Å, º) top
Ni1—O22.0155 (14)C8—H80.9500
Ni1—O32.2589 (13)C9—C101.534 (3)
Ni1—O42.0201 (13)C9—H9A0.9900
Ni1—N12.0166 (16)C9—H9B0.9900
Ni1—N22.0621 (17)C10—C121.527 (3)
Ni1—N52.0862 (16)C10—C111.533 (3)
Ni2—O42.0451 (13)C10—C131.535 (3)
Ni2—O52.1364 (14)C11—H11A0.9900
Ni2—N32.0478 (16)C11—H11B0.9900
Ni2—N52.1505 (16)C12—H12A0.9800
Ni2—N42.0797 (16)C12—H12B0.9800
Ni2—N82.0715 (17)C12—H12C0.9800
O1—C21.388 (2)C13—H13A0.9800
O1—C11.429 (3)C13—H13B0.9800
O2—C71.306 (2)C13—H13C0.9800
O3—C151.390 (2)C14—H14A0.9800
O3—C141.439 (2)C14—H14B0.9800
O4—C201.318 (2)C14—H14C0.9800
O5—C271.432 (2)C15—C161.377 (3)
O5—H50.832 (10)C15—C201.419 (3)
N1—C81.288 (2)C16—C171.402 (3)
N1—C91.468 (2)C16—H160.9500
N2—C111.478 (2)C17—C181.368 (3)
N2—H210.879 (10)C17—H170.9500
N2—H220.877 (10)C18—C191.408 (3)
N3—C211.279 (2)C18—H180.9500
N3—C221.465 (2)C19—C201.409 (3)
N4—C241.481 (2)C19—C211.452 (3)
N4—H410.895 (9)C21—H21A0.9500
N4—H420.872 (10)C22—C231.545 (3)
N5—N61.206 (2)C22—H22A0.9900
N6—N71.150 (2)C22—H22B0.9900
N8—N91.186 (2)C23—C261.525 (3)
N9—N101.162 (2)C23—C241.532 (3)
C1—H1A0.9800C23—C251.539 (3)
C1—H1B0.9800C24—H24A0.9900
C1—H1C0.9800C24—H24B0.9900
C2—C31.375 (3)C25—H25A0.9800
C2—C71.421 (3)C25—H25B0.9800
C3—C41.397 (3)C25—H25C0.9800
C3—H30.9500C26—H26A0.9800
C4—C51.370 (3)C26—H26B0.9800
C4—H40.9500C26—H26C0.9800
C5—C61.413 (3)C27—H27A0.9800
C5—H5A0.9500C27—H27B0.9800
C6—C71.421 (3)C27—H27C0.9800
C6—C81.445 (3)
N1—Ni1—O289.03 (6)N1—C9—H9A108.2
N1—Ni1—O4177.81 (6)C10—C9—H9A108.2
O2—Ni1—O489.45 (5)N1—C9—H9B108.2
N1—Ni1—N293.24 (7)C10—C9—H9B108.2
O2—Ni1—N2170.63 (6)H9A—C9—H9B107.3
O4—Ni1—N288.51 (6)C12—C10—C9111.21 (16)
N1—Ni1—N598.44 (6)C12—C10—C11110.60 (16)
O2—Ni1—N593.33 (6)C9—C10—C11111.61 (16)
O4—Ni1—N580.08 (6)C12—C10—C13109.99 (17)
N2—Ni1—N595.32 (7)C9—C10—C13105.73 (15)
N1—Ni1—O3106.25 (6)C11—C10—C13107.52 (16)
O2—Ni1—O383.89 (5)N2—C11—C10112.55 (15)
O4—Ni1—O375.14 (5)N2—C11—H11A109.1
N2—Ni1—O386.75 (6)C10—C11—H11A109.1
N5—Ni1—O3155.08 (6)N2—C11—H11B109.1
O4—Ni2—N385.96 (6)C10—C11—H11B109.1
O4—Ni2—N8173.69 (6)H11A—C11—H11B107.8
N3—Ni2—N899.97 (7)C10—C12—H12A109.5
O4—Ni2—N495.33 (6)C10—C12—H12B109.5
N3—Ni2—N487.99 (6)H12A—C12—H12B109.5
N8—Ni2—N487.06 (7)C10—C12—H12C109.5
O4—Ni2—O589.46 (5)H12A—C12—H12C109.5
N3—Ni2—O594.50 (6)H12B—C12—H12C109.5
N8—Ni2—O587.95 (6)C10—C13—H13A109.5
N4—Ni2—O5174.74 (6)C10—C13—H13B109.5
O4—Ni2—N578.02 (6)H13A—C13—H13B109.5
N3—Ni2—N5163.17 (6)C10—C13—H13C109.5
N8—Ni2—N596.25 (7)H13A—C13—H13C109.5
N4—Ni2—N588.39 (6)H13B—C13—H13C109.5
O5—Ni2—N590.50 (6)O3—C14—H14A109.5
C2—O1—C1113.83 (17)O3—C14—H14B109.5
C7—O2—Ni1127.05 (13)H14A—C14—H14B109.5
C15—O3—C14116.12 (15)O3—C14—H14C109.5
C15—O3—Ni1107.95 (11)H14A—C14—H14C109.5
C14—O3—Ni1121.51 (11)H14B—C14—H14C109.5
C20—O4—Ni1115.60 (11)C16—C15—O3124.56 (18)
C20—O4—Ni2124.11 (12)C16—C15—C20121.58 (18)
Ni1—O4—Ni2102.19 (5)O3—C15—C20113.86 (16)
C27—O5—Ni2124.44 (12)C15—C16—C17119.63 (19)
C27—O5—H5110.5 (19)C15—C16—H16120.2
Ni2—O5—H5108.1 (19)C17—C16—H16120.2
C8—N1—C9116.27 (16)C18—C17—C16120.00 (18)
C8—N1—Ni1125.26 (14)C18—C17—H17120.0
C9—N1—Ni1118.02 (12)C16—C17—H17120.0
C11—N2—Ni1118.56 (12)C17—C18—C19121.35 (19)
C11—N2—H21109.6 (16)C17—C18—H18119.3
Ni1—N2—H21108.7 (15)C19—C18—H18119.3
C11—N2—H22109.2 (16)C18—C19—C20119.45 (18)
Ni1—N2—H22103.3 (17)C18—C19—C21119.13 (18)
H21—N2—H22107 (2)C20—C19—C21121.14 (17)
C21—N3—C22117.64 (16)O4—C20—C19123.33 (17)
C21—N3—Ni2125.26 (13)O4—C20—C15118.66 (17)
C22—N3—Ni2116.48 (12)C19—C20—C15117.98 (17)
C24—N4—Ni2116.81 (12)N3—C21—C19126.49 (17)
C24—N4—H41111.1 (13)N3—C21—H21A116.8
Ni2—N4—H41106.3 (13)C19—C21—H21A116.8
C24—N4—H42108.6 (16)N3—C22—C23111.72 (16)
Ni2—N4—H42113.7 (16)N3—C22—H22A109.3
H41—N4—H4299 (2)C23—C22—H22A109.3
N6—N5—Ni1118.16 (13)N3—C22—H22B109.3
N6—N5—Ni2128.57 (14)C23—C22—H22B109.3
Ni1—N5—Ni296.60 (6)H22A—C22—H22B107.9
N7—N6—N5177.3 (2)C26—C23—C24110.71 (18)
N9—N8—Ni2122.77 (14)C26—C23—C25109.70 (17)
N10—N9—N8178.3 (2)C24—C23—C25106.90 (16)
O1—C1—H1A109.5C26—C23—C22110.68 (17)
O1—C1—H1B109.5C24—C23—C22111.93 (16)
H1A—C1—H1B109.5C25—C23—C22106.75 (17)
O1—C1—H1C109.5N4—C24—C23113.58 (16)
H1A—C1—H1C109.5N4—C24—H24A108.8
H1B—C1—H1C109.5C23—C24—H24A108.8
C3—C2—O1120.20 (18)N4—C24—H24B108.8
C3—C2—C7122.17 (19)C23—C24—H24B108.8
O1—C2—C7117.56 (17)H24A—C24—H24B107.7
C2—C3—C4120.57 (19)C23—C25—H25A109.5
C2—C3—H3119.7C23—C25—H25B109.5
C4—C3—H3119.7H25A—C25—H25B109.5
C5—C4—C3119.29 (18)C23—C25—H25C109.5
C5—C4—H4120.4H25A—C25—H25C109.5
C3—C4—H4120.4H25B—C25—H25C109.5
C4—C5—C6121.24 (19)C23—C26—H26A109.5
C4—C5—H5A119.4C23—C26—H26B109.5
C6—C5—H5A119.4H26A—C26—H26B109.5
C5—C6—C7120.30 (18)C23—C26—H26C109.5
C5—C6—C8117.10 (18)H26A—C26—H26C109.5
C7—C6—C8122.30 (17)H26B—C26—H26C109.5
O2—C7—C6123.75 (18)O5—C27—H27A109.5
O2—C7—C2119.85 (18)O5—C27—H27B109.5
C6—C7—C2116.38 (17)H27A—C27—H27B109.5
N1—C8—C6127.07 (18)O5—C27—H27C109.5
N1—C8—H8116.5H27A—C27—H27C109.5
C6—C8—H8116.5H27B—C27—H27C109.5
N1—C9—C10116.40 (15)
N1—Ni1—O2—C724.42 (15)O4—Ni2—N5—Ni112.98 (5)
O4—Ni1—O2—C7157.15 (15)N3—Ni2—N5—Ni131.1 (2)
N5—Ni1—O2—C7122.82 (15)N8—Ni2—N5—Ni1164.35 (6)
O3—Ni1—O2—C782.03 (15)N4—Ni2—N5—Ni1108.78 (7)
N1—Ni1—O3—C15154.40 (11)O5—Ni2—N5—Ni176.36 (6)
O2—Ni1—O3—C1567.20 (11)N3—Ni2—N8—N969.32 (17)
O4—Ni1—O3—C1523.85 (11)N4—Ni2—N8—N9156.76 (17)
N2—Ni1—O3—C15113.17 (12)O5—Ni2—N8—N924.90 (16)
N5—Ni1—O3—C1517.54 (19)N5—Ni2—N8—N9115.18 (17)
N1—Ni1—O3—C1416.55 (15)C1—O1—C2—C386.4 (2)
O2—Ni1—O3—C1470.65 (14)C1—O1—C2—C796.6 (2)
O4—Ni1—O3—C14161.70 (15)O1—C2—C3—C4175.66 (18)
N2—Ni1—O3—C14108.98 (14)C7—C2—C3—C41.3 (3)
N5—Ni1—O3—C14155.38 (15)C2—C3—C4—C50.7 (3)
O2—Ni1—O4—C2058.20 (13)C3—C4—C5—C61.3 (3)
N2—Ni1—O4—C20112.66 (13)C4—C5—C6—C70.0 (3)
N5—Ni1—O4—C20151.67 (13)C4—C5—C6—C8173.92 (18)
O3—Ni1—O4—C2025.63 (12)Ni1—O2—C7—C616.5 (3)
O2—Ni1—O4—Ni279.51 (6)Ni1—O2—C7—C2165.10 (13)
N2—Ni1—O4—Ni2109.64 (7)C5—C6—C7—O2179.77 (17)
N5—Ni1—O4—Ni213.97 (6)C8—C6—C7—O26.7 (3)
O3—Ni1—O4—Ni2163.34 (6)C5—C6—C7—C21.8 (3)
N3—Ni2—O4—C2038.68 (13)C8—C6—C7—C2171.77 (17)
N4—Ni2—O4—C20126.28 (13)C3—C2—C7—O2179.03 (18)
O5—Ni2—O4—C2055.88 (13)O1—C2—C7—O24.0 (3)
N5—Ni2—O4—C20146.51 (14)C3—C2—C7—C62.5 (3)
N3—Ni2—O4—Ni1171.54 (6)O1—C2—C7—C6174.56 (17)
N4—Ni2—O4—Ni1100.85 (6)C9—N1—C8—C6168.84 (18)
O5—Ni2—O4—Ni176.99 (6)Ni1—N1—C8—C63.3 (3)
N5—Ni2—O4—Ni113.64 (6)C5—C6—C8—N1172.40 (19)
O4—Ni2—O5—C27100.30 (15)C7—C6—C8—N113.9 (3)
N3—Ni2—O5—C2714.39 (16)C8—N1—C9—C10132.96 (18)
N8—Ni2—O5—C2785.45 (15)Ni1—N1—C9—C1054.3 (2)
N5—Ni2—O5—C27178.32 (15)N1—C9—C10—C1256.7 (2)
O2—Ni1—N1—C817.53 (16)N1—C9—C10—C1167.3 (2)
N2—Ni1—N1—C8153.38 (16)N1—C9—C10—C13176.07 (17)
N5—Ni1—N1—C8110.75 (16)Ni1—N2—C11—C1056.9 (2)
O3—Ni1—N1—C865.83 (17)C12—C10—C11—N257.1 (2)
O2—Ni1—N1—C9154.47 (14)C9—C10—C11—N267.3 (2)
N2—Ni1—N1—C934.62 (14)C13—C10—C11—N2177.17 (16)
N5—Ni1—N1—C961.25 (14)C14—O3—C15—C1620.5 (3)
O3—Ni1—N1—C9122.17 (13)Ni1—O3—C15—C16160.90 (16)
N1—Ni1—N2—C1137.14 (15)C14—O3—C15—C20159.81 (16)
O4—Ni1—N2—C11141.55 (14)Ni1—O3—C15—C2019.40 (18)
N5—Ni1—N2—C1161.65 (14)O3—C15—C16—C17179.80 (18)
O3—Ni1—N2—C11143.25 (14)C20—C15—C16—C170.1 (3)
O4—Ni2—N3—C2124.19 (16)C15—C16—C17—C181.0 (3)
N8—Ni2—N3—C21153.66 (16)C16—C17—C18—C190.9 (3)
N4—Ni2—N3—C21119.68 (17)C17—C18—C19—C200.3 (3)
O5—Ni2—N3—C2164.95 (16)C17—C18—C19—C21173.75 (18)
N5—Ni2—N3—C2142.0 (3)Ni1—O4—C20—C19157.92 (14)
O4—Ni2—N3—C22146.46 (13)Ni2—O4—C20—C1930.5 (2)
N8—Ni2—N3—C2235.69 (14)Ni1—O4—C20—C1524.0 (2)
N4—Ni2—N3—C2250.97 (14)Ni2—O4—C20—C15151.43 (13)
O5—Ni2—N3—C22124.40 (13)C18—C19—C20—O4179.20 (17)
N5—Ni2—N3—C22128.7 (2)C21—C19—C20—O45.3 (3)
O4—Ni2—N4—C24133.28 (13)C18—C19—C20—C151.1 (3)
N3—Ni2—N4—C2447.52 (13)C21—C19—C20—C15172.73 (17)
N8—Ni2—N4—C2452.57 (13)C16—C15—C20—O4179.12 (17)
N5—Ni2—N4—C24148.92 (13)O3—C15—C20—O40.6 (2)
N1—Ni1—N5—N624.62 (16)C16—C15—C20—C191.0 (3)
O2—Ni1—N5—N664.89 (15)O3—C15—C20—C19178.74 (16)
O4—Ni1—N5—N6153.75 (15)C22—N3—C21—C19169.38 (18)
N2—Ni1—N5—N6118.71 (15)Ni2—N3—C21—C191.2 (3)
O3—Ni1—N5—N6147.55 (14)C18—C19—C21—N3164.60 (19)
N1—Ni1—N5—Ni2165.32 (6)C20—C19—C21—N321.5 (3)
O2—Ni1—N5—Ni275.80 (6)C21—N3—C22—C23104.2 (2)
O4—Ni1—N5—Ni213.05 (6)Ni2—N3—C22—C2367.23 (18)
N2—Ni1—N5—Ni2100.60 (7)N3—C22—C23—C2656.9 (2)
O3—Ni1—N5—Ni26.86 (17)N3—C22—C23—C2467.2 (2)
O4—Ni2—N5—N6147.40 (17)N3—C22—C23—C25176.20 (16)
N3—Ni2—N5—N6165.54 (19)Ni2—N4—C24—C2361.01 (19)
N8—Ni2—N5—N629.93 (17)C26—C23—C24—N459.6 (2)
N4—Ni2—N5—N6116.80 (17)C25—C23—C24—N4179.07 (17)
O5—Ni2—N5—N658.06 (17)C22—C23—C24—N464.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O20.83 (1)1.80 (1)2.604 (2)161 (3)
N2—H22···N10i0.88 (1)2.32 (2)3.121 (2)153 (2)
N4—H42···N10i0.87 (1)2.19 (1)3.040 (2)165 (2)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni2(C13H19N2O2)2(N3)2(CH4O)]
Mr704.13
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.0907 (2), 18.5230 (4), 21.1162 (4)
β (°) 96.674 (2)
V3)3143.11 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.25
Crystal size (mm)0.24 × 0.18 × 0.18
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.753, 0.806
No. of measured, independent and
observed [I > 2σ(I)] reflections
21789, 7266, 6115
Rint0.031
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.076, 1.01
No. of reflections7266
No. of parameters417
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.44

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ni1—O22.0155 (14)Ni2—O42.0451 (13)
Ni1—O32.2589 (13)Ni2—O52.1364 (14)
Ni1—O42.0201 (13)Ni2—N32.0478 (16)
Ni1—N12.0166 (16)Ni2—N52.1505 (16)
Ni1—N22.0621 (17)Ni2—N42.0797 (16)
Ni1—N52.0862 (16)Ni2—N82.0715 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O20.83 (1)1.80 (1)2.604 (2)161 (3)
N2—H22···N10i0.88 (1)2.32 (2)3.121 (2)153 (2)
N4—H42···N10i0.87 (1)2.19 (1)3.040 (2)165 (2)
Symmetry code: (i) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: akbarghaemi@yahoo.com.

Acknowledgements

The authors gratefully acknowledge practical support of this study by the Islamic Azad University, Saveh Branch, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBiswas, R., Kar, P., Song, Y. & Ghosh, A. (2011). Dalton Trans. 40, 5324–5331.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGhaemi, A., Rayati, S., Fayyazi, K., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m993–m994.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKoner, R., Hazra, S., Fleck, M., Jana, A., Lucas, C. R. & Mohanta, S. (2009). Eur. J. Inorg. Chem. pp. 4982–4988.  Web of Science CSD CrossRef Google Scholar
First citationRibas, J., Escuer, A., Monfort, M., Vicente, R., Cortés, R., Lezama, L. & Rojo, T. (1999). Coord. Chem. Rev. 193–195, 1027–1068.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds