organic compounds
2,7-Dimethoxy-1-(2-naphthoyl)naphthalene
aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp
In the title molecule, C23H18O3, the dihedral angle between the two naphthalene ring systems is 80.44 (4)°. The mean plane of the bridging carbonyl C—C(=O)—C group makes a torsion angle of −68.55 (17)° with the naphthalene system of the 2,7-dimethoxynaphthalene unit and a torsion angle of −9.01 (19)° with the naphthalene ring system of the naphthoyl group. In the crystal, a weak C—H⋯O hydrogen bond occurs between the carbonyl O atom and an H atom of the naphthalene ring in the 2,7-dimethoxynaphthalene unit of a symmetry-related molecule.
Related literature
For electrophilic aromatic aroylation of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Kato et al. (2010); Muto et al. (2011, 2012); Nakaema et al. (2008); Tsumuki et al. (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536812033545/lh5502sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812033545/lh5502Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812033545/lh5502Isup3.cml
To a solution of 2-naphthoyl chloride (1.7 g, 8.9 mmol), AlCl3 (1.8 g, 13 mmol) and CH2Cl2 (40 ml), 2,7-dimethoxynaphthalene (1.5 g, 8.1 mmol) was added. The reaction mixture was stirred at 273 K for 6 h, then poured into ice-cold water (40 ml) and the aqueous layer was extracted with CHCl3 (20 ml × 3). The combined organic extracts were washed with 2 M aqueous NaOH (20 ml × 3) followed by washing with brine (20 ml × 3). The organic layer was dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake (83% yield). The crude product was purified by recrystallization from ethanol (36% isolated yield). Single crystals suitable for X-ray diffraction were obtained by repeated crystallization from ethanol.
Spectroscopic data: 1H NMR δ (300 MHz, CDCl3): 3.69 (3H, s), 3.78 (3H, s), 6.84 (1H, d, J = 2.4 Hz), 7.03 (1H, dd, J = 2.4, 9.0 Hz), 7.21 (1H, d, J = 9.0 Hz), 7.49 (1H, dt, J = 1.2, 7.5 Hz), 7.58 (1H, dt, J = 1.2, 7.5 Hz), 7.76 (1H, d, J = 9.0), 7.82 (1H, d, J = 9.0 Hz), 7.87–7.93 (3H, m), 8.07 (1H, dd, J = 1.2, 9.0 Hz), 8.24 (1H, d, J = 1.2 Hz) p.p.m.; 13C NMR δ (75 MHz, CDCl3): 55.14, 56.31, 102.07, 110.24, 117.12, 121.88, 124.38, 124.59, 126.52, 127.75, 128.39, 128.50, 129.66, 129.71, 131.00, 131.97, 132.60, 133.16, 135.45, 135.86, 155.02, 155.85, 198.12 p.p.m.; IR (KBr): 1660, 1624, 1511, 1465, 1253 cm-1; HRMS (m/z): [M+H]+ calcd. for C23H19O3, 343.1334, found, 343.1310; m.p. = 413.0–414.5 K
All H atoms were found in a difference Fourier map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uiso(H) = 1.2Ueq(C).
In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, 1,8-diaroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene homologues exemplified by 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), [2,7-dimethoxy-8-(2,4,6-trimethylbenzoyl)naphthalen-1-yl](2,4,6-trimethylphenyl)methanone (Muto et al., 2012) and [2,7-dimethoxy-8-(2-naphthoyl)naphthalen-1-yl](naphthalen-2-yl)methanone (Tsumuki et al., 2011). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are connected almost perpendicularly and oriented in opposite directions.
The crystal structures of 1-monoaroylated naphthalene compounds have essentially the same non-coplanar structure as the 1,8-diaroylated naphthalene compounds, e.g., (2,7-dimethoxynaphthalen-1-yl)(phenyl)methanone (Kato et al., 2010), (2,7-dimethoxynaphthalen-1-yl)(2,4,6-trimethylphenyl)methanone (Muto et al., 2011).
As a part of the course of our continuous study on the molecular structures of these type of homologous molecules, the
of title compound (I), 1-(2-naphthoyl)-2,7-dimethoxynaphthalene, is discussed in this paper.The molecular structure of (I) is displayed in Fig. 1. The interplanar angle between the two naphthalene ring systems (C1—C10 and C12—C21) is 80.44 (4)°. The torsion angle between the carbonyl group and the naphthalene ring of 2,7-dimethoxynaphthalene moiety [C10—C1—C11—O1 = -68.55 (17)°] is larger than that between the carbonyl group and naphthalene ring of naphthoyl group [O1—C11—C12—C21 = -9.01 (19)°]. The molecular packing of (I) is mainly stabilized by weak intermolecular hydrogen bonds between the oxygen atom of the carbonyl group and a hydrogen atom of the 2,7-dimethoxynaphthalene unit along b axis (Table 1 and Fig. 2).
For electrophilic aromatic aroylation of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Kato et al. (2010); Muto et al. (2011, 2012); Nakaema et al. (2008); Tsumuki et al. (2011).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C23H18O3 | F(000) = 720 |
Mr = 342.37 | Dx = 1.297 Mg m−3 |
Monoclinic, P21/n | Melting point = 413.0–414.5 K |
Hall symbol: -P 2yn | Cu Kα radiation, λ = 1.54187 Å |
a = 11.2483 (3) Å | Cell parameters from 19666 reflections |
b = 12.2309 (3) Å | θ = 3.5–68.2° |
c = 12.7494 (3) Å | µ = 0.68 mm−1 |
β = 91.936 (1)° | T = 193 K |
V = 1753.01 (7) Å3 | Block, colorless |
Z = 4 | 0.60 × 0.20 × 0.20 mm |
Rigaku R-AXIS RAPID diffractometer | 3178 independent reflections |
Radiation source: rotating anode | 2457 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
Detector resolution: 10.00 pixels mm-1 | θmax = 68.2°, θmin = 5.0° |
ω scans | h = −13→13 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −14→14 |
Tmin = 0.685, Tmax = 0.876 | l = −14→15 |
27593 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.043 | H-atom parameters constrained |
wR(F2) = 0.126 | w = 1/[σ2(Fo2) + (0.0802P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
3178 reflections | Δρmax = 0.20 e Å−3 |
238 parameters | Δρmin = −0.14 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0072 (7) |
C23H18O3 | V = 1753.01 (7) Å3 |
Mr = 342.37 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 11.2483 (3) Å | µ = 0.68 mm−1 |
b = 12.2309 (3) Å | T = 193 K |
c = 12.7494 (3) Å | 0.60 × 0.20 × 0.20 mm |
β = 91.936 (1)° |
Rigaku R-AXIS RAPID diffractometer | 3178 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 2457 reflections with I > 2σ(I) |
Tmin = 0.685, Tmax = 0.876 | Rint = 0.035 |
27593 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.126 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.20 e Å−3 |
3178 reflections | Δρmin = −0.14 e Å−3 |
238 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.57798 (9) | 1.01436 (8) | 0.35896 (8) | 0.0637 (3) | |
O2 | 0.54637 (10) | 0.73226 (8) | 0.39846 (9) | 0.0686 (3) | |
O3 | 0.65809 (9) | 1.09739 (8) | −0.03426 (8) | 0.0623 (3) | |
C1 | 0.58205 (11) | 0.85111 (10) | 0.26051 (11) | 0.0469 (3) | |
C2 | 0.59439 (12) | 0.74753 (11) | 0.30201 (12) | 0.0549 (4) | |
C3 | 0.65526 (13) | 0.66529 (12) | 0.24865 (14) | 0.0614 (4) | |
H3 | 0.6652 | 0.5949 | 0.2791 | 0.074* | |
C4 | 0.70002 (12) | 0.68740 (12) | 0.15252 (14) | 0.0600 (4) | |
H4 | 0.7400 | 0.6312 | 0.1163 | 0.072* | |
C5 | 0.68833 (11) | 0.79121 (11) | 0.10605 (12) | 0.0521 (4) | |
C6 | 0.73236 (13) | 0.81473 (13) | 0.00565 (13) | 0.0599 (4) | |
H6 | 0.7718 | 0.7590 | −0.0317 | 0.072* | |
C7 | 0.71939 (13) | 0.91483 (13) | −0.03809 (13) | 0.0617 (4) | |
H7 | 0.7483 | 0.9284 | −0.1060 | 0.074* | |
C8 | 0.66278 (12) | 0.99956 (11) | 0.01716 (12) | 0.0522 (4) | |
C9 | 0.61945 (11) | 0.98103 (11) | 0.11472 (11) | 0.0469 (3) | |
H9 | 0.5824 | 1.0387 | 0.1514 | 0.056* | |
C10 | 0.62990 (11) | 0.87576 (10) | 0.16099 (11) | 0.0461 (3) | |
C11 | 0.52073 (12) | 0.93829 (10) | 0.32143 (10) | 0.0475 (3) | |
C12 | 0.38946 (11) | 0.93372 (10) | 0.33175 (10) | 0.0451 (3) | |
C13 | 0.32116 (12) | 0.86080 (10) | 0.27471 (10) | 0.0474 (3) | |
H13 | 0.3589 | 0.8086 | 0.2318 | 0.057* | |
C14 | 0.19544 (12) | 0.86165 (11) | 0.27837 (11) | 0.0501 (4) | |
C15 | 0.12365 (14) | 0.78729 (13) | 0.21902 (13) | 0.0640 (4) | |
H15 | 0.1602 | 0.7347 | 0.1757 | 0.077* | |
C16 | 0.00259 (15) | 0.79033 (15) | 0.22335 (15) | 0.0744 (5) | |
H16 | −0.0445 | 0.7398 | 0.1835 | 0.089* | |
C17 | −0.05224 (15) | 0.86780 (15) | 0.28653 (15) | 0.0754 (5) | |
H17 | −0.1366 | 0.8704 | 0.2882 | 0.091* | |
C18 | 0.01400 (14) | 0.93934 (13) | 0.34559 (15) | 0.0689 (5) | |
H18 | −0.0246 | 0.9908 | 0.3887 | 0.083* | |
C19 | 0.14025 (12) | 0.93802 (11) | 0.34363 (12) | 0.0539 (4) | |
C20 | 0.21309 (14) | 1.01101 (11) | 0.40415 (12) | 0.0596 (4) | |
H20 | 0.1771 | 1.0618 | 0.4497 | 0.071* | |
C21 | 0.33359 (13) | 1.00932 (10) | 0.39785 (11) | 0.0539 (4) | |
H21 | 0.3806 | 1.0594 | 0.4383 | 0.065* | |
C22 | 0.53909 (15) | 0.62372 (14) | 0.43784 (16) | 0.0768 (5) | |
H22A | 0.4942 | 0.6238 | 0.5024 | 0.092* | |
H22B | 0.6194 | 0.5956 | 0.4529 | 0.092* | |
H22C | 0.4986 | 0.5771 | 0.3853 | 0.092* | |
C23 | 0.60777 (14) | 1.18752 (12) | 0.01878 (13) | 0.0630 (4) | |
H23A | 0.6071 | 1.2518 | −0.0271 | 0.076* | |
H23B | 0.6554 | 1.2032 | 0.0828 | 0.076* | |
H23C | 0.5262 | 1.1697 | 0.0373 | 0.076* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0661 (7) | 0.0625 (6) | 0.0624 (7) | −0.0174 (5) | 0.0026 (5) | −0.0102 (5) |
O2 | 0.0813 (7) | 0.0587 (6) | 0.0657 (8) | 0.0023 (5) | 0.0033 (6) | 0.0205 (5) |
O3 | 0.0723 (7) | 0.0621 (6) | 0.0529 (7) | −0.0069 (5) | 0.0077 (5) | 0.0067 (5) |
C1 | 0.0420 (7) | 0.0463 (7) | 0.0520 (8) | −0.0019 (5) | −0.0043 (6) | 0.0017 (6) |
C2 | 0.0496 (8) | 0.0526 (8) | 0.0618 (10) | −0.0033 (6) | −0.0071 (7) | 0.0077 (7) |
C3 | 0.0512 (8) | 0.0457 (8) | 0.0864 (12) | 0.0036 (6) | −0.0109 (8) | 0.0049 (8) |
C4 | 0.0464 (8) | 0.0503 (8) | 0.0826 (12) | 0.0051 (6) | −0.0065 (8) | −0.0095 (8) |
C5 | 0.0396 (7) | 0.0525 (8) | 0.0638 (10) | −0.0007 (6) | −0.0039 (6) | −0.0090 (7) |
C6 | 0.0500 (8) | 0.0650 (9) | 0.0650 (11) | −0.0008 (6) | 0.0069 (7) | −0.0196 (8) |
C7 | 0.0572 (9) | 0.0729 (10) | 0.0554 (10) | −0.0071 (7) | 0.0090 (7) | −0.0105 (8) |
C8 | 0.0488 (7) | 0.0554 (8) | 0.0524 (9) | −0.0073 (6) | 0.0010 (6) | −0.0007 (7) |
C9 | 0.0446 (7) | 0.0483 (7) | 0.0478 (8) | −0.0017 (5) | 0.0007 (6) | −0.0023 (6) |
C10 | 0.0376 (6) | 0.0486 (7) | 0.0516 (8) | −0.0021 (5) | −0.0038 (6) | −0.0031 (6) |
C11 | 0.0561 (8) | 0.0465 (7) | 0.0396 (8) | −0.0056 (6) | −0.0024 (6) | 0.0046 (6) |
C12 | 0.0531 (7) | 0.0418 (7) | 0.0405 (8) | −0.0005 (5) | 0.0011 (6) | 0.0063 (6) |
C13 | 0.0540 (8) | 0.0441 (7) | 0.0444 (8) | 0.0008 (6) | 0.0038 (6) | 0.0027 (6) |
C14 | 0.0515 (8) | 0.0496 (7) | 0.0491 (8) | −0.0004 (6) | 0.0002 (6) | 0.0092 (6) |
C15 | 0.0572 (9) | 0.0636 (9) | 0.0710 (11) | −0.0059 (7) | −0.0031 (8) | −0.0011 (8) |
C16 | 0.0567 (9) | 0.0765 (11) | 0.0892 (13) | −0.0107 (8) | −0.0086 (9) | 0.0097 (10) |
C17 | 0.0506 (9) | 0.0790 (11) | 0.0964 (14) | 0.0009 (8) | −0.0017 (9) | 0.0259 (11) |
C18 | 0.0591 (9) | 0.0680 (10) | 0.0802 (12) | 0.0134 (8) | 0.0125 (8) | 0.0169 (9) |
C19 | 0.0561 (8) | 0.0493 (8) | 0.0566 (9) | 0.0057 (6) | 0.0055 (7) | 0.0125 (7) |
C20 | 0.0692 (10) | 0.0500 (8) | 0.0602 (10) | 0.0099 (7) | 0.0124 (8) | −0.0014 (7) |
C21 | 0.0672 (9) | 0.0435 (7) | 0.0511 (9) | −0.0003 (6) | 0.0027 (7) | 0.0006 (6) |
C22 | 0.0661 (10) | 0.0666 (10) | 0.0976 (14) | −0.0009 (8) | 0.0030 (9) | 0.0336 (10) |
C23 | 0.0707 (10) | 0.0544 (8) | 0.0638 (10) | −0.0056 (7) | −0.0012 (8) | 0.0080 (7) |
O1—C11 | 1.2200 (15) | C12—C21 | 1.4128 (18) |
O2—C2 | 1.3724 (18) | C13—C14 | 1.4165 (19) |
O2—C22 | 1.4227 (18) | C13—H13 | 0.9500 |
O3—C8 | 1.3645 (16) | C14—C19 | 1.4090 (19) |
O3—C23 | 1.4209 (18) | C14—C15 | 1.418 (2) |
C1—C2 | 1.3781 (18) | C15—C16 | 1.365 (2) |
C1—C10 | 1.4271 (19) | C15—H15 | 0.9500 |
C1—C11 | 1.5008 (18) | C16—C17 | 1.400 (2) |
C2—C3 | 1.405 (2) | C16—H16 | 0.9500 |
C3—C4 | 1.368 (2) | C17—C18 | 1.360 (2) |
C3—H3 | 0.9500 | C17—H17 | 0.9500 |
C4—C5 | 1.405 (2) | C18—C19 | 1.421 (2) |
C4—H4 | 0.9500 | C18—H18 | 0.9500 |
C5—C6 | 1.418 (2) | C19—C20 | 1.422 (2) |
C5—C10 | 1.4224 (18) | C20—C21 | 1.361 (2) |
C6—C7 | 1.351 (2) | C20—H20 | 0.9500 |
C6—H6 | 0.9500 | C21—H21 | 0.9500 |
C7—C8 | 1.416 (2) | C22—H22A | 0.9800 |
C7—H7 | 0.9500 | C22—H22B | 0.9800 |
C8—C9 | 1.3699 (19) | C22—H22C | 0.9800 |
C9—C10 | 1.4195 (18) | C23—H23A | 0.9800 |
C9—H9 | 0.9500 | C23—H23B | 0.9800 |
C11—C12 | 1.4879 (17) | C23—H23C | 0.9800 |
C12—C13 | 1.3699 (18) | ||
C2—O2—C22 | 118.18 (13) | C12—C13—H13 | 119.3 |
C8—O3—C23 | 117.46 (11) | C14—C13—H13 | 119.3 |
C2—C1—C10 | 119.96 (13) | C19—C14—C13 | 118.98 (13) |
C2—C1—C11 | 119.77 (13) | C19—C14—C15 | 119.08 (14) |
C10—C1—C11 | 120.25 (11) | C13—C14—C15 | 121.93 (13) |
O2—C2—C1 | 115.56 (13) | C16—C15—C14 | 120.79 (16) |
O2—C2—C3 | 123.32 (13) | C16—C15—H15 | 119.6 |
C1—C2—C3 | 121.10 (14) | C14—C15—H15 | 119.6 |
C4—C3—C2 | 119.50 (14) | C15—C16—C17 | 120.06 (16) |
C4—C3—H3 | 120.2 | C15—C16—H16 | 120.0 |
C2—C3—H3 | 120.2 | C17—C16—H16 | 120.0 |
C3—C4—C5 | 121.62 (14) | C18—C17—C16 | 120.67 (16) |
C3—C4—H4 | 119.2 | C18—C17—H17 | 119.7 |
C5—C4—H4 | 119.2 | C16—C17—H17 | 119.7 |
C4—C5—C6 | 122.24 (13) | C17—C18—C19 | 120.80 (16) |
C4—C5—C10 | 119.17 (14) | C17—C18—H18 | 119.6 |
C6—C5—C10 | 118.59 (13) | C19—C18—H18 | 119.6 |
C7—C6—C5 | 121.36 (14) | C14—C19—C18 | 118.57 (14) |
C7—C6—H6 | 119.3 | C14—C19—C20 | 118.65 (13) |
C5—C6—H6 | 119.3 | C18—C19—C20 | 122.77 (14) |
C6—C7—C8 | 120.12 (15) | C21—C20—C19 | 121.03 (14) |
C6—C7—H7 | 119.9 | C21—C20—H20 | 119.5 |
C8—C7—H7 | 119.9 | C19—C20—H20 | 119.5 |
O3—C8—C9 | 124.89 (13) | C20—C21—C12 | 120.61 (14) |
O3—C8—C7 | 114.42 (13) | C20—C21—H21 | 119.7 |
C9—C8—C7 | 120.68 (13) | C12—C21—H21 | 119.7 |
C8—C9—C10 | 120.02 (12) | O2—C22—H22A | 109.5 |
C8—C9—H9 | 120.0 | O2—C22—H22B | 109.5 |
C10—C9—H9 | 120.0 | H22A—C22—H22B | 109.5 |
C9—C10—C5 | 119.21 (13) | O2—C22—H22C | 109.5 |
C9—C10—C1 | 122.19 (12) | H22A—C22—H22C | 109.5 |
C5—C10—C1 | 118.60 (12) | H22B—C22—H22C | 109.5 |
O1—C11—C12 | 120.41 (12) | O3—C23—H23A | 109.5 |
O1—C11—C1 | 119.94 (12) | O3—C23—H23B | 109.5 |
C12—C11—C1 | 119.59 (11) | H23A—C23—H23B | 109.5 |
C13—C12—C21 | 119.34 (12) | O3—C23—H23C | 109.5 |
C13—C12—C11 | 121.20 (12) | H23A—C23—H23C | 109.5 |
C21—C12—C11 | 119.40 (12) | H23B—C23—H23C | 109.5 |
C12—C13—C14 | 121.36 (12) | ||
C22—O2—C2—C1 | 170.08 (12) | C11—C1—C10—C5 | 179.43 (11) |
C22—O2—C2—C3 | −11.5 (2) | C2—C1—C11—O1 | 110.03 (15) |
C10—C1—C2—O2 | 179.41 (11) | C10—C1—C11—O1 | −68.54 (17) |
C11—C1—C2—O2 | 0.83 (18) | C2—C1—C11—C12 | −72.56 (16) |
C10—C1—C2—C3 | 1.0 (2) | C10—C1—C11—C12 | 108.87 (14) |
C11—C1—C2—C3 | −177.59 (12) | O1—C11—C12—C13 | 167.99 (12) |
O2—C2—C3—C4 | 179.77 (13) | C1—C11—C12—C13 | −9.41 (18) |
C1—C2—C3—C4 | −1.9 (2) | O1—C11—C12—C21 | −9.02 (18) |
C2—C3—C4—C5 | 1.0 (2) | C1—C11—C12—C21 | 173.58 (12) |
C3—C4—C5—C6 | −178.83 (13) | C21—C12—C13—C14 | 1.80 (19) |
C3—C4—C5—C10 | 0.8 (2) | C11—C12—C13—C14 | −175.22 (11) |
C4—C5—C6—C7 | 179.45 (13) | C12—C13—C14—C19 | −1.14 (19) |
C10—C5—C6—C7 | −0.2 (2) | C12—C13—C14—C15 | 179.42 (13) |
C5—C6—C7—C8 | 1.2 (2) | C19—C14—C15—C16 | 1.0 (2) |
C23—O3—C8—C9 | 2.04 (19) | C13—C14—C15—C16 | −179.52 (14) |
C23—O3—C8—C7 | −176.96 (12) | C14—C15—C16—C17 | 0.3 (3) |
C6—C7—C8—O3 | 178.34 (13) | C15—C16—C17—C18 | −1.2 (3) |
C6—C7—C8—C9 | −0.7 (2) | C16—C17—C18—C19 | 0.7 (2) |
O3—C8—C9—C10 | −179.62 (12) | C13—C14—C19—C18 | 179.07 (13) |
C7—C8—C9—C10 | −0.68 (19) | C15—C14—C19—C18 | −1.5 (2) |
C8—C9—C10—C5 | 1.59 (18) | C13—C14—C19—C20 | −0.49 (19) |
C8—C9—C10—C1 | −177.45 (11) | C15—C14—C19—C20 | 178.97 (13) |
C4—C5—C10—C9 | 179.17 (12) | C17—C18—C19—C14 | 0.6 (2) |
C6—C5—C10—C9 | −1.15 (18) | C17—C18—C19—C20 | −179.86 (14) |
C4—C5—C10—C1 | −1.76 (18) | C14—C19—C20—C21 | 1.5 (2) |
C6—C5—C10—C1 | 177.93 (12) | C18—C19—C20—C21 | −178.07 (14) |
C2—C1—C10—C9 | 179.90 (12) | C19—C20—C21—C12 | −0.8 (2) |
C11—C1—C10—C9 | −1.53 (19) | C13—C12—C21—C20 | −0.8 (2) |
C2—C1—C10—C5 | 0.86 (18) | C11—C12—C21—C20 | 176.26 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O1i | 0.95 | 2.51 | 3.2804 (17) | 138 |
Symmetry code: (i) −x+3/2, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C23H18O3 |
Mr | 342.37 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 193 |
a, b, c (Å) | 11.2483 (3), 12.2309 (3), 12.7494 (3) |
β (°) | 91.936 (1) |
V (Å3) | 1753.01 (7) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.68 |
Crystal size (mm) | 0.60 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.685, 0.876 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27593, 3178, 2457 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.126, 1.07 |
No. of reflections | 3178 |
No. of parameters | 238 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.14 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O1i | 0.95 | 2.51 | 3.2804 (17) | 138 |
Symmetry code: (i) −x+3/2, y−1/2, −z+1/2. |
Acknowledgements
This work was partially supported by an Iron and Steel Institute of Japan (ISIJ) Research Promotion Grant.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Kato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659. Web of Science CSD CrossRef IUCr Journals Google Scholar
Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2813. Web of Science CSD CrossRef IUCr Journals Google Scholar
Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2012). Acta Cryst. E68, o23. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284. Web of Science CrossRef CAS Google Scholar
Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915. Web of Science CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tsumuki, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2095. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, 1,8-diaroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene homologues exemplified by 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), [2,7-dimethoxy-8-(2,4,6-trimethylbenzoyl)naphthalen-1-yl](2,4,6-trimethylphenyl)methanone (Muto et al., 2012) and [2,7-dimethoxy-8-(2-naphthoyl)naphthalen-1-yl](naphthalen-2-yl)methanone (Tsumuki et al., 2011). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are connected almost perpendicularly and oriented in opposite directions.
The crystal structures of 1-monoaroylated naphthalene compounds have essentially the same non-coplanar structure as the 1,8-diaroylated naphthalene compounds, e.g., (2,7-dimethoxynaphthalen-1-yl)(phenyl)methanone (Kato et al., 2010), (2,7-dimethoxynaphthalen-1-yl)(2,4,6-trimethylphenyl)methanone (Muto et al., 2011).
As a part of the course of our continuous study on the molecular structures of these type of homologous molecules, the crystal structure of title compound (I), 1-(2-naphthoyl)-2,7-dimethoxynaphthalene, is discussed in this paper.
The molecular structure of (I) is displayed in Fig. 1. The interplanar angle between the two naphthalene ring systems (C1—C10 and C12—C21) is 80.44 (4)°. The torsion angle between the carbonyl group and the naphthalene ring of 2,7-dimethoxynaphthalene moiety [C10—C1—C11—O1 = -68.55 (17)°] is larger than that between the carbonyl group and naphthalene ring of naphthoyl group [O1—C11—C12—C21 = -9.01 (19)°]. The molecular packing of (I) is mainly stabilized by weak intermolecular hydrogen bonds between the oxygen atom of the carbonyl group and a hydrogen atom of the 2,7-dimethoxynaphthalene unit along b axis (Table 1 and Fig. 2).