organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,7-Dimeth­­oxy-1-(2-naphtho­yl)naph­thalene

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 20 July 2012; accepted 25 July 2012; online 28 July 2012)

In the title mol­ecule, C23H18O3, the dihedral angle between the two naphthalene ring systems is 80.44 (4)°. The mean plane of the bridging carbonyl C—C(=O)—C group makes a torsion angle of −68.55 (17)° with the naphthalene system of the 2,7-dimeth­oxy­naphthalene unit and a torsion angle of −9.01 (19)° with the naphthalene ring system of the naphthoyl group. In the crystal, a weak C—H⋯O hydrogen bond occurs between the carbonyl O atom and an H atom of the naphthalene ring in the 2,7-dimeth­oxy­naphthalene unit of a symmetry-related mol­ecule.

Related literature

For electrophilic aromatic aroylation of naphthalene derivatives, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). For the structures of closely related compounds, see: Kato et al. (2010[Kato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.]); Muto et al. (2011[Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2813.], 2012[Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2012). Acta Cryst. E68, o23.]); Nakaema et al. (2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]); Tsumuki et al. (2011[Tsumuki, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2095.]).

[Scheme 1]

Experimental

Crystal data
  • C23H18O3

  • Mr = 342.37

  • Monoclinic, P 21 /n

  • a = 11.2483 (3) Å

  • b = 12.2309 (3) Å

  • c = 12.7494 (3) Å

  • β = 91.936 (1)°

  • V = 1753.01 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.68 mm−1

  • T = 193 K

  • 0.60 × 0.20 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.685, Tmax = 0.876

  • 27593 measured reflections

  • 3178 independent reflections

  • 2457 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.126

  • S = 1.07

  • 3178 reflections

  • 238 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.95 2.51 3.2804 (17) 138
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, 1,8-diaroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene homologues exemplified by 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), [2,7-dimethoxy-8-(2,4,6-trimethylbenzoyl)naphthalen-1-yl](2,4,6-trimethylphenyl)methanone (Muto et al., 2012) and [2,7-dimethoxy-8-(2-naphthoyl)naphthalen-1-yl](naphthalen-2-yl)methanone (Tsumuki et al., 2011). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are connected almost perpendicularly and oriented in opposite directions.

The crystal structures of 1-monoaroylated naphthalene compounds have essentially the same non-coplanar structure as the 1,8-diaroylated naphthalene compounds, e.g., (2,7-dimethoxynaphthalen-1-yl)(phenyl)methanone (Kato et al., 2010), (2,7-dimethoxynaphthalen-1-yl)(2,4,6-trimethylphenyl)methanone (Muto et al., 2011).

As a part of the course of our continuous study on the molecular structures of these type of homologous molecules, the crystal structure of title compound (I), 1-(2-naphthoyl)-2,7-dimethoxynaphthalene, is discussed in this paper.

The molecular structure of (I) is displayed in Fig. 1. The interplanar angle between the two naphthalene ring systems (C1—C10 and C12—C21) is 80.44 (4)°. The torsion angle between the carbonyl group and the naphthalene ring of 2,7-dimethoxynaphthalene moiety [C10—C1—C11—O1 = -68.55 (17)°] is larger than that between the carbonyl group and naphthalene ring of naphthoyl group [O1—C11—C12—C21 = -9.01 (19)°]. The molecular packing of (I) is mainly stabilized by weak intermolecular hydrogen bonds between the oxygen atom of the carbonyl group and a hydrogen atom of the 2,7-dimethoxynaphthalene unit along b axis (Table 1 and Fig. 2).

Related literature top

For electrophilic aromatic aroylation of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Kato et al. (2010); Muto et al. (2011, 2012); Nakaema et al. (2008); Tsumuki et al. (2011).

Experimental top

To a solution of 2-naphthoyl chloride (1.7 g, 8.9 mmol), AlCl3 (1.8 g, 13 mmol) and CH2Cl2 (40 ml), 2,7-dimethoxynaphthalene (1.5 g, 8.1 mmol) was added. The reaction mixture was stirred at 273 K for 6 h, then poured into ice-cold water (40 ml) and the aqueous layer was extracted with CHCl3 (20 ml × 3). The combined organic extracts were washed with 2 M aqueous NaOH (20 ml × 3) followed by washing with brine (20 ml × 3). The organic layer was dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake (83% yield). The crude product was purified by recrystallization from ethanol (36% isolated yield). Single crystals suitable for X-ray diffraction were obtained by repeated crystallization from ethanol.

Spectroscopic data: 1H NMR δ (300 MHz, CDCl3): 3.69 (3H, s), 3.78 (3H, s), 6.84 (1H, d, J = 2.4 Hz), 7.03 (1H, dd, J = 2.4, 9.0 Hz), 7.21 (1H, d, J = 9.0 Hz), 7.49 (1H, dt, J = 1.2, 7.5 Hz), 7.58 (1H, dt, J = 1.2, 7.5 Hz), 7.76 (1H, d, J = 9.0), 7.82 (1H, d, J = 9.0 Hz), 7.87–7.93 (3H, m), 8.07 (1H, dd, J = 1.2, 9.0 Hz), 8.24 (1H, d, J = 1.2 Hz) p.p.m.; 13C NMR δ (75 MHz, CDCl3): 55.14, 56.31, 102.07, 110.24, 117.12, 121.88, 124.38, 124.59, 126.52, 127.75, 128.39, 128.50, 129.66, 129.71, 131.00, 131.97, 132.60, 133.16, 135.45, 135.86, 155.02, 155.85, 198.12 p.p.m.; IR (KBr): 1660, 1624, 1511, 1465, 1253 cm-1; HRMS (m/z): [M+H]+ calcd. for C23H19O3, 343.1334, found, 343.1310; m.p. = 413.0–414.5 K

Refinement top

All H atoms were found in a difference Fourier map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uiso(H) = 1.2Ueq(C).

Structure description top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, 1,8-diaroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene homologues exemplified by 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), [2,7-dimethoxy-8-(2,4,6-trimethylbenzoyl)naphthalen-1-yl](2,4,6-trimethylphenyl)methanone (Muto et al., 2012) and [2,7-dimethoxy-8-(2-naphthoyl)naphthalen-1-yl](naphthalen-2-yl)methanone (Tsumuki et al., 2011). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are connected almost perpendicularly and oriented in opposite directions.

The crystal structures of 1-monoaroylated naphthalene compounds have essentially the same non-coplanar structure as the 1,8-diaroylated naphthalene compounds, e.g., (2,7-dimethoxynaphthalen-1-yl)(phenyl)methanone (Kato et al., 2010), (2,7-dimethoxynaphthalen-1-yl)(2,4,6-trimethylphenyl)methanone (Muto et al., 2011).

As a part of the course of our continuous study on the molecular structures of these type of homologous molecules, the crystal structure of title compound (I), 1-(2-naphthoyl)-2,7-dimethoxynaphthalene, is discussed in this paper.

The molecular structure of (I) is displayed in Fig. 1. The interplanar angle between the two naphthalene ring systems (C1—C10 and C12—C21) is 80.44 (4)°. The torsion angle between the carbonyl group and the naphthalene ring of 2,7-dimethoxynaphthalene moiety [C10—C1—C11—O1 = -68.55 (17)°] is larger than that between the carbonyl group and naphthalene ring of naphthoyl group [O1—C11—C12—C21 = -9.01 (19)°]. The molecular packing of (I) is mainly stabilized by weak intermolecular hydrogen bonds between the oxygen atom of the carbonyl group and a hydrogen atom of the 2,7-dimethoxynaphthalene unit along b axis (Table 1 and Fig. 2).

For electrophilic aromatic aroylation of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Kato et al. (2010); Muto et al. (2011, 2012); Nakaema et al. (2008); Tsumuki et al. (2011).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of compound (I) with C—H···O interactions shown as dashed lines [symmetry code: (i) -x+2/3, y-1/2, -z+1/2].
2,7-Dimethoxy-1-(2-naphthoyl)naphthalene top
Crystal data top
C23H18O3F(000) = 720
Mr = 342.37Dx = 1.297 Mg m3
Monoclinic, P21/nMelting point = 413.0–414.5 K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54187 Å
a = 11.2483 (3) ÅCell parameters from 19666 reflections
b = 12.2309 (3) Åθ = 3.5–68.2°
c = 12.7494 (3) ŵ = 0.68 mm1
β = 91.936 (1)°T = 193 K
V = 1753.01 (7) Å3Block, colorless
Z = 40.60 × 0.20 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3178 independent reflections
Radiation source: rotating anode2457 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 5.0°
ω scansh = 1313
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1414
Tmin = 0.685, Tmax = 0.876l = 1415
27593 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0802P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3178 reflectionsΔρmax = 0.20 e Å3
238 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0072 (7)
Crystal data top
C23H18O3V = 1753.01 (7) Å3
Mr = 342.37Z = 4
Monoclinic, P21/nCu Kα radiation
a = 11.2483 (3) ŵ = 0.68 mm1
b = 12.2309 (3) ÅT = 193 K
c = 12.7494 (3) Å0.60 × 0.20 × 0.20 mm
β = 91.936 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3178 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2457 reflections with I > 2σ(I)
Tmin = 0.685, Tmax = 0.876Rint = 0.035
27593 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.07Δρmax = 0.20 e Å3
3178 reflectionsΔρmin = 0.14 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.57798 (9)1.01436 (8)0.35896 (8)0.0637 (3)
O20.54637 (10)0.73226 (8)0.39846 (9)0.0686 (3)
O30.65809 (9)1.09739 (8)0.03426 (8)0.0623 (3)
C10.58205 (11)0.85111 (10)0.26051 (11)0.0469 (3)
C20.59439 (12)0.74753 (11)0.30201 (12)0.0549 (4)
C30.65526 (13)0.66529 (12)0.24865 (14)0.0614 (4)
H30.66520.59490.27910.074*
C40.70002 (12)0.68740 (12)0.15252 (14)0.0600 (4)
H40.74000.63120.11630.072*
C50.68833 (11)0.79121 (11)0.10605 (12)0.0521 (4)
C60.73236 (13)0.81473 (13)0.00565 (13)0.0599 (4)
H60.77180.75900.03170.072*
C70.71939 (13)0.91483 (13)0.03809 (13)0.0617 (4)
H70.74830.92840.10600.074*
C80.66278 (12)0.99956 (11)0.01716 (12)0.0522 (4)
C90.61945 (11)0.98103 (11)0.11472 (11)0.0469 (3)
H90.58241.03870.15140.056*
C100.62990 (11)0.87576 (10)0.16099 (11)0.0461 (3)
C110.52073 (12)0.93829 (10)0.32143 (10)0.0475 (3)
C120.38946 (11)0.93372 (10)0.33175 (10)0.0451 (3)
C130.32116 (12)0.86080 (10)0.27471 (10)0.0474 (3)
H130.35890.80860.23180.057*
C140.19544 (12)0.86165 (11)0.27837 (11)0.0501 (4)
C150.12365 (14)0.78729 (13)0.21902 (13)0.0640 (4)
H150.16020.73470.17570.077*
C160.00259 (15)0.79033 (15)0.22335 (15)0.0744 (5)
H160.04450.73980.18350.089*
C170.05224 (15)0.86780 (15)0.28653 (15)0.0754 (5)
H170.13660.87040.28820.091*
C180.01400 (14)0.93934 (13)0.34559 (15)0.0689 (5)
H180.02460.99080.38870.083*
C190.14025 (12)0.93802 (11)0.34363 (12)0.0539 (4)
C200.21309 (14)1.01101 (11)0.40415 (12)0.0596 (4)
H200.17711.06180.44970.071*
C210.33359 (13)1.00932 (10)0.39785 (11)0.0539 (4)
H210.38061.05940.43830.065*
C220.53909 (15)0.62372 (14)0.43784 (16)0.0768 (5)
H22A0.49420.62380.50240.092*
H22B0.61940.59560.45290.092*
H22C0.49860.57710.38530.092*
C230.60777 (14)1.18752 (12)0.01878 (13)0.0630 (4)
H23A0.60711.25180.02710.076*
H23B0.65541.20320.08280.076*
H23C0.52621.16970.03730.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0661 (7)0.0625 (6)0.0624 (7)0.0174 (5)0.0026 (5)0.0102 (5)
O20.0813 (7)0.0587 (6)0.0657 (8)0.0023 (5)0.0033 (6)0.0205 (5)
O30.0723 (7)0.0621 (6)0.0529 (7)0.0069 (5)0.0077 (5)0.0067 (5)
C10.0420 (7)0.0463 (7)0.0520 (8)0.0019 (5)0.0043 (6)0.0017 (6)
C20.0496 (8)0.0526 (8)0.0618 (10)0.0033 (6)0.0071 (7)0.0077 (7)
C30.0512 (8)0.0457 (8)0.0864 (12)0.0036 (6)0.0109 (8)0.0049 (8)
C40.0464 (8)0.0503 (8)0.0826 (12)0.0051 (6)0.0065 (8)0.0095 (8)
C50.0396 (7)0.0525 (8)0.0638 (10)0.0007 (6)0.0039 (6)0.0090 (7)
C60.0500 (8)0.0650 (9)0.0650 (11)0.0008 (6)0.0069 (7)0.0196 (8)
C70.0572 (9)0.0729 (10)0.0554 (10)0.0071 (7)0.0090 (7)0.0105 (8)
C80.0488 (7)0.0554 (8)0.0524 (9)0.0073 (6)0.0010 (6)0.0007 (7)
C90.0446 (7)0.0483 (7)0.0478 (8)0.0017 (5)0.0007 (6)0.0023 (6)
C100.0376 (6)0.0486 (7)0.0516 (8)0.0021 (5)0.0038 (6)0.0031 (6)
C110.0561 (8)0.0465 (7)0.0396 (8)0.0056 (6)0.0024 (6)0.0046 (6)
C120.0531 (7)0.0418 (7)0.0405 (8)0.0005 (5)0.0011 (6)0.0063 (6)
C130.0540 (8)0.0441 (7)0.0444 (8)0.0008 (6)0.0038 (6)0.0027 (6)
C140.0515 (8)0.0496 (7)0.0491 (8)0.0004 (6)0.0002 (6)0.0092 (6)
C150.0572 (9)0.0636 (9)0.0710 (11)0.0059 (7)0.0031 (8)0.0011 (8)
C160.0567 (9)0.0765 (11)0.0892 (13)0.0107 (8)0.0086 (9)0.0097 (10)
C170.0506 (9)0.0790 (11)0.0964 (14)0.0009 (8)0.0017 (9)0.0259 (11)
C180.0591 (9)0.0680 (10)0.0802 (12)0.0134 (8)0.0125 (8)0.0169 (9)
C190.0561 (8)0.0493 (8)0.0566 (9)0.0057 (6)0.0055 (7)0.0125 (7)
C200.0692 (10)0.0500 (8)0.0602 (10)0.0099 (7)0.0124 (8)0.0014 (7)
C210.0672 (9)0.0435 (7)0.0511 (9)0.0003 (6)0.0027 (7)0.0006 (6)
C220.0661 (10)0.0666 (10)0.0976 (14)0.0009 (8)0.0030 (9)0.0336 (10)
C230.0707 (10)0.0544 (8)0.0638 (10)0.0056 (7)0.0012 (8)0.0080 (7)
Geometric parameters (Å, º) top
O1—C111.2200 (15)C12—C211.4128 (18)
O2—C21.3724 (18)C13—C141.4165 (19)
O2—C221.4227 (18)C13—H130.9500
O3—C81.3645 (16)C14—C191.4090 (19)
O3—C231.4209 (18)C14—C151.418 (2)
C1—C21.3781 (18)C15—C161.365 (2)
C1—C101.4271 (19)C15—H150.9500
C1—C111.5008 (18)C16—C171.400 (2)
C2—C31.405 (2)C16—H160.9500
C3—C41.368 (2)C17—C181.360 (2)
C3—H30.9500C17—H170.9500
C4—C51.405 (2)C18—C191.421 (2)
C4—H40.9500C18—H180.9500
C5—C61.418 (2)C19—C201.422 (2)
C5—C101.4224 (18)C20—C211.361 (2)
C6—C71.351 (2)C20—H200.9500
C6—H60.9500C21—H210.9500
C7—C81.416 (2)C22—H22A0.9800
C7—H70.9500C22—H22B0.9800
C8—C91.3699 (19)C22—H22C0.9800
C9—C101.4195 (18)C23—H23A0.9800
C9—H90.9500C23—H23B0.9800
C11—C121.4879 (17)C23—H23C0.9800
C12—C131.3699 (18)
C2—O2—C22118.18 (13)C12—C13—H13119.3
C8—O3—C23117.46 (11)C14—C13—H13119.3
C2—C1—C10119.96 (13)C19—C14—C13118.98 (13)
C2—C1—C11119.77 (13)C19—C14—C15119.08 (14)
C10—C1—C11120.25 (11)C13—C14—C15121.93 (13)
O2—C2—C1115.56 (13)C16—C15—C14120.79 (16)
O2—C2—C3123.32 (13)C16—C15—H15119.6
C1—C2—C3121.10 (14)C14—C15—H15119.6
C4—C3—C2119.50 (14)C15—C16—C17120.06 (16)
C4—C3—H3120.2C15—C16—H16120.0
C2—C3—H3120.2C17—C16—H16120.0
C3—C4—C5121.62 (14)C18—C17—C16120.67 (16)
C3—C4—H4119.2C18—C17—H17119.7
C5—C4—H4119.2C16—C17—H17119.7
C4—C5—C6122.24 (13)C17—C18—C19120.80 (16)
C4—C5—C10119.17 (14)C17—C18—H18119.6
C6—C5—C10118.59 (13)C19—C18—H18119.6
C7—C6—C5121.36 (14)C14—C19—C18118.57 (14)
C7—C6—H6119.3C14—C19—C20118.65 (13)
C5—C6—H6119.3C18—C19—C20122.77 (14)
C6—C7—C8120.12 (15)C21—C20—C19121.03 (14)
C6—C7—H7119.9C21—C20—H20119.5
C8—C7—H7119.9C19—C20—H20119.5
O3—C8—C9124.89 (13)C20—C21—C12120.61 (14)
O3—C8—C7114.42 (13)C20—C21—H21119.7
C9—C8—C7120.68 (13)C12—C21—H21119.7
C8—C9—C10120.02 (12)O2—C22—H22A109.5
C8—C9—H9120.0O2—C22—H22B109.5
C10—C9—H9120.0H22A—C22—H22B109.5
C9—C10—C5119.21 (13)O2—C22—H22C109.5
C9—C10—C1122.19 (12)H22A—C22—H22C109.5
C5—C10—C1118.60 (12)H22B—C22—H22C109.5
O1—C11—C12120.41 (12)O3—C23—H23A109.5
O1—C11—C1119.94 (12)O3—C23—H23B109.5
C12—C11—C1119.59 (11)H23A—C23—H23B109.5
C13—C12—C21119.34 (12)O3—C23—H23C109.5
C13—C12—C11121.20 (12)H23A—C23—H23C109.5
C21—C12—C11119.40 (12)H23B—C23—H23C109.5
C12—C13—C14121.36 (12)
C22—O2—C2—C1170.08 (12)C11—C1—C10—C5179.43 (11)
C22—O2—C2—C311.5 (2)C2—C1—C11—O1110.03 (15)
C10—C1—C2—O2179.41 (11)C10—C1—C11—O168.54 (17)
C11—C1—C2—O20.83 (18)C2—C1—C11—C1272.56 (16)
C10—C1—C2—C31.0 (2)C10—C1—C11—C12108.87 (14)
C11—C1—C2—C3177.59 (12)O1—C11—C12—C13167.99 (12)
O2—C2—C3—C4179.77 (13)C1—C11—C12—C139.41 (18)
C1—C2—C3—C41.9 (2)O1—C11—C12—C219.02 (18)
C2—C3—C4—C51.0 (2)C1—C11—C12—C21173.58 (12)
C3—C4—C5—C6178.83 (13)C21—C12—C13—C141.80 (19)
C3—C4—C5—C100.8 (2)C11—C12—C13—C14175.22 (11)
C4—C5—C6—C7179.45 (13)C12—C13—C14—C191.14 (19)
C10—C5—C6—C70.2 (2)C12—C13—C14—C15179.42 (13)
C5—C6—C7—C81.2 (2)C19—C14—C15—C161.0 (2)
C23—O3—C8—C92.04 (19)C13—C14—C15—C16179.52 (14)
C23—O3—C8—C7176.96 (12)C14—C15—C16—C170.3 (3)
C6—C7—C8—O3178.34 (13)C15—C16—C17—C181.2 (3)
C6—C7—C8—C90.7 (2)C16—C17—C18—C190.7 (2)
O3—C8—C9—C10179.62 (12)C13—C14—C19—C18179.07 (13)
C7—C8—C9—C100.68 (19)C15—C14—C19—C181.5 (2)
C8—C9—C10—C51.59 (18)C13—C14—C19—C200.49 (19)
C8—C9—C10—C1177.45 (11)C15—C14—C19—C20178.97 (13)
C4—C5—C10—C9179.17 (12)C17—C18—C19—C140.6 (2)
C6—C5—C10—C91.15 (18)C17—C18—C19—C20179.86 (14)
C4—C5—C10—C11.76 (18)C14—C19—C20—C211.5 (2)
C6—C5—C10—C1177.93 (12)C18—C19—C20—C21178.07 (14)
C2—C1—C10—C9179.90 (12)C19—C20—C21—C120.8 (2)
C11—C1—C10—C91.53 (19)C13—C12—C21—C200.8 (2)
C2—C1—C10—C50.86 (18)C11—C12—C21—C20176.26 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.513.2804 (17)138
Symmetry code: (i) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H18O3
Mr342.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)193
a, b, c (Å)11.2483 (3), 12.2309 (3), 12.7494 (3)
β (°) 91.936 (1)
V3)1753.01 (7)
Z4
Radiation typeCu Kα
µ (mm1)0.68
Crystal size (mm)0.60 × 0.20 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.685, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
27593, 3178, 2457
Rint0.035
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.126, 1.07
No. of reflections3178
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.14

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.513.2804 (17)138
Symmetry code: (i) x+3/2, y1/2, z+1/2.
 

Acknowledgements

This work was partially supported by an Iron and Steel Institute of Japan (ISIJ) Research Promotion Grant.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2813.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2012). Acta Cryst. E68, o23.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsumuki, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2095.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds