organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-7,7-di­methyl-5-oxo-4-(p-tol­yl)-5,6,7,8-tetra­hydro-4H-chromene-3-carbo­nitrile

aPost-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bLaboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati University, Santiniketan 731 235, West Bengal, India
*Correspondence e-mail: vivek_gupta2k2@hotmail.com

(Received 20 July 2012; accepted 25 July 2012; online 28 July 2012)

In the title mol­ecule, C19H20N2O2, the cyclo­hexene ring adopts a sofa conformation, while the pyran ring adopts a flattened boat conformation. In the crystal, mol­ecules are linked by N—H⋯N and N—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (010).

Related literature

For background to compounds containing the 4H-pyran unit, see: Brahmachari (2010[Brahmachari, G. (2010). In Handbook of Pharmaceutical Natural Products. Weinheim: Wiley-VCH Verlag GmbH & Co.]); Hatakeyama et al. (1988[Hatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1202-1204.]). For the biological activity of compounds containing a tetra­hydro­benzo[b]pyran ring system, see: Andreani & Lapi (1960[Andreani, L. L. & Lapi, E. (1960). Boll. Chim. Farm. 99, 583-586.]); Bonsignore et al. (1993[Bonsignore, L., Loy, G., Secci, D. & Calignano, A. (1993). Eur. J. Med. Chem. 28, 517-520.]); Brahmachari (2011[Brahmachari, G. (2011). Asia Pac. Biotech News, 15, 21-26.]); Konkoy et al. (2001[Konkoy, C. S., Fick, D. B., Cai, S. X., Lan, N. C. & Keana, J. F. W. (2001). PCT Appl. WO 0075123; Chem. Abstr. (2000), 134, 29313a.]). For 2-amino-4H-pyrans as photoactive materials, see: Armetso et al. (1989[Armetso, D., Horspool, W. M., Martin, N., Ramos, A. & Seoane, C. (1989). J. Org. Chem. 54, 3069-3072.]). For the synthesis of related compounds, see: Jin et al. (2004[Jin, T. S., Wang, A. Q., Wang, X., Zhang, J. S. & Li, T. S. (2004). Synlett, 5, 871-873.]); Balalaie et al. (2007[Balalaie, S., Bararjanian, M. & Sheikh-Ahmadi, M. (2007). Synth. Commun. 37, 1097-1108.]). For related structures, see: Tu et al. (2001[Tu, S.-J., Deng, X., Fang, Y.-Y., Guo, Y.-M., Du, M. & Liu, X.-H. (2001). Acta Cryst. E57, o358-o359.]); Wang (2011[Wang, X. (2011). Acta Cryst. E67, o832.]). For ring conformations, see: Duax et al. (1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20N2O2

  • Mr = 308.37

  • Monoclinic, P 21 /n

  • a = 9.4622 (3) Å

  • b = 16.8820 (5) Å

  • c = 10.8301 (4) Å

  • β = 111.842 (4)°

  • V = 1605.82 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.862, Tmax = 1.000

  • 18449 measured reflections

  • 3149 independent reflections

  • 2428 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.115

  • S = 1.05

  • 3149 reflections

  • 219 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N13—H131⋯O5i 0.89 (2) 2.06 (2) 2.913 (2) 161 (2)
N13—H132⋯N15ii 0.87 (2) 2.35 (2) 3.168 (2) 156 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

4H-Pyran units constitute structural features of a broad range of bioactive natural products (Brahmachari, 2010; Hatakeyama et al., 1988). The tetrahydrobenzo[b]pyran ring is of particular interest because compounds bearing this structural motif exhibit diverse biological activities such as spasmolytic, anticancer and anti-anaphylactin agents (Andreani et al., 1960; Bonsignore et al., 1993), anti-Alzheimer's disease (Brahmachari, 2011), anti-Huntington's disease, anti-Parkinson's disease and anti-HIV (Konkoy et al., 2001). 2-Amino-4H-pyrans have also been found to be useful as photoactive materials (Armetso et al., 1989). Hence, investigation of the structural features of biologically relevant tetrahydrobenzo[b]pyran derivatives is of both scientific and practical interest. In continuation of our efforts to develop useful synthetic protocols for biologically significant molecules, we herein report an efficient and environmentally benign synthesis and the crystal structure of the title compound. The bond lengths and angles of the title compound are normal and correspond to those observed in related structures (Tu et al., 2001; Wang, 2011). The cyclohexene ring adopts a sofa conformation while the pyran ring adopts a flattened boat conformation with asymmetry parameters [ΔCs(C7) = 5.71] and [ΔCs (O1—C4) = 0.08; ΔCs (C2—C3) = 9.8)] respectively (Duax et al., 1975). In the crystal structure, intermolecular N—H···N and N—H···O hydrogen bonds link the molecules into a two-dimensional network parallel to (010) (Fig.2).

Related literature top

For background to compounds containing the 4H-pyran unit, see: Brahmachari (2010); Hatakeyama et al. (1988). For the biological activity of compounds containing a tetrahydrobenzo[b]pyran ring system, see: Andreani & Lapi (1960); Bonsignore et al. (1993); Brahmachari (2011); Konkoy et al. (2001). For 2-amino-4H-pyrans as photoactive materials, see: Armetso et al. (1989). For the synthesis of related compounds, see: Jin et al. (2004); Balalaie et al. (2007). For related structures, see: Tu et al. (2001); Wang (2011). For ring conformations, see: Duax et al. (1975).

Experimental top

The synthesis of the title compounds was carried out via one-pot multi-component reaction in aqueous ethanol using low-cost and environmentally benign sodium formate as catalyst at room temperature. An oven-dried screw cap test tube was charged with a magnetic stir bar, p-methylbenzaldehyde (0.12 g, 1 mmol), malononitrile (0.066 g, 1 mmol) and sodium formate (0.136 g, 20 mol %) in 5 ml aqueous ethanol. The reaction mixture was then started to stir vigorously and after 20 min 1 mmol of dimedone (0.14 g) was added, and continued to stir. After completion of the overall reaction (2 h) as monitored by TLC, a white solid was precipitated out, filtered off, and washed with aqueous ethanol. Recrystallization from ethanol afforded the title compound as white block-shaped crystals (252 mg, yield 82%) with the m.p. 492–494 K (lit. 492–495 K) (Balalaie et al., 2007). Rf 0.82 (EtOAc). White solid; FT—IR (KBr) νmax 3375, 3256, 3180, 2961, 2920, 2885, 2187, 1677, 1637, 1607, 1512, 1460, 1414, 1366, 1215, 1137, 1030, 825, 764, 565 cm-1; 1H-NMR (DMSO-d6, 400 MHz) & 13 C-NMR (DMSO-d6; 100 MHz) data are in excellent agreement with literature values (Jin et al., 2004; Balalaie et al., 2007); TOF-MS: calculated for C19H20N2O2Na 331.1422 [M + Na]+; found 331.1426. For crystallization 60 mg of the compound was dissolved in 20 ml mixture of ethanol and water (5:1) and left for several days at ambient temperature which yielded white block-shaped crystals.

Refinement top

H131 and H132 attached to N13 were located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.98 Å; and with Uiso(H) = 1.2Ueq(C), except for the methyl groups where Uiso(H) = 1.5Ueq(C).

Structure description top

4H-Pyran units constitute structural features of a broad range of bioactive natural products (Brahmachari, 2010; Hatakeyama et al., 1988). The tetrahydrobenzo[b]pyran ring is of particular interest because compounds bearing this structural motif exhibit diverse biological activities such as spasmolytic, anticancer and anti-anaphylactin agents (Andreani et al., 1960; Bonsignore et al., 1993), anti-Alzheimer's disease (Brahmachari, 2011), anti-Huntington's disease, anti-Parkinson's disease and anti-HIV (Konkoy et al., 2001). 2-Amino-4H-pyrans have also been found to be useful as photoactive materials (Armetso et al., 1989). Hence, investigation of the structural features of biologically relevant tetrahydrobenzo[b]pyran derivatives is of both scientific and practical interest. In continuation of our efforts to develop useful synthetic protocols for biologically significant molecules, we herein report an efficient and environmentally benign synthesis and the crystal structure of the title compound. The bond lengths and angles of the title compound are normal and correspond to those observed in related structures (Tu et al., 2001; Wang, 2011). The cyclohexene ring adopts a sofa conformation while the pyran ring adopts a flattened boat conformation with asymmetry parameters [ΔCs(C7) = 5.71] and [ΔCs (O1—C4) = 0.08; ΔCs (C2—C3) = 9.8)] respectively (Duax et al., 1975). In the crystal structure, intermolecular N—H···N and N—H···O hydrogen bonds link the molecules into a two-dimensional network parallel to (010) (Fig.2).

For background to compounds containing the 4H-pyran unit, see: Brahmachari (2010); Hatakeyama et al. (1988). For the biological activity of compounds containing a tetrahydrobenzo[b]pyran ring system, see: Andreani & Lapi (1960); Bonsignore et al. (1993); Brahmachari (2011); Konkoy et al. (2001). For 2-amino-4H-pyrans as photoactive materials, see: Armetso et al. (1989). For the synthesis of related compounds, see: Jin et al. (2004); Balalaie et al. (2007). For related structures, see: Tu et al. (2001); Wang (2011). For ring conformations, see: Duax et al. (1975).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed along the a axis. Hydrogen bonds are shown as dashed lines.
2-Amino-7,7-dimethyl-5-oxo-4-(p-tolyl)-5,6,7,8-tetrahydro- 4H-chromene-3-carbonitrile top
Crystal data top
C19H20N2O2F(000) = 656
Mr = 308.37Dx = 1.276 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7806 reflections
a = 9.4622 (3) Åθ = 3.6–29.1°
b = 16.8820 (5) ŵ = 0.08 mm1
c = 10.8301 (4) ÅT = 293 K
β = 111.842 (4)°Block, white
V = 1605.82 (9) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3149 independent reflections
Radiation source: fine-focus sealed tube2428 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.6°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 2020
Tmin = 0.862, Tmax = 1.000l = 1313
18449 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.4013P]
where P = (Fo2 + 2Fc2)/3
3149 reflections(Δ/σ)max = 0.001
219 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C19H20N2O2V = 1605.82 (9) Å3
Mr = 308.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.4622 (3) ŵ = 0.08 mm1
b = 16.8820 (5) ÅT = 293 K
c = 10.8301 (4) Å0.30 × 0.20 × 0.20 mm
β = 111.842 (4)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3149 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2428 reflections with I > 2σ(I)
Tmin = 0.862, Tmax = 1.000Rint = 0.037
18449 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.20 e Å3
3149 reflectionsΔρmin = 0.22 e Å3
219 parameters
Special details top

Experimental. Absorption correction: CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.62616 (12)0.12747 (6)0.06792 (11)0.0370 (3)
C1'0.87094 (17)0.17332 (9)0.42111 (15)0.0324 (4)
C2'1.00784 (18)0.14575 (11)0.41998 (17)0.0433 (4)
H2'1.03430.15680.34720.052*
C3'1.1067 (2)0.10204 (11)0.52474 (19)0.0498 (5)
H3'1.19780.08420.52060.060*
C4'1.0732 (2)0.08433 (10)0.63476 (17)0.0442 (4)
C5'0.9371 (2)0.11238 (11)0.63673 (18)0.0504 (5)
H5'0.91180.10180.71030.060*
C6'0.8370 (2)0.15591 (11)0.53232 (17)0.0456 (4)
H6'0.74590.17370.53670.055*
C7'1.1810 (2)0.03593 (13)0.7475 (2)0.0645 (6)
H7'11.18540.01720.71750.097*
H7'21.14560.03500.81990.097*
H7'31.28070.05920.77700.097*
C20.74563 (17)0.17699 (9)0.07890 (15)0.0324 (4)
C30.80680 (17)0.22511 (9)0.18489 (15)0.0325 (4)
C40.75981 (17)0.22126 (9)0.30428 (15)0.0325 (4)
H40.75640.27550.33530.039*
O50.53082 (14)0.26138 (8)0.40897 (12)0.0488 (3)
C50.49500 (18)0.21056 (10)0.32139 (16)0.0372 (4)
C60.33944 (19)0.17324 (11)0.27258 (19)0.0455 (4)
H6A0.26880.20830.20760.055*
H6B0.30620.16860.34690.055*
C70.33113 (18)0.09159 (10)0.20960 (17)0.0386 (4)
C80.39789 (18)0.09955 (11)0.10153 (17)0.0406 (4)
H8A0.41100.04720.07050.049*
H8B0.32670.12840.02670.049*
C90.54697 (16)0.14144 (9)0.14978 (15)0.0321 (4)
C100.60023 (17)0.18777 (9)0.25695 (15)0.0312 (4)
C110.4198 (2)0.03164 (12)0.3151 (2)0.0568 (5)
H11A0.52380.04860.35620.085*
H11B0.41640.01920.27430.085*
H11C0.37520.02770.38130.085*
C120.1651 (2)0.06452 (13)0.1450 (2)0.0579 (5)
H12A0.16120.01410.10300.087*
H12B0.10840.10270.07970.087*
H12C0.12180.05980.21200.087*
N130.78732 (18)0.16693 (10)0.02573 (15)0.0432 (4)
C140.92224 (19)0.27927 (10)0.18699 (16)0.0396 (4)
N151.01708 (19)0.32308 (10)0.19332 (17)0.0578 (5)
H1310.864 (2)0.1956 (12)0.0300 (19)0.055 (6)*
H1320.716 (2)0.1541 (12)0.101 (2)0.059 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0355 (6)0.0427 (6)0.0391 (6)0.0084 (5)0.0212 (5)0.0064 (5)
C1'0.0317 (8)0.0332 (8)0.0311 (8)0.0050 (6)0.0102 (6)0.0051 (6)
C2'0.0344 (9)0.0567 (11)0.0404 (9)0.0021 (8)0.0159 (7)0.0041 (8)
C3'0.0340 (9)0.0609 (12)0.0502 (11)0.0054 (8)0.0108 (8)0.0035 (9)
C4'0.0430 (10)0.0388 (10)0.0396 (10)0.0060 (8)0.0024 (8)0.0022 (7)
C5'0.0597 (12)0.0567 (12)0.0361 (9)0.0019 (9)0.0194 (9)0.0032 (8)
C6'0.0459 (10)0.0552 (11)0.0400 (10)0.0052 (8)0.0210 (8)0.0014 (8)
C7'0.0638 (13)0.0584 (13)0.0519 (12)0.0001 (10)0.0010 (10)0.0096 (10)
C20.0269 (7)0.0373 (9)0.0351 (8)0.0002 (6)0.0139 (6)0.0059 (7)
C30.0289 (8)0.0349 (9)0.0345 (8)0.0019 (6)0.0127 (6)0.0044 (6)
C40.0311 (8)0.0311 (8)0.0366 (8)0.0005 (6)0.0141 (7)0.0034 (6)
O50.0463 (7)0.0556 (8)0.0513 (7)0.0043 (6)0.0260 (6)0.0126 (6)
C50.0367 (9)0.0374 (9)0.0412 (9)0.0067 (7)0.0188 (7)0.0033 (7)
C60.0359 (9)0.0487 (11)0.0608 (11)0.0036 (8)0.0284 (8)0.0003 (8)
C70.0317 (8)0.0417 (10)0.0482 (10)0.0005 (7)0.0215 (7)0.0046 (7)
C80.0322 (8)0.0479 (10)0.0422 (9)0.0069 (7)0.0146 (7)0.0028 (7)
C90.0289 (8)0.0362 (9)0.0343 (8)0.0034 (6)0.0156 (7)0.0046 (7)
C100.0290 (8)0.0327 (8)0.0345 (8)0.0027 (6)0.0147 (6)0.0018 (6)
C110.0588 (12)0.0526 (12)0.0643 (13)0.0024 (9)0.0290 (10)0.0162 (10)
C120.0373 (10)0.0653 (13)0.0772 (14)0.0096 (9)0.0283 (10)0.0017 (11)
N130.0352 (8)0.0630 (10)0.0359 (8)0.0091 (7)0.0184 (7)0.0004 (7)
C140.0355 (9)0.0425 (10)0.0399 (9)0.0034 (8)0.0132 (7)0.0035 (7)
N150.0501 (9)0.0570 (10)0.0648 (11)0.0187 (8)0.0198 (8)0.0028 (8)
Geometric parameters (Å, º) top
O1—C21.3751 (18)O5—C51.229 (2)
O1—C91.3774 (18)C5—C101.464 (2)
C1'—C2'1.381 (2)C5—C61.505 (2)
C1'—C6'1.389 (2)C6—C71.527 (2)
C1'—C41.540 (2)C6—H6A0.9700
C2'—C3'1.384 (2)C6—H6B0.9700
C2'—H2'0.9300C7—C111.523 (2)
C3'—C4'1.375 (3)C7—C81.529 (2)
C3'—H3'0.9300C7—C121.532 (2)
C4'—C5'1.380 (3)C8—C91.488 (2)
C4'—C7'1.508 (2)C8—H8A0.9700
C5'—C6'1.385 (3)C8—H8B0.9700
C5'—H5'0.9300C9—C101.333 (2)
C6'—H6'0.9300C11—H11A0.9600
C7'—H7'10.9600C11—H11B0.9600
C7'—H7'20.9600C11—H11C0.9600
C7'—H7'30.9600C12—H12A0.9600
C2—N131.342 (2)C12—H12B0.9600
C2—C31.348 (2)C12—H12C0.9600
C3—C141.418 (2)N13—H1310.88 (2)
C3—C41.517 (2)N13—H1320.87 (2)
C4—C101.512 (2)C14—N151.145 (2)
C4—H40.9800
C2—O1—C9117.83 (12)C5—C6—C7114.58 (13)
C2'—C1'—C6'117.19 (15)C5—C6—H6A108.6
C2'—C1'—C4121.74 (14)C7—C6—H6A108.6
C6'—C1'—C4121.08 (14)C5—C6—H6B108.6
C1'—C2'—C3'121.49 (17)C7—C6—H6B108.6
C1'—C2'—H2'119.3H6A—C6—H6B107.6
C3'—C2'—H2'119.3C11—C7—C6110.02 (15)
C4'—C3'—C2'121.53 (17)C11—C7—C8111.30 (14)
C4'—C3'—H3'119.2C6—C7—C8107.18 (14)
C2'—C3'—H3'119.2C11—C7—C12109.22 (15)
C3'—C4'—C5'117.14 (16)C6—C7—C12110.29 (14)
C3'—C4'—C7'120.99 (18)C8—C7—C12108.80 (15)
C5'—C4'—C7'121.87 (18)C9—C8—C7112.37 (14)
C4'—C5'—C6'121.89 (17)C9—C8—H8A109.1
C4'—C5'—H5'119.1C7—C8—H8A109.1
C6'—C5'—H5'119.1C9—C8—H8B109.1
C5'—C6'—C1'120.77 (17)C7—C8—H8B109.1
C5'—C6'—H6'119.6H8A—C8—H8B107.9
C1'—C6'—H6'119.6C10—C9—O1122.74 (14)
C4'—C7'—H7'1109.5C10—C9—C8125.90 (14)
C4'—C7'—H7'2109.5O1—C9—C8111.36 (13)
H7'1—C7'—H7'2109.5C9—C10—C5117.73 (14)
C4'—C7'—H7'3109.5C9—C10—C4121.39 (14)
H7'1—C7'—H7'3109.5C5—C10—C4120.70 (14)
H7'2—C7'—H7'3109.5C7—C11—H11A109.5
N13—C2—C3128.83 (15)C7—C11—H11B109.5
N13—C2—O1109.91 (14)H11A—C11—H11B109.5
C3—C2—O1121.24 (14)C7—C11—H11C109.5
C2—C3—C14119.09 (15)H11A—C11—H11C109.5
C2—C3—C4122.04 (13)H11B—C11—H11C109.5
C14—C3—C4118.83 (14)C7—C12—H12A109.5
C10—C4—C3107.42 (12)C7—C12—H12B109.5
C10—C4—C1'111.87 (12)H12A—C12—H12B109.5
C3—C4—C1'113.31 (13)C7—C12—H12C109.5
C10—C4—H4108.0H12A—C12—H12C109.5
C3—C4—H4108.0H12B—C12—H12C109.5
C1'—C4—H4108.0C2—N13—H131118.5 (13)
O5—C5—C10120.66 (15)C2—N13—H132116.8 (14)
O5—C5—C6121.07 (15)H131—N13—H132116.9 (19)
C10—C5—C6118.19 (15)N15—C14—C3177.67 (18)
C6'—C1'—C2'—C3'0.5 (3)C10—C5—C6—C726.8 (2)
C4—C1'—C2'—C3'179.38 (16)C5—C6—C7—C1167.88 (19)
C1'—C2'—C3'—C4'0.2 (3)C5—C6—C7—C853.27 (19)
C2'—C3'—C4'—C5'0.4 (3)C5—C6—C7—C12171.57 (15)
C2'—C3'—C4'—C7'179.35 (17)C11—C7—C8—C971.62 (19)
C3'—C4'—C5'—C6'0.6 (3)C6—C7—C8—C948.72 (18)
C7'—C4'—C5'—C6'179.09 (18)C12—C7—C8—C9167.98 (15)
C4'—C5'—C6'—C1'0.3 (3)C2—O1—C9—C1015.5 (2)
C2'—C1'—C6'—C5'0.2 (3)C2—O1—C9—C8163.73 (13)
C4—C1'—C6'—C5'179.64 (15)C7—C8—C9—C1019.0 (2)
C9—O1—C2—N13166.15 (13)C7—C8—C9—O1161.72 (13)
C9—O1—C2—C315.4 (2)O1—C9—C10—C5168.43 (13)
N13—C2—C3—C146.5 (3)C8—C9—C10—C510.7 (2)
O1—C2—C3—C14175.37 (14)O1—C9—C10—C46.7 (2)
N13—C2—C3—C4171.42 (16)C8—C9—C10—C4174.14 (15)
O1—C2—C3—C46.7 (2)O5—C5—C10—C9170.15 (15)
C2—C3—C4—C1025.3 (2)C6—C5—C10—C96.7 (2)
C14—C3—C4—C10156.78 (14)O5—C5—C10—C45.0 (2)
C2—C3—C4—C1'98.75 (17)C6—C5—C10—C4178.09 (14)
C14—C3—C4—C1'79.14 (18)C3—C4—C10—C925.20 (19)
C2'—C1'—C4—C10129.01 (16)C1'—C4—C10—C999.76 (17)
C6'—C1'—C4—C1050.87 (19)C3—C4—C10—C5149.80 (14)
C2'—C1'—C4—C37.4 (2)C1'—C4—C10—C585.24 (17)
C6'—C1'—C4—C3172.49 (15)C2—C3—C14—N15157 (5)
O5—C5—C6—C7156.36 (16)C4—C3—C14—N1520 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H131···O5i0.89 (2)2.06 (2)2.913 (2)161 (2)
N13—H132···N15ii0.87 (2)2.35 (2)3.168 (2)156 (2)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H20N2O2
Mr308.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.4622 (3), 16.8820 (5), 10.8301 (4)
β (°) 111.842 (4)
V3)1605.82 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.862, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
18449, 3149, 2428
Rint0.037
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.115, 1.05
No. of reflections3149
No. of parameters219
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H131···O5i0.89 (2)2.06 (2)2.913 (2)161 (2)
N13—H132···N15ii0.87 (2)2.35 (2)3.168 (2)156 (2)
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z1/2.
 

Acknowledgements

SL is grateful to the CSIR, New Delhi, for the award of a Senior Research Fellowship. BB is grateful to the UGC, New Delhi, for the awarding of a Junior Research Fellowship. RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

References

First citationAndreani, L. L. & Lapi, E. (1960). Boll. Chim. Farm. 99, 583–586.  PubMed Google Scholar
First citationArmetso, D., Horspool, W. M., Martin, N., Ramos, A. & Seoane, C. (1989). J. Org. Chem. 54, 3069–3072.  Google Scholar
First citationBalalaie, S., Bararjanian, M. & Sheikh-Ahmadi, M. (2007). Synth. Commun. 37, 1097–1108.  Web of Science CrossRef CAS Google Scholar
First citationBonsignore, L., Loy, G., Secci, D. & Calignano, A. (1993). Eur. J. Med. Chem. 28, 517–520.  CrossRef CAS Web of Science Google Scholar
First citationBrahmachari, G. (2010). In Handbook of Pharmaceutical Natural Products. Weinheim: Wiley-VCH Verlag GmbH & Co.  Google Scholar
First citationBrahmachari, G. (2011). Asia Pac. Biotech News, 15, 21–26.  Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1202–1204.  CrossRef Web of Science Google Scholar
First citationJin, T. S., Wang, A. Q., Wang, X., Zhang, J. S. & Li, T. S. (2004). Synlett, 5, 871–873.  Web of Science CrossRef Google Scholar
First citationKonkoy, C. S., Fick, D. B., Cai, S. X., Lan, N. C. & Keana, J. F. W. (2001). PCT Appl. WO 0075123; Chem. Abstr. (2000), 134, 29313a.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTu, S.-J., Deng, X., Fang, Y.-Y., Guo, Y.-M., Du, M. & Liu, X.-H. (2001). Acta Cryst. E57, o358–o359.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, X. (2011). Acta Cryst. E67, o832.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds