metal-organic compounds
{4,4′-Dichloro-2,2′-[2,2-dimethylpropane-1,3-diylbis(nitrilomethanylylidene)]diphenolato}copper(II)
aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, I. R. of IRAN, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and cDepartment of Chemistry, University of Isfahan, 81746-73441, Isfahan, Iran
*Correspondence e-mail: zsrkk@yahoo.com
In the title Schiff base complex, [Cu(C19H18Cl2N2O2)], the CuII ion is coordinated in a distorted square-planar environment by two N atoms and two O atoms of the tetradentate ligand. The dihedral angle between the benzene rings is 36.86 (14)°. In the crystal, molecules are linked into inversion dimers by pairs of weak C—H⋯O hydrogen bonds. In addition, π–π [centroid–centroid distance = 3.7279 (16) Å] and weak C—H⋯π interactions are observed.
Related literature
For applications of et al. (1993); Blower et al. (1998). For related structures, see: Ghaemi et al. (2011); Kargar et al. (2011, 2012). For standard bond lengths, see: Allen et al. (1987).
in coordination chemistry, see: GranovskiExperimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536812033491/lh5504sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812033491/lh5504Isup2.hkl
The title compound was synthesized by adding 5-dichloro-salicylaldehyde-2,2-dimethyl-1, 3-propanediamine (2 mmol) to a solution of CuCl2. 4H2O (2.1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant solution was filtered. Dark-green single crystals of the title compound suitable for X-ray
were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.The H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H-atoms, respectively, with Uiso (H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms, and k = 1.2 for all other H-atoms.
Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with ease of preparation and structural variations (Granovski et al., 1993; Blower et al., (1998). In continuation of our work on the
of Schiff base metal complexes (Kargar et al., 2012; Kargar et al., 2011; Ghaemi, et al., (2011), we have determined the X-ray structure of the title compound.The
of the title compound, Fig. 1, comprises a Schiff base complex. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to those in related structures (Kargar et al., 2012; Kargar et al., 2011; Ghaemi, et al., (2011).The coordination geometry of the CuII ion is distorted square-planar which is supported by the N2O2 donor atoms of the coordinated Schiff base ligand. The dihedral angle between the substituted benzene rings is 36.86 (14)°. In the crystal, molecules are linked by a pair of weak C—H···O hydrogen bonds, forming inversion dimers (Table 1, Fig. 2). The π–π interactions [Cg1···Cg2iii = 3.7279 (16)Å; (iii) 1 - x, -y, 2 - z; Cg1 and Cg2 are centroids of the Cu1/O1/C1/C6/C7/N1 and C1–C6 rings] and C—H···π interactions (Table 1).
is further stabilized by intermolecularFor applications of
in coordination chemistry, see: Granovski et al. (1993); Blower et al. (1998). For related structures, see: Ghaemi, et al. (2011); Kargar et al. (2011, 2012). For standard bond lengths, see: Allen et al. (1987).Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).[Cu(C19H18Cl2N2O2)] | Z = 2 |
Mr = 440.79 | F(000) = 450 |
Triclinic, P1 | Dx = 1.551 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.4213 (12) Å | Cell parameters from 1540 reflections |
b = 9.5718 (13) Å | θ = 2.5–27.4° |
c = 11.4392 (15) Å | µ = 1.46 mm−1 |
α = 74.478 (10)° | T = 296 K |
β = 78.635 (10)° | Block, dark-green |
γ = 73.339 (10)° | 0.23 × 0.12 × 0.08 mm |
V = 944.1 (2) Å3 |
Bruker SMART APEXII CCD area-detector diffractometer | 4302 independent reflections |
Radiation source: fine-focus sealed tube | 3369 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
φ and ω scans | θmax = 27.5°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −12→12 |
Tmin = 0.731, Tmax = 0.893 | k = −12→12 |
8620 measured reflections | l = −14→11 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.098 | w = 1/[σ2(Fo2) + (0.0521P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max = 0.001 |
4302 reflections | Δρmax = 0.44 e Å−3 |
236 parameters | Δρmin = −0.46 e Å−3 |
0 restraints | Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.044 (2) |
[Cu(C19H18Cl2N2O2)] | γ = 73.339 (10)° |
Mr = 440.79 | V = 944.1 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.4213 (12) Å | Mo Kα radiation |
b = 9.5718 (13) Å | µ = 1.46 mm−1 |
c = 11.4392 (15) Å | T = 296 K |
α = 74.478 (10)° | 0.23 × 0.12 × 0.08 mm |
β = 78.635 (10)° |
Bruker SMART APEXII CCD area-detector diffractometer | 4302 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 3369 reflections with I > 2σ(I) |
Tmin = 0.731, Tmax = 0.893 | Rint = 0.049 |
8620 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.098 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.44 e Å−3 |
4302 reflections | Δρmin = −0.46 e Å−3 |
236 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.59520 (4) | 0.06692 (3) | 0.63656 (3) | 0.03281 (12) | |
Cl1 | 0.14886 (11) | −0.15287 (10) | 1.21334 (8) | 0.0638 (2) | |
Cl2 | 0.81316 (14) | 0.43389 (11) | 0.01358 (8) | 0.0801 (3) | |
O1 | 0.4216 (2) | 0.1436 (2) | 0.74001 (17) | 0.0395 (4) | |
O2 | 0.5916 (2) | 0.2592 (2) | 0.53387 (17) | 0.0402 (4) | |
N1 | 0.6589 (2) | −0.1147 (2) | 0.7608 (2) | 0.0345 (5) | |
N2 | 0.6982 (2) | −0.0370 (2) | 0.50664 (19) | 0.0323 (5) | |
C1 | 0.3645 (3) | 0.0694 (3) | 0.8440 (2) | 0.0336 (5) | |
C2 | 0.2211 (3) | 0.1361 (3) | 0.8969 (3) | 0.0392 (6) | |
H2A | 0.1697 | 0.2291 | 0.8560 | 0.047* | |
C3 | 0.1548 (3) | 0.0676 (3) | 1.0075 (3) | 0.0439 (7) | |
H3A | 0.0600 | 0.1141 | 1.0401 | 0.053* | |
C4 | 0.2299 (3) | −0.0707 (3) | 1.0697 (3) | 0.0427 (7) | |
C5 | 0.3678 (3) | −0.1413 (3) | 1.0215 (2) | 0.0401 (6) | |
H5A | 0.4166 | −0.2344 | 1.0641 | 0.048* | |
C6 | 0.4369 (3) | −0.0746 (3) | 0.9079 (2) | 0.0341 (5) | |
C7 | 0.5839 (3) | −0.1549 (3) | 0.8646 (2) | 0.0367 (6) | |
H7A | 0.6278 | −0.2433 | 0.9163 | 0.044* | |
C8 | 0.8107 (3) | −0.2035 (3) | 0.7313 (3) | 0.0391 (6) | |
H8A | 0.8418 | −0.2764 | 0.8046 | 0.047* | |
H8B | 0.8782 | −0.1380 | 0.7059 | 0.047* | |
C9 | 0.8246 (3) | −0.2868 (3) | 0.6290 (3) | 0.0370 (6) | |
C10 | 0.7130 (3) | −0.1996 (3) | 0.5388 (2) | 0.0365 (6) | |
H10A | 0.7437 | −0.2370 | 0.4645 | 0.044* | |
H10B | 0.6158 | −0.2182 | 0.5739 | 0.044* | |
C11 | 0.7392 (3) | 0.0260 (3) | 0.3960 (2) | 0.0326 (5) | |
H11A | 0.7864 | −0.0363 | 0.3424 | 0.039* | |
C12 | 0.7187 (3) | 0.1840 (3) | 0.3477 (2) | 0.0319 (5) | |
C13 | 0.7706 (3) | 0.2307 (3) | 0.2225 (2) | 0.0388 (6) | |
H13A | 0.8194 | 0.1597 | 0.1766 | 0.047* | |
C14 | 0.7498 (3) | 0.3784 (3) | 0.1688 (3) | 0.0441 (7) | |
C15 | 0.6757 (3) | 0.4870 (3) | 0.2359 (3) | 0.0450 (7) | |
H15A | 0.6615 | 0.5880 | 0.1981 | 0.054* | |
C16 | 0.6242 (3) | 0.4443 (3) | 0.3570 (3) | 0.0406 (6) | |
H16A | 0.5745 | 0.5175 | 0.4005 | 0.049* | |
C17 | 0.6445 (3) | 0.2919 (3) | 0.4180 (2) | 0.0333 (5) | |
C18 | 0.7882 (4) | −0.4381 (3) | 0.6845 (3) | 0.0563 (8) | |
H18A | 0.7969 | −0.4890 | 0.6206 | 0.084* | |
H18B | 0.6880 | −0.4233 | 0.7263 | 0.084* | |
H18C | 0.8568 | −0.4973 | 0.7414 | 0.084* | |
C19 | 0.9840 (4) | −0.3059 (4) | 0.5632 (4) | 0.0598 (9) | |
H19A | 0.9953 | −0.3568 | 0.4989 | 0.090* | |
H19B | 1.0529 | −0.3636 | 0.6203 | 0.090* | |
H19C | 1.0042 | −0.2093 | 0.5290 | 0.090* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.03676 (19) | 0.02733 (17) | 0.02913 (18) | −0.00348 (12) | 0.00110 (12) | −0.00637 (12) |
Cl1 | 0.0809 (6) | 0.0601 (5) | 0.0447 (4) | −0.0320 (5) | 0.0197 (4) | −0.0069 (4) |
Cl2 | 0.1256 (9) | 0.0540 (5) | 0.0398 (4) | −0.0221 (6) | 0.0211 (5) | 0.0012 (4) |
O1 | 0.0420 (10) | 0.0334 (9) | 0.0324 (9) | −0.0021 (8) | 0.0039 (8) | −0.0038 (8) |
O2 | 0.0512 (11) | 0.0292 (9) | 0.0333 (10) | −0.0068 (8) | 0.0072 (8) | −0.0083 (8) |
N1 | 0.0364 (11) | 0.0319 (11) | 0.0326 (11) | −0.0007 (9) | −0.0056 (9) | −0.0103 (9) |
N2 | 0.0372 (11) | 0.0254 (10) | 0.0335 (11) | −0.0062 (9) | −0.0034 (9) | −0.0074 (9) |
C1 | 0.0388 (13) | 0.0343 (13) | 0.0295 (12) | −0.0111 (11) | −0.0020 (11) | −0.0099 (11) |
C2 | 0.0383 (14) | 0.0366 (14) | 0.0392 (14) | −0.0071 (12) | 0.0007 (12) | −0.0092 (12) |
C3 | 0.0404 (15) | 0.0474 (16) | 0.0446 (16) | −0.0147 (13) | 0.0069 (13) | −0.0165 (14) |
C4 | 0.0553 (17) | 0.0431 (15) | 0.0338 (14) | −0.0247 (14) | 0.0059 (13) | −0.0103 (12) |
C5 | 0.0530 (16) | 0.0358 (14) | 0.0337 (14) | −0.0167 (13) | −0.0044 (12) | −0.0064 (11) |
C6 | 0.0408 (14) | 0.0342 (13) | 0.0294 (12) | −0.0124 (11) | −0.0030 (11) | −0.0083 (11) |
C7 | 0.0449 (15) | 0.0296 (12) | 0.0344 (13) | −0.0042 (11) | −0.0110 (12) | −0.0065 (11) |
C8 | 0.0360 (14) | 0.0376 (14) | 0.0424 (15) | −0.0007 (11) | −0.0089 (12) | −0.0128 (12) |
C9 | 0.0375 (14) | 0.0280 (12) | 0.0416 (15) | −0.0014 (11) | −0.0019 (12) | −0.0106 (11) |
C10 | 0.0464 (15) | 0.0259 (12) | 0.0383 (14) | −0.0102 (11) | −0.0068 (12) | −0.0071 (11) |
C11 | 0.0346 (13) | 0.0327 (12) | 0.0311 (13) | −0.0070 (10) | −0.0021 (10) | −0.0114 (11) |
C12 | 0.0323 (12) | 0.0306 (12) | 0.0312 (13) | −0.0085 (10) | −0.0004 (10) | −0.0065 (10) |
C13 | 0.0440 (15) | 0.0368 (14) | 0.0328 (13) | −0.0098 (12) | 0.0044 (12) | −0.0101 (11) |
C14 | 0.0536 (17) | 0.0414 (15) | 0.0319 (14) | −0.0149 (13) | 0.0013 (13) | −0.0009 (12) |
C15 | 0.0501 (16) | 0.0305 (13) | 0.0462 (16) | −0.0087 (12) | −0.0009 (13) | −0.0002 (12) |
C16 | 0.0419 (14) | 0.0291 (13) | 0.0425 (15) | −0.0037 (11) | 0.0059 (12) | −0.0084 (11) |
C17 | 0.0304 (12) | 0.0327 (12) | 0.0336 (13) | −0.0066 (10) | 0.0005 (10) | −0.0067 (11) |
C18 | 0.081 (2) | 0.0308 (14) | 0.0511 (18) | −0.0071 (15) | −0.0115 (17) | −0.0047 (13) |
C19 | 0.0419 (17) | 0.066 (2) | 0.068 (2) | −0.0013 (16) | 0.0039 (16) | −0.0295 (19) |
Cu1—O2 | 1.8952 (18) | C8—H8A | 0.9700 |
Cu1—O1 | 1.9050 (18) | C8—H8B | 0.9700 |
Cu1—N2 | 1.952 (2) | C9—C18 | 1.525 (4) |
Cu1—N1 | 1.953 (2) | C9—C19 | 1.525 (4) |
Cl1—C4 | 1.749 (3) | C9—C10 | 1.527 (4) |
Cl2—C14 | 1.747 (3) | C10—H10A | 0.9700 |
O1—C1 | 1.312 (3) | C10—H10B | 0.9700 |
O2—C17 | 1.308 (3) | C11—C12 | 1.434 (3) |
N1—C7 | 1.280 (3) | C11—H11A | 0.9300 |
N1—C8 | 1.466 (3) | C12—C13 | 1.413 (4) |
N2—C11 | 1.283 (3) | C12—C17 | 1.418 (4) |
N2—C10 | 1.471 (3) | C13—C14 | 1.355 (4) |
C1—C2 | 1.411 (4) | C13—H13A | 0.9300 |
C1—C6 | 1.421 (4) | C14—C15 | 1.398 (4) |
C2—C3 | 1.378 (4) | C15—C16 | 1.367 (4) |
C2—H2A | 0.9300 | C15—H15A | 0.9300 |
C3—C4 | 1.385 (4) | C16—C17 | 1.414 (4) |
C3—H3A | 0.9300 | C16—H16A | 0.9300 |
C4—C5 | 1.365 (4) | C18—H18A | 0.9600 |
C5—C6 | 1.407 (4) | C18—H18B | 0.9600 |
C5—H5A | 0.9300 | C18—H18C | 0.9600 |
C6—C7 | 1.442 (4) | C19—H19A | 0.9600 |
C7—H7A | 0.9300 | C19—H19B | 0.9600 |
C8—C9 | 1.550 (4) | C19—H19C | 0.9600 |
O2—Cu1—O1 | 92.08 (8) | C19—C9—C10 | 110.3 (3) |
O2—Cu1—N2 | 93.57 (8) | C18—C9—C8 | 109.9 (2) |
O1—Cu1—N2 | 152.81 (9) | C19—C9—C8 | 107.9 (2) |
O2—Cu1—N1 | 159.03 (9) | C10—C9—C8 | 111.1 (2) |
O1—Cu1—N1 | 93.46 (9) | N2—C10—C9 | 114.0 (2) |
N2—Cu1—N1 | 90.69 (9) | N2—C10—H10A | 108.7 |
C1—O1—Cu1 | 126.44 (16) | C9—C10—H10A | 108.7 |
C17—O2—Cu1 | 127.77 (16) | N2—C10—H10B | 108.7 |
C7—N1—C8 | 119.4 (2) | C9—C10—H10B | 108.7 |
C7—N1—Cu1 | 125.79 (18) | H10A—C10—H10B | 107.6 |
C8—N1—Cu1 | 114.63 (18) | N2—C11—C12 | 125.8 (2) |
C11—N2—C10 | 119.1 (2) | N2—C11—H11A | 117.1 |
C11—N2—Cu1 | 125.51 (17) | C12—C11—H11A | 117.1 |
C10—N2—Cu1 | 115.01 (17) | C13—C12—C17 | 120.0 (2) |
O1—C1—C2 | 118.3 (2) | C13—C12—C11 | 116.9 (2) |
O1—C1—C6 | 124.7 (2) | C17—C12—C11 | 123.1 (2) |
C2—C1—C6 | 117.0 (2) | C14—C13—C12 | 120.4 (2) |
C3—C2—C1 | 122.0 (3) | C14—C13—H13A | 119.8 |
C3—C2—H2A | 119.0 | C12—C13—H13A | 119.8 |
C1—C2—H2A | 119.0 | C13—C14—C15 | 120.7 (3) |
C2—C3—C4 | 119.7 (3) | C13—C14—Cl2 | 119.7 (2) |
C2—C3—H3A | 120.1 | C15—C14—Cl2 | 119.6 (2) |
C4—C3—H3A | 120.1 | C16—C15—C14 | 119.9 (3) |
C5—C4—C3 | 120.6 (3) | C16—C15—H15A | 120.1 |
C5—C4—Cl1 | 119.9 (2) | C14—C15—H15A | 120.1 |
C3—C4—Cl1 | 119.5 (2) | C15—C16—C17 | 121.8 (2) |
C4—C5—C6 | 120.7 (3) | C15—C16—H16A | 119.1 |
C4—C5—H5A | 119.6 | C17—C16—H16A | 119.1 |
C6—C5—H5A | 119.6 | O2—C17—C16 | 118.5 (2) |
C5—C6—C1 | 119.9 (2) | O2—C17—C12 | 124.3 (2) |
C5—C6—C7 | 117.3 (2) | C16—C17—C12 | 117.2 (2) |
C1—C6—C7 | 122.8 (2) | C9—C18—H18A | 109.5 |
N1—C7—C6 | 125.4 (2) | C9—C18—H18B | 109.5 |
N1—C7—H7A | 117.3 | H18A—C18—H18B | 109.5 |
C6—C7—H7A | 117.3 | C9—C18—H18C | 109.5 |
N1—C8—C9 | 113.3 (2) | H18A—C18—H18C | 109.5 |
N1—C8—H8A | 108.9 | H18B—C18—H18C | 109.5 |
C9—C8—H8A | 108.9 | C9—C19—H19A | 109.5 |
N1—C8—H8B | 108.9 | C9—C19—H19B | 109.5 |
C9—C8—H8B | 108.9 | H19A—C19—H19B | 109.5 |
H8A—C8—H8B | 107.7 | C9—C19—H19C | 109.5 |
C18—C9—C19 | 111.0 (3) | H19A—C19—H19C | 109.5 |
C18—C9—C10 | 106.7 (2) | H19B—C19—H19C | 109.5 |
O2—Cu1—O1—C1 | −172.8 (2) | C8—N1—C7—C6 | 176.8 (2) |
N2—Cu1—O1—C1 | 85.3 (3) | Cu1—N1—C7—C6 | 1.2 (4) |
N1—Cu1—O1—C1 | −13.0 (2) | C5—C6—C7—N1 | 176.0 (2) |
O1—Cu1—O2—C17 | −153.3 (2) | C1—C6—C7—N1 | −7.1 (4) |
N2—Cu1—O2—C17 | 0.1 (2) | C7—N1—C8—C9 | 111.5 (3) |
N1—Cu1—O2—C17 | 101.4 (3) | Cu1—N1—C8—C9 | −72.4 (3) |
O2—Cu1—N1—C7 | 112.0 (3) | N1—C8—C9—C18 | −87.2 (3) |
O1—Cu1—N1—C7 | 6.9 (2) | N1—C8—C9—C19 | 151.7 (3) |
N2—Cu1—N1—C7 | −146.2 (2) | N1—C8—C9—C10 | 30.7 (3) |
O2—Cu1—N1—C8 | −63.9 (3) | C11—N2—C10—C9 | 114.9 (3) |
O1—Cu1—N1—C8 | −168.88 (17) | Cu1—N2—C10—C9 | −71.5 (3) |
N2—Cu1—N1—C8 | 38.01 (18) | C18—C9—C10—N2 | 161.2 (2) |
O2—Cu1—N2—C11 | 0.1 (2) | C19—C9—C10—N2 | −78.2 (3) |
O1—Cu1—N2—C11 | 101.7 (3) | C8—C9—C10—N2 | 41.4 (3) |
N1—Cu1—N2—C11 | −159.3 (2) | C10—N2—C11—C12 | 173.6 (2) |
O2—Cu1—N2—C10 | −172.92 (17) | Cu1—N2—C11—C12 | 0.8 (4) |
O1—Cu1—N2—C10 | −71.3 (3) | N2—C11—C12—C13 | −179.3 (3) |
N1—Cu1—N2—C10 | 27.62 (18) | N2—C11—C12—C17 | −2.0 (4) |
Cu1—O1—C1—C2 | −168.66 (18) | C17—C12—C13—C14 | −0.1 (4) |
Cu1—O1—C1—C6 | 11.3 (4) | C11—C12—C13—C14 | 177.2 (3) |
O1—C1—C2—C3 | −178.2 (2) | C12—C13—C14—C15 | −0.5 (5) |
C6—C1—C2—C3 | 1.8 (4) | C12—C13—C14—Cl2 | −179.4 (2) |
C1—C2—C3—C4 | 0.2 (4) | C13—C14—C15—C16 | 0.3 (5) |
C2—C3—C4—C5 | −1.3 (4) | Cl2—C14—C15—C16 | 179.2 (2) |
C2—C3—C4—Cl1 | 177.0 (2) | C14—C15—C16—C17 | 0.5 (5) |
C3—C4—C5—C6 | 0.4 (4) | Cu1—O2—C17—C16 | 177.33 (19) |
Cl1—C4—C5—C6 | −177.9 (2) | Cu1—O2—C17—C12 | −1.2 (4) |
C4—C5—C6—C1 | 1.7 (4) | C15—C16—C17—O2 | −179.7 (3) |
C4—C5—C6—C7 | 178.7 (2) | C15—C16—C17—C12 | −1.0 (4) |
O1—C1—C6—C5 | 177.4 (2) | C13—C12—C17—O2 | 179.4 (2) |
C2—C1—C6—C5 | −2.7 (4) | C11—C12—C17—O2 | 2.2 (4) |
O1—C1—C6—C7 | 0.5 (4) | C13—C12—C17—C16 | 0.8 (4) |
C2—C1—C6—C7 | −179.6 (2) | C11—C12—C17—C16 | −176.3 (2) |
Cg is centroid of Cu1/O2/C17/C12/C11/N2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C16—H16A···O2i | 0.93 | 2.46 | 3.367 (3) | 165 |
C10—H10B···Cgii | 0.97 | 2.65 | 3.452 (3) | 140 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C19H18Cl2N2O2)] |
Mr | 440.79 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 9.4213 (12), 9.5718 (13), 11.4392 (15) |
α, β, γ (°) | 74.478 (10), 78.635 (10), 73.339 (10) |
V (Å3) | 944.1 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.46 |
Crystal size (mm) | 0.23 × 0.12 × 0.08 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.731, 0.893 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8620, 4302, 3369 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.098, 1.00 |
No. of reflections | 4302 |
No. of parameters | 236 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.46 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg is centroid of Cu1/O2/C17/C12/C11/N2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C16—H16A···O2i | 0.93 | 2.46 | 3.367 (3) | 164.5 |
C10—H10B···Cgii | 0.97 | 2.65 | 3.452 (3) | 140 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1. |
Acknowledgements
HK and FG thanks PNU for the financial support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Blower, P. J. (1998). Transition Met. Chem., 23, 109–112. CrossRef CAS Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ghaemi, A., Rayati, S., Elahi, E., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m1445–m1446. Web of Science CSD CrossRef IUCr Journals Google Scholar
Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69. Google Scholar
Kargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, m941. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kargar, H., Kia, R., Sharafi, Z. & Tahir, M. N. (2012). Acta Cryst. E68, m82. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with ease of preparation and structural variations (Granovski et al., 1993; Blower et al., (1998). In continuation of our work on the crystal structure of Schiff base metal complexes (Kargar et al., 2012; Kargar et al., 2011; Ghaemi, et al., (2011), we have determined the X-ray structure of the title compound.
The asymmetric unit of the title compound, Fig. 1, comprises a Schiff base complex. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to those in related structures (Kargar et al., 2012; Kargar et al., 2011; Ghaemi, et al., (2011).
The coordination geometry of the CuII ion is distorted square-planar which is supported by the N2O2 donor atoms of the coordinated Schiff base ligand. The dihedral angle between the substituted benzene rings is 36.86 (14)°. In the crystal, molecules are linked by a pair of weak C—H···O hydrogen bonds, forming inversion dimers (Table 1, Fig. 2). The crystal structure is further stabilized by intermolecular π–π interactions [Cg1···Cg2iii = 3.7279 (16)Å; (iii) 1 - x, -y, 2 - z; Cg1 and Cg2 are centroids of the Cu1/O1/C1/C6/C7/N1 and C1–C6 rings] and C—H···π interactions (Table 1).