organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Andirobin from X. moluccensis

aDepartment of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand, bDepartment of Chemistry, Faculty of Science, Mahanakorn University of Technology, Bangkok 10530, Thailand, cResearch Centre of Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand, and dCenter for Petroleum, Petrochemicals, and Advanced Materials, Chulalongkorn University, Bangkok 10330, Thailand
*Correspondence e-mail: nongnuj.j@chula.ac.th

(Received 16 April 2012; accepted 19 June 2012; online 25 July 2012)

The title compound (systematic name: methyl 2-{(1R,2R)-2-[(1aS,4S,4aS,8aS)-4-(furan-3-yl)-4a-methyl-8-methyl­ene-2-oxoocta­hydro­oxireno[2,3-d]isochromen-7-yl]-2,6,6-trimethyl-5-oxocyclo­hex-3-en-1-yl}acetate), C27H32O7, was isolated from X. moluccensis seeds from Thailand. The conformations of the six-membered rings are distorted half-chair, chair and half-chair for the isolated cyclo­hexane, fused cyclo­hexane and lactone rings, respectively. In addition, the lactone ring bears in an equatorial orientation an essentially planar furan ring (r.m.s. deviation = 0.004 Å), which forms an angle of 63.87 (13)° with the mean plane defined by the ten atoms of the two fused six-membered rings (r.m.s. deviation = 0.213 Å). The absolute configuration was fixed on the basis of literature data.

Related literature

For general background to limonoids and their activities, see: Alvi et al. (1991[Alvi, K. A., Crews, P., Aalbergsberg, B., Prasad, R., Simpson, J. & Weavers, R. T. (1991). Tetrahedron, 47, 8943-8948.]); Yu et al. (2007[Yu, S., Wang, X.-N., Fan, C.-Q., Lin, L.-P., Ding, J. & Yue, J.-M. (2007). J. Nat. Prod. 70, 682-685.]); Li et al. (2009[Li, M.-Y., Yang, X.-B., Pan, J.-Y., Feng, G., Xiao, Q., Sinkkonen, J., Satyanandamurty, T. & Wu, J. (2009). J. Nat. Prod. 72, 2110-2114.]). For related structures, see: Chanin et al. (2010[Chanin, S., Nuanyai, T., Teerawatananond, T., Pengpreecha, S., Muangsin, N. & Pudhom, K. (2010). J. Nat. Prod. 73, 1456-1459.]); Pudhom et al. (2009[Pudhom, K., Sommit, D., Nuclear, P., Ngamrojanavanich, N. & Petsom, A. (2009). J. Nat. Prod. 72, 2188-2191.], 2010[Pudhom, K., Sommit, D., Nuclear, P., Ngamrojanavanich, N. & Petsom, A. (2010). J. Nat. Prod. 73, 263-269.]). For the bioactivity of limonoids, see: Koul et al. (2004[Koul, O., Sing, G., Singh, R., Daniewski, W. M. & Berlozecki, S. (2004). J. Biosci. 29, 409-416.]); Endo et al. (2002[Endo, T., Kita, M., Shimada, T., Moriguchi, T., Hidaki, T., Matsumoto, R., Hasegawa, S. & Omura, M. (2002). Plant Biotechnol. 19, 397-403.]); Nakagawa et al. (2001[Nakagawa, H., Duan, H. & Takaishi, Y. (2001). Chem. Pharm. Bull. 49, 649-651.]); Ravangpai et al. (2011[Ravangpai, W., Sommit, D., Teerawatananond, T., Sinpranee, N., Palaga, T., Pengpreecha, S., Muangsin, N. & Pudhom, K. (2011). Bioorg. Med. Chem. Lett. 21, 4485-4489.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C27H32O7

  • Mr = 468.53

  • Orthorhombic, P 21 21 21

  • a = 8.8125 (5) Å

  • b = 12.5907 (7) Å

  • c = 21.9393 (11) Å

  • V = 2434.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.48 × 0.40 × 0.36 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • 13719 measured reflections

  • 3132 independent reflections

  • 2725 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.117

  • S = 1.11

  • 5520 reflections

  • 312 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Limonoids are triterpene derivatives from a precursor with a 4,4,8-trimethyl-17-furanylsteroid skeleton. Limonoid examination of the Meliaceae family is of growing interest due to a range of biological activities, such as insect antifeedants and growth regulators, antibacterial, antifungal, antimalarial, anticancer, antiviral and anti-inflammatory activities (Koul et al., 2004; Endo et al., 2002; Nakagawa et al., 2001; Ravangpai, et al., 2011). The genus Xylocarpus (Meliaceae) has proved to be a rich source of an array of structurally diverse limonoids, including gedunin, andirobin, mexicanolide and phragmalin type limonoids, with a broad range of biological activities (Alvi et al., 1991; Yu et al., 2007; Li et al., 2009). We have recently reported the isolation and identification a number of limonoids from three Thai mangroves in this genus, X. granatum, X. moluccensis and X. rumphii (Chanin et al., 2010; Pudhom et al., 2009; Pudhom et al., 2010). Herein, we report the complete assignments of NMR and the crystal structure of the title compound isolated from X. moluccensis seeds.

In the molecular structure, the conformation of the six-membered rings are distorted half-chair, chair and half-chair for the isolated cyclohenane, fused cyclohexane and lactone ring respectively (Cremer & Pople, 1975). In addition, the lactone ring bears in equatorial orientation a planar furan ring (r.m.s. deviation= 0.004 Å) which form an angle of 63.87 (13)o with the mean square plane (r.m.s. deviation Å) defined by the ten atoms of the two fused six-membered rings.

Related literature top

For general background to limonoids and their activities, see: Alvi et al. (1991); Yu et al. (2007); Li et al. (2009). For related structures, see: Chanin et al. (2010); Pudhom et al. (2009, 2010). For the bioactivity of limonoids, see: Koul et al. (2004); Endo et al. (2002); Nakagawa et al. (2001); Ravangpai, et al. (2011). For puckering parameters, see:Cremer & Pople (1975).

Experimental top

General Experiment Procedures. Melting point was measured using a Fisher-Johns melting point apparatus. NMR spectra were recorded with a Bruker AV400 (1H, 400 MHz; 13C, 100 MHz) spectrometer using tetramethylsilane as an internal standard. Mass spectra were obtained from a Bruker micrOTOF mass spectrometer.

Plant Material. Fruits of X. moluccensis were collected from Surat Thani province, Thailand, in January 2010. Plant materials were identified by Royal Forest Department, Bangkok, Thailand.

Extraction and Isolation of Andirobin (1). Air-dried powdered seeds of X. moluccensis (2 kg) were extracted with MeOH (5L x 2, each for two days) at room temperature. Extracts were pooled and the solvent were removed under reduced pressure. The combined MeOH extract was then suspended in water and partitioned with EtOAc. The EtOAc crude extract obtained (30 g) was chromatographed on a sililca gel column eluted with a gradient of acetone-hexane (from 1:9 to 1:0) to yield 12 fractions. Fraction 2 was further purified by silica gel column chromatography eluting with a 1:9 mixture of acetone-hexane and recrystallized from MeOH to afford the title compound (1, 25.0 mg).

Andirobin (1): colorless crystals; 1H NMR (400 MHz, CDCl3) d 7.34 (1H, s, H-23), 7.33 (1H, s, H-21), 7.07 (1H, d, J = 10.4 Hz, H-1), 6.27 (1H, s, H-22), 5.99 (1H, d, J = 10.4 Hz, H-2), 5.41 (1H, s, H-17), 5.30 (1H, s, H-30a), 5.20 (1H, s, H-30b), 3.97 (1H, s, H-15), 3.64 (3H, s, 7-COOCH3), 2.62 (1H, dd, J = 3.2, 6.8 Hz, H-5), 2.44 (1H, dd, J = 7.2, 17.2 Hz, H-6a), 2.39 (1H, d, J = 6.8 Hz, H-9), 2.28 (1H, dd, J = 3.2, 17.2 Hz, H-6 b), 1.90 (1H, m, H-11a), 1.73 (1H, m, H-11b), 1.60 (1H, m, H-12a), 1.16 (1H, m, H-12b), 1.04 (3H, s, 28-CH3), 1.01 (3H, s, 29-CH3), 0.90 (3H, s, 19-CH3), 0.87 (3H, s, 18-CH3);

13C NMR (100 MHz, CDCl3) d 203.7 (C=O, C-3), 174.3 (C=O, C-7), 166.7 (C=O, C-16), 153.5 (CH, C-1), 143.2 (CH, C-23), 140.9 (CH, C-21), 138.9 (C, C-8), 125.7 (CH, C-2), 122.3 (CH2, C-30), 119.8 (C, C-20), 109.7 (CH, C-22), 77.4 (CH, C-15), 67.8 (C, C-14), 55.5 (CH, C-17), 52.1 (CH3, 7-COOCH3), 48.8 (CH, C-9), 46.1 (C, C-4), 43.1 (C, C-10), 42.8 (CH, C-5), 38.6 (C, C-13), 31.5 (CH2, C-6), 29.5 (CH2, C-12), 22.7 (CH3, C-29), 22.5 (CH3, C-28), 21.3 (CH2, C-11), 20.2 (CH3, C-19), 14.6 (CH3, C-18).

Refinement top

All H atoms were geometrically positioned and treated as riding atoms with distances C—H = 0.96 Å (CH3), 0.97 Å (CH2), 0.93 Å (CH), and Uiso(H) = 1.20 Ueq(C) for methylene and aromatic, 1.50 Ueq(C) for methyl. The absolute structure could not be determined from the X-ray analysis, but it was known from earlier work on related compounds (e.g. Alvi et al., 1991, Yu et al., 2007 and Li et al., 2009). 2388 Friedel pairs were therefore merged before the final refinement.

The maximum residual density ( 0.68 eÅ3) is larger than normally expected. However, the nearest atom to the corresponding minimum is O5 at 2.74 Å, which seems to indicate that de residual density can be associated to unmodeled disordered solvent molecules.

Structure description top

Limonoids are triterpene derivatives from a precursor with a 4,4,8-trimethyl-17-furanylsteroid skeleton. Limonoid examination of the Meliaceae family is of growing interest due to a range of biological activities, such as insect antifeedants and growth regulators, antibacterial, antifungal, antimalarial, anticancer, antiviral and anti-inflammatory activities (Koul et al., 2004; Endo et al., 2002; Nakagawa et al., 2001; Ravangpai, et al., 2011). The genus Xylocarpus (Meliaceae) has proved to be a rich source of an array of structurally diverse limonoids, including gedunin, andirobin, mexicanolide and phragmalin type limonoids, with a broad range of biological activities (Alvi et al., 1991; Yu et al., 2007; Li et al., 2009). We have recently reported the isolation and identification a number of limonoids from three Thai mangroves in this genus, X. granatum, X. moluccensis and X. rumphii (Chanin et al., 2010; Pudhom et al., 2009; Pudhom et al., 2010). Herein, we report the complete assignments of NMR and the crystal structure of the title compound isolated from X. moluccensis seeds.

In the molecular structure, the conformation of the six-membered rings are distorted half-chair, chair and half-chair for the isolated cyclohenane, fused cyclohexane and lactone ring respectively (Cremer & Pople, 1975). In addition, the lactone ring bears in equatorial orientation a planar furan ring (r.m.s. deviation= 0.004 Å) which form an angle of 63.87 (13)o with the mean square plane (r.m.s. deviation Å) defined by the ten atoms of the two fused six-membered rings.

For general background to limonoids and their activities, see: Alvi et al. (1991); Yu et al. (2007); Li et al. (2009). For related structures, see: Chanin et al. (2010); Pudhom et al. (2009, 2010). For the bioactivity of limonoids, see: Koul et al. (2004); Endo et al. (2002); Nakagawa et al. (2001); Ravangpai, et al. (2011). For puckering parameters, see:Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997; software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids drawn at the 30% probability level.
methyl 2-{(1R,2R)-2-[(1aS,4S,4aS,8aS)- 4-(furan-3-yl)-4a-methyl-8-methylene-2- oxooctahydrooxireno[2,3-d]isochromen-7-yl]-2,6,6-trimethyl- 5-oxocyclohex-3-en-1-yl}acetate top
Crystal data top
C27H32O7Z = 4
Mr = 468.53F(000) = 1000
Orthorhombic, P212121Dx = 1.278 Mg m3
Hall symbol: P 2ac 2abMo Kα radiation, λ = 0.71073 Å
a = 8.8125 (5) ŵ = 0.09 mm1
b = 12.5907 (7) ÅT = 296 K
c = 21.9393 (11) ÅPrism, colourless
V = 2434.3 (2) Å30.48 × 0.40 × 0.36 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2725 reflections with I > 2σ(I)
Radiation source: Mo KαRint = 0.020
Graphite monochromatorθmax = 27.5°, θmin = 1.9°
φ and ω scansh = 117
13719 measured reflectionsk = 1515
3132 independent reflectionsl = 2819
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0714P)2 + 0.1995P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.117(Δ/σ)max = 0.014
S = 1.11Δρmax = 0.68 e Å3
5520 reflectionsΔρmin = 0.18 e Å3
312 parameters
Crystal data top
C27H32O7V = 2434.3 (2) Å3
Mr = 468.53Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.8125 (5) ŵ = 0.09 mm1
b = 12.5907 (7) ÅT = 296 K
c = 21.9393 (11) Å0.48 × 0.40 × 0.36 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2725 reflections with I > 2σ(I)
13719 measured reflectionsRint = 0.020
3132 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.11Δρmax = 0.68 e Å3
5520 reflectionsΔρmin = 0.18 e Å3
312 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8749 (3)0.19440 (18)0.08892 (10)0.0410 (5)
H10.78680.18700.06600.049*
C20.9926 (3)0.2397 (2)0.06213 (12)0.0504 (6)
H20.98420.25700.02110.060*
C31.1348 (3)0.2640 (2)0.09316 (12)0.0487 (6)
C41.1303 (3)0.25998 (19)0.16248 (12)0.0427 (5)
C51.0339 (2)0.16189 (17)0.18228 (10)0.0344 (4)
H51.08900.10030.16640.041*
C61.0335 (3)0.1469 (2)0.25150 (11)0.0417 (5)
H6A1.04240.21590.27080.050*
H6B0.93690.11660.26360.050*
C71.1586 (3)0.07683 (19)0.27427 (10)0.0406 (5)
C80.6587 (2)0.00557 (17)0.15184 (10)0.0352 (4)
C90.8277 (2)0.03182 (16)0.15559 (9)0.0324 (4)
H90.85980.00730.19600.039*
C100.8716 (2)0.15387 (17)0.15342 (10)0.0338 (4)
C110.9130 (2)0.04026 (19)0.10972 (10)0.0377 (5)
H11A1.01700.01560.10680.045*
H11B0.91560.11180.12610.045*
C120.8468 (2)0.04512 (19)0.04580 (10)0.0364 (4)
H12A0.90240.09750.02230.044*
H12B0.86060.02330.02620.044*
C130.6761 (2)0.07398 (16)0.04482 (9)0.0321 (4)
C140.5934 (2)0.00153 (17)0.08910 (10)0.0338 (4)
C150.4320 (2)0.0194 (2)0.07674 (11)0.0436 (5)
H150.36700.03150.11230.052*
C160.3595 (3)0.0313 (2)0.02300 (11)0.0466 (6)
C170.6142 (2)0.05036 (19)0.01938 (10)0.0369 (5)
H170.63510.02430.02880.044*
C180.6499 (3)0.18975 (18)0.06402 (11)0.0447 (5)
H18A0.54470.20740.05880.067*
H18B0.67760.19840.10600.067*
H18C0.71090.23580.03920.067*
C190.7500 (3)0.21722 (19)0.18871 (12)0.0447 (6)
H19A0.78650.28780.19640.067*
H19B0.72910.18250.22670.067*
H19C0.65870.22080.16490.067*
C200.6791 (3)0.11713 (19)0.06933 (10)0.0394 (5)
C210.7912 (3)0.0869 (2)0.10764 (12)0.0569 (7)
H210.83800.02070.10700.068*
C220.6448 (4)0.2222 (2)0.08653 (13)0.0603 (7)
H220.57270.26590.06840.072*
C230.7334 (4)0.2479 (3)0.13315 (12)0.0614 (8)
H230.73180.31290.15330.074*
C281.0646 (3)0.3679 (2)0.18309 (17)0.0640 (8)
H28A1.04570.36620.22620.096*
H28B0.97130.38130.16180.096*
H28C1.13600.42330.17410.096*
C291.2920 (3)0.2503 (2)0.18786 (14)0.0534 (6)
H29A1.33220.18160.17800.080*
H29B1.28980.25900.23130.080*
H29C1.35490.30430.17010.080*
C300.5775 (3)0.0189 (2)0.20065 (11)0.0503 (6)
H30A0.47740.04110.19630.060*
H30B0.62050.01390.23920.060*
C311.3128 (4)0.0371 (3)0.35953 (15)0.0744 (9)
H31A1.27290.03300.36580.112*
H31B1.34110.06740.39800.112*
H31C1.40040.03330.33360.112*
O10.8261 (3)0.1661 (2)0.14718 (10)0.0712 (6)
O20.44932 (17)0.06685 (16)0.02238 (8)0.0484 (4)
O30.54407 (18)0.09958 (13)0.06392 (8)0.0427 (4)
O40.22495 (19)0.0432 (2)0.01901 (10)0.0681 (6)
O51.2467 (2)0.2941 (2)0.06570 (11)0.0795 (7)
O61.2129 (2)0.00409 (15)0.24700 (8)0.0535 (4)
O71.1985 (2)0.10284 (18)0.33109 (8)0.0591 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0448 (12)0.0358 (11)0.0423 (12)0.0015 (10)0.0057 (10)0.0053 (9)
C20.0575 (14)0.0491 (14)0.0446 (13)0.0022 (12)0.0010 (11)0.0135 (11)
C30.0472 (13)0.0420 (12)0.0571 (15)0.0019 (11)0.0068 (12)0.0113 (11)
C40.0369 (10)0.0364 (11)0.0549 (14)0.0032 (9)0.0027 (10)0.0047 (10)
C50.0313 (9)0.0342 (10)0.0377 (11)0.0007 (9)0.0029 (9)0.0039 (9)
C60.0383 (11)0.0486 (13)0.0380 (11)0.0017 (10)0.0011 (10)0.0083 (10)
C70.0340 (10)0.0505 (13)0.0373 (11)0.0068 (10)0.0002 (9)0.0020 (10)
C80.0333 (9)0.0357 (10)0.0368 (10)0.0013 (9)0.0054 (9)0.0015 (9)
C90.0317 (9)0.0339 (10)0.0316 (9)0.0027 (8)0.0000 (8)0.0026 (8)
C100.0317 (9)0.0330 (10)0.0368 (10)0.0028 (8)0.0011 (9)0.0006 (8)
C110.0320 (9)0.0398 (11)0.0414 (11)0.0074 (9)0.0018 (9)0.0077 (10)
C120.0293 (9)0.0411 (11)0.0386 (10)0.0025 (9)0.0041 (9)0.0052 (9)
C130.0306 (9)0.0333 (10)0.0325 (10)0.0015 (8)0.0019 (8)0.0001 (8)
C140.0295 (9)0.0351 (10)0.0367 (10)0.0001 (8)0.0056 (8)0.0020 (9)
C150.0309 (10)0.0559 (14)0.0438 (12)0.0045 (10)0.0045 (9)0.0038 (11)
C160.0320 (10)0.0609 (15)0.0470 (13)0.0008 (11)0.0005 (10)0.0015 (11)
C170.0299 (9)0.0444 (11)0.0365 (10)0.0002 (9)0.0006 (8)0.0017 (10)
C180.0554 (13)0.0355 (11)0.0433 (12)0.0041 (11)0.0017 (11)0.0028 (9)
C190.0380 (11)0.0396 (12)0.0565 (14)0.0083 (10)0.0023 (11)0.0089 (11)
C200.0365 (10)0.0490 (12)0.0327 (10)0.0007 (10)0.0034 (9)0.0000 (10)
C210.0575 (15)0.0646 (16)0.0486 (14)0.0055 (14)0.0143 (13)0.0092 (13)
C220.0700 (18)0.0625 (16)0.0485 (14)0.0169 (15)0.0043 (14)0.0103 (13)
C230.079 (2)0.0610 (17)0.0440 (14)0.0081 (16)0.0053 (14)0.0161 (13)
C280.0568 (16)0.0386 (13)0.097 (2)0.0021 (12)0.0090 (16)0.0122 (14)
C290.0393 (11)0.0538 (15)0.0671 (16)0.0080 (12)0.0017 (12)0.0075 (13)
C300.0443 (12)0.0640 (16)0.0426 (12)0.0058 (12)0.0092 (11)0.0043 (12)
C310.0599 (16)0.102 (3)0.0610 (17)0.0075 (19)0.0247 (15)0.0005 (18)
O10.0636 (12)0.0953 (17)0.0548 (11)0.0116 (13)0.0136 (10)0.0144 (11)
O20.0303 (7)0.0707 (12)0.0441 (9)0.0009 (8)0.0025 (7)0.0084 (8)
O30.0379 (7)0.0408 (8)0.0493 (9)0.0077 (7)0.0028 (7)0.0008 (7)
O40.0308 (8)0.1065 (17)0.0671 (12)0.0061 (10)0.0017 (9)0.0101 (13)
O50.0559 (12)0.110 (2)0.0727 (13)0.0154 (12)0.0136 (11)0.0291 (14)
O60.0519 (10)0.0581 (11)0.0504 (10)0.0105 (9)0.0017 (8)0.0012 (9)
O70.0537 (10)0.0788 (13)0.0450 (10)0.0036 (10)0.0149 (8)0.0079 (9)
Geometric parameters (Å, º) top
C1—C21.321 (3)C14—C151.471 (3)
C1—C101.505 (3)C15—O31.440 (3)
C1—H10.9300C15—C161.485 (3)
C2—C31.459 (4)C15—H150.9800
C2—H20.9300C16—O41.198 (3)
C3—O51.215 (3)C16—O21.348 (3)
C3—C41.522 (4)C17—O21.469 (2)
C4—C291.534 (3)C17—C201.495 (3)
C4—C281.545 (3)C17—H170.9800
C4—C51.561 (3)C18—H18A0.9600
C5—C61.530 (3)C18—H18B0.9600
C5—C101.567 (3)C18—H18C0.9600
C5—H50.9800C19—H19A0.9600
C6—C71.498 (3)C19—H19B0.9600
C6—H6A0.9700C19—H19C0.9600
C6—H6B0.9700C20—C211.351 (4)
C7—O61.194 (3)C20—C221.408 (4)
C7—O71.336 (3)C21—O11.358 (3)
C8—C301.324 (3)C21—H210.9300
C8—C141.495 (3)C22—C231.327 (4)
C8—C91.528 (3)C22—H220.9300
C9—C111.550 (3)C23—O11.350 (4)
C9—C101.585 (3)C23—H230.9300
C9—H90.9800C28—H28A0.9600
C10—C191.545 (3)C28—H28B0.9600
C11—C121.520 (3)C28—H28C0.9600
C11—H11A0.9700C29—H29A0.9600
C11—H11B0.9700C29—H29B0.9600
C12—C131.547 (3)C29—H29C0.9600
C12—H12A0.9700C30—H30A0.9300
C12—H12B0.9700C30—H30B0.9300
C13—C141.519 (3)C31—O71.445 (4)
C13—C181.535 (3)C31—H31A0.9600
C13—C171.540 (3)C31—H31B0.9600
C14—O31.454 (3)C31—H31C0.9600
C2—C1—C10125.4 (2)C15—C14—C13116.97 (19)
C2—C1—H1117.3C8—C14—C13116.10 (17)
C10—C1—H1117.3O3—C15—C1459.93 (13)
C1—C2—C3123.9 (2)O3—C15—C16116.2 (2)
C1—C2—H2118.1C14—C15—C16119.0 (2)
C3—C2—H2118.1O3—C15—H15116.5
O5—C3—C2122.1 (2)C14—C15—H15116.5
O5—C3—C4121.8 (3)C16—C15—H15116.5
C2—C3—C4115.9 (2)O4—C16—O2119.0 (2)
C3—C4—C29109.9 (2)O4—C16—C15122.5 (2)
C3—C4—C28105.8 (2)O2—C16—C15118.41 (18)
C29—C4—C28108.2 (2)O2—C17—C20105.46 (18)
C3—C4—C5108.59 (19)O2—C17—C13111.37 (17)
C29—C4—C5110.0 (2)C20—C17—C13115.22 (18)
C28—C4—C5114.23 (19)O2—C17—H17108.2
C6—C5—C4112.02 (19)C20—C17—H17108.2
C6—C5—C10113.03 (17)C13—C17—H17108.2
C4—C5—C10115.81 (18)C13—C18—H18A109.5
C6—C5—H5104.9C13—C18—H18B109.5
C4—C5—H5104.9H18A—C18—H18B109.5
C10—C5—H5104.9C13—C18—H18C109.5
C7—C6—C5113.70 (19)H18A—C18—H18C109.5
C7—C6—H6A108.8H18B—C18—H18C109.5
C5—C6—H6A108.8C10—C19—H19A109.5
C7—C6—H6B108.8C10—C19—H19B109.5
C5—C6—H6B108.8H19A—C19—H19B109.5
H6A—C6—H6B107.7C10—C19—H19C109.5
O6—C7—O7123.4 (2)H19A—C19—H19C109.5
O6—C7—C6125.4 (2)H19B—C19—H19C109.5
O7—C7—C6111.1 (2)C21—C20—C22104.8 (2)
C30—C8—C14121.5 (2)C21—C20—C17125.2 (2)
C30—C8—C9122.2 (2)C22—C20—C17130.0 (2)
C14—C8—C9115.96 (17)C20—C21—O1110.9 (3)
C8—C9—C11108.14 (17)C20—C21—H21124.6
C8—C9—C10116.50 (17)O1—C21—H21124.6
C11—C9—C10115.45 (17)C23—C22—C20108.0 (3)
C8—C9—H9105.2C23—C22—H22126.0
C11—C9—H9105.2C20—C22—H22126.0
C10—C9—H9105.2C22—C23—O1110.2 (3)
C1—C10—C19108.03 (19)C22—C23—H23124.9
C1—C10—C5109.93 (18)O1—C23—H23124.9
C19—C10—C5113.42 (18)C4—C28—H28A109.5
C1—C10—C9111.20 (17)C4—C28—H28B109.5
C19—C10—C9108.42 (17)H28A—C28—H28B109.5
C5—C10—C9105.86 (16)C4—C28—H28C109.5
C12—C11—C9115.89 (17)H28A—C28—H28C109.5
C12—C11—H11A108.3H28B—C28—H28C109.5
C9—C11—H11A108.3C4—C29—H29A109.5
C12—C11—H11B108.3C4—C29—H29B109.5
C9—C11—H11B108.3H29A—C29—H29B109.5
H11A—C11—H11B107.4C4—C29—H29C109.5
C11—C12—C13113.28 (18)H29A—C29—H29C109.5
C11—C12—H12A108.9H29B—C29—H29C109.5
C13—C12—H12A108.9C8—C30—H30A120.0
C11—C12—H12B108.9C8—C30—H30B120.0
C13—C12—H12B108.9H30A—C30—H30B120.0
H12A—C12—H12B107.7O7—C31—H31A109.5
C14—C13—C18108.80 (18)O7—C31—H31B109.5
C14—C13—C17107.38 (17)H31A—C31—H31B109.5
C18—C13—C17112.39 (18)O7—C31—H31C109.5
C14—C13—C12108.47 (17)H31A—C31—H31C109.5
C18—C13—C12111.46 (19)H31B—C31—H31C109.5
C17—C13—C12108.19 (17)C23—O1—C21106.1 (2)
O3—C14—C1558.98 (15)C16—O2—C17120.06 (18)
O3—C14—C8114.37 (18)C15—O3—C1461.09 (14)
C15—C14—C8122.08 (19)C7—O7—C31116.5 (2)
O3—C14—C13115.22 (17)
C10—C1—C2—C34.6 (4)C9—C8—C14—C15153.4 (2)
C1—C2—C3—O5171.1 (3)C30—C8—C14—C13122.1 (2)
C1—C2—C3—C414.6 (4)C9—C8—C14—C1352.1 (3)
O5—C3—C4—C2924.3 (4)C18—C13—C14—O3151.59 (18)
C2—C3—C4—C29161.4 (2)C17—C13—C14—O329.7 (2)
O5—C3—C4—C2892.2 (3)C12—C13—C14—O387.0 (2)
C2—C3—C4—C2882.1 (3)C18—C13—C14—C1585.1 (2)
O5—C3—C4—C5144.7 (3)C17—C13—C14—C1536.8 (3)
C2—C3—C4—C541.0 (3)C12—C13—C14—C15153.5 (2)
C3—C4—C5—C6175.64 (19)C18—C13—C14—C870.8 (2)
C29—C4—C5—C655.3 (3)C17—C13—C14—C8167.32 (18)
C28—C4—C5—C666.5 (3)C12—C13—C14—C850.6 (2)
C3—C4—C5—C1052.7 (2)C8—C14—C15—O3101.0 (2)
C29—C4—C5—C10173.07 (19)C13—C14—C15—O3104.6 (2)
C28—C4—C5—C1065.1 (3)O3—C14—C15—C16105.2 (2)
C4—C5—C6—C790.5 (2)C8—C14—C15—C16153.8 (2)
C10—C5—C6—C7136.50 (19)C13—C14—C15—C160.6 (3)
C5—C6—C7—O631.4 (3)O3—C15—C16—O4132.8 (3)
C5—C6—C7—O7151.5 (2)C14—C15—C16—O4158.6 (3)
C30—C8—C9—C11127.1 (2)O3—C15—C16—O248.4 (3)
C14—C8—C9—C1147.0 (2)C14—C15—C16—O220.2 (4)
C30—C8—C9—C10100.9 (3)C14—C13—C17—O258.0 (2)
C14—C8—C9—C1084.9 (2)C18—C13—C17—O261.6 (2)
C2—C1—C10—C19118.2 (3)C12—C13—C17—O2174.94 (18)
C2—C1—C10—C56.1 (3)C14—C13—C17—C20178.09 (18)
C2—C1—C10—C9123.0 (3)C18—C13—C17—C2058.5 (3)
C6—C5—C10—C1166.66 (19)C12—C13—C17—C2065.0 (2)
C4—C5—C10—C135.5 (2)O2—C17—C20—C21137.5 (3)
C6—C5—C10—C1945.6 (3)C13—C17—C20—C2199.2 (3)
C4—C5—C10—C1985.6 (2)O2—C17—C20—C2244.4 (3)
C6—C5—C10—C973.1 (2)C13—C17—C20—C2278.9 (3)
C4—C5—C10—C9155.70 (18)C22—C20—C21—O10.5 (3)
C8—C9—C10—C181.7 (2)C17—C20—C21—O1179.0 (2)
C11—C9—C10—C146.8 (2)C21—C20—C22—C230.9 (3)
C8—C9—C10—C1936.9 (3)C17—C20—C22—C23179.3 (3)
C11—C9—C10—C19165.38 (18)C20—C22—C23—O10.9 (4)
C8—C9—C10—C5158.90 (17)C22—C23—O1—C210.6 (4)
C11—C9—C10—C572.6 (2)C20—C21—O1—C230.0 (3)
C8—C9—C11—C1248.3 (3)O4—C16—O2—C17178.2 (3)
C10—C9—C11—C1284.2 (2)C15—C16—O2—C173.0 (4)
C9—C11—C12—C1353.0 (3)C20—C17—O2—C16169.0 (2)
C11—C12—C13—C1450.4 (2)C13—C17—O2—C1643.4 (3)
C11—C12—C13—C1869.3 (2)C16—C15—O3—C14109.9 (2)
C11—C12—C13—C17166.60 (19)C8—C14—O3—C15114.1 (2)
C30—C8—C14—O399.9 (3)C13—C14—O3—C15107.6 (2)
C9—C8—C14—O385.9 (2)O6—C7—O7—C310.4 (4)
C30—C8—C14—C1532.5 (3)C6—C7—O7—C31176.7 (2)

Experimental details

Crystal data
Chemical formulaC27H32O7
Mr468.53
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)8.8125 (5), 12.5907 (7), 21.9393 (11)
V3)2434.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.48 × 0.40 × 0.36
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13719, 3132, 2725
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.117, 1.11
No. of reflections5520
No. of parameters312
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.18

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997, publCIF (Westrip, 2010).

 

Acknowledgements

Financial support from the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphisek Somphot Endowment Fund) and the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (AS613A), is gratefully acknowledged. The authors are also grateful for research funding from the Thai Government Stimulus Package 2 (TKK2555), under the Project for Establishment of a Comprehensive Center for Innovative Food, Health Products and Agriculture.

References

First citationAlvi, K. A., Crews, P., Aalbergsberg, B., Prasad, R., Simpson, J. & Weavers, R. T. (1991). Tetrahedron, 47, 8943–8948.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanin, S., Nuanyai, T., Teerawatananond, T., Pengpreecha, S., Muangsin, N. & Pudhom, K. (2010). J. Nat. Prod. 73, 1456–1459.  Web of Science PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEndo, T., Kita, M., Shimada, T., Moriguchi, T., Hidaki, T., Matsumoto, R., Hasegawa, S. & Omura, M. (2002). Plant Biotechnol. 19, 397–403.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKoul, O., Sing, G., Singh, R., Daniewski, W. M. & Berlozecki, S. (2004). J. Biosci. 29, 409–416.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, M.-Y., Yang, X.-B., Pan, J.-Y., Feng, G., Xiao, Q., Sinkkonen, J., Satyanandamurty, T. & Wu, J. (2009). J. Nat. Prod. 72, 2110–2114.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNakagawa, H., Duan, H. & Takaishi, Y. (2001). Chem. Pharm. Bull. 49, 649–651.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPudhom, K., Sommit, D., Nuclear, P., Ngamrojanavanich, N. & Petsom, A. (2009). J. Nat. Prod. 72, 2188–2191.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPudhom, K., Sommit, D., Nuclear, P., Ngamrojanavanich, N. & Petsom, A. (2010). J. Nat. Prod. 73, 263–269.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRavangpai, W., Sommit, D., Teerawatananond, T., Sinpranee, N., Palaga, T., Pengpreecha, S., Muangsin, N. & Pudhom, K. (2011). Bioorg. Med. Chem. Lett. 21, 4485–4489.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, S., Wang, X.-N., Fan, C.-Q., Lin, L.-P., Ding, J. & Yue, J.-M. (2007). J. Nat. Prod. 70, 682–685.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds