organic compounds
4-(Diphenylamino)benzaldehyde 4-phenylthiosemicarbazone
aDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo – CINN, C/ Julián Clavería, 8, 33006 Oviedo, Spain
*Correspondence e-mail: sgg@uniovi.es
The title molecule, C26H22N4S, is composed of three main parts, viz. a triphenylamine group is connected to a phenyl ring by a thiosemicarbazone moiety. The C= N double bond has an E conformation. The crystal packing is dominated by strong hydrogen bonds through the thiosemicarbazone moiety, with pairs of N—H⋯S hydrogen bonds linking the molecules to form inversion dimers with an R22(8) ring motif. An intramolecular N—H⋯N hydrogen bond is also present, generating an S(5) ring motif. Although the structure contains four phenyl rings, π–π stacking interactions are not formed between them, probably due to the conformation adopted by the triphenylamine group. However, a weak π–π stacking interaction is observed between the phenyl ring and the delocalized thiosemicarbazone moiety.
Related literature
For related compounds and their biological activity, see: Gupta et al. (2007); Lee et al. (2010); Odenike et al. (2008). For hydrogen-bond motifs, see Bernstein et al. (1995). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell CrysAlis RED (Oxford Diffraction, 2010); data reduction: CrysAlis RED; program(s) used to solve structure: SIR08 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009), PARST95 (Nardelli, 1995) and publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S160053681203053X/lr2069sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681203053X/lr2069Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S160053681203053X/lr2069Isup3.cml
A solution of 4-(diphenylamino)benzaldehyde (2.7333 g, 0.01 mol) and 4-phenylthiosemicarbazide (1.6723 g, 0.01 mol) in absolute ethanol (70 ml) was refluxed for 4 h in the presence of p-toluenesulfonic acid as catalyst, with continuous stirring. On cooling to room temperature the precipitate was filtered off, washed with copious cold ethanol and dried in air. Yellow single crystals of compound (I) were obtained after recrystallization from a solution in ethanol after 2 d.
All H atoms located at the difference Fourier maps and isotropically refined. At the end of the
the highest peak in the electron density was 0.201 eÅ -3, while the deepest hole was -0.291 eÅ -3.Thiosemicarbazones are a broad class of biologically active organic compounds with antibacterial (Gupta et al.,2007) and antitumoral (Odenike et al., 2008) properties. According to recent studies, apolar groups in thiosemicarbazone compounds enhanced in some cases the biological activity (Lee et al., 2010). Following this work line, we have synthesized and crystallized a new thiosemicarbazone (Fig. 1), which is composed of three main parts: triphenylamine group (R1R2R3 lipophylic domain) conected to phenyl ring (R4 -liphophilic group) by thiosemicarbazone moiety (H-bonding domain an and electron-donor group) (Fig. 2).
Molecule is the trans isomer with respect to the C═N double bond. The values of distances N(2)–N(3) length (1.372 (2) Å) and the dihedral angle C(8)═N(2)—N(3)—C(7) (175.71 (2)°) are similar to those found in CSD (Allen, 2002) for thiosemicarbazone systems [selected 371 hits, distance mean N—N is 1.374 Å and dihedral angle mean is 178.21°]. The N atom in the triaphenylamine is sp2 and the three benzene rings [(R1(C21–C26), R2(C15–C20 ), R3(C9–C14)] are twisted with respect to one another, with followed dihedral angle between rings [R1R2 = 66.82 (7)° R2R3 = 61.05 (7)° R1R3 = 71.07 (7) °].
Molecular crystals are dominated by strong hydrogen bonds interactions through thiosemicarbazone moiety, forming a centrosymmetry synthon through N(3)—H(27)···S(1) hydrogen bond, this interactions form a R22(8) graph set (Bernstein et al., 1995). Additional intramolecular hydrogen N(4)—H(28)···N(2) helps to stabilize the
(Fig. 3a and 3b).Taking into account geometrical values calculated with Platon program is not feasible the existence π–π interactions involved triaphenylamine group. However, we observed a weak π–π stacking interaction between phenyl ring (R4) and the thiosemicarbazone deslocalized system (C═N—NH—C═S—NH) with distance to N3 (3.834 (3) Å) and dihedral angle (4.68 (2)°) shown in Fig. 4.
For related compounds and their biological activity, see: Gupta et al. (2007); Lee et al. (2010); Odenike et al. (2008). For hydrogen-bond motifs, see Bernstein et al. (1995). For a description of the Cambridge Structural Database, see: Allen (2002).
Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell
CrysAlis RED (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SIR08 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009), PARST95 (Nardelli, 1995) and publCIF (Westrip, 2010).C26H22N4S | F(000) = 888 |
Mr = 422.55 | Dx = 1.234 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54180 Å |
Hall symbol: -P 2ybc | Cell parameters from 8693 reflections |
a = 13.6069 (3) Å | θ = 2.9–75.3° |
b = 15.2763 (3) Å | µ = 1.41 mm−1 |
c = 11.2778 (2) Å | T = 285 K |
β = 104.094 (2)° | Plate, dark yellow |
V = 2273.67 (8) Å3 | 0.17 × 0.09 × 0.05 mm |
Z = 4 |
Oxford Xcalibur diffractometer with Onyx Nova detector | 4623 independent reflections |
Radiation source: Nova (Cu) X-ray Source | 3535 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.067 |
Detector resolution: 8.2640 pixels mm-1 | θmax = 75.5°, θmin = 3.4° |
ω scans | h = −16→16 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −17→18 |
Tmin = 0.726, Tmax = 1.000 | l = −11→14 |
26370 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | All H-atom parameters refined |
wR(F2) = 0.149 | w = 1/[σ2(Fo2) + (0.0766P)2 + 0.2813P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
4623 reflections | Δρmax = 0.20 e Å−3 |
369 parameters | Δρmin = −0.29 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0012 (3) |
C26H22N4S | V = 2273.67 (8) Å3 |
Mr = 422.55 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 13.6069 (3) Å | µ = 1.41 mm−1 |
b = 15.2763 (3) Å | T = 285 K |
c = 11.2778 (2) Å | 0.17 × 0.09 × 0.05 mm |
β = 104.094 (2)° |
Oxford Xcalibur diffractometer with Onyx Nova detector | 4623 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 3535 reflections with I > 2σ(I) |
Tmin = 0.726, Tmax = 1.000 | Rint = 0.067 |
26370 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.149 | All H-atom parameters refined |
S = 1.07 | Δρmax = 0.20 e Å−3 |
4623 reflections | Δρmin = −0.29 e Å−3 |
369 parameters |
Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.36 (release 02-08-2010 CrysAlis171 .NET) (compiled Aug 2 2010,13:00:58) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.94600 (4) | 0.03619 (4) | 0.15627 (5) | 0.0689 (2) | |
N2 | 1.16947 (11) | 0.16240 (10) | 0.07520 (14) | 0.0504 (4) | |
N3 | 1.08689 (11) | 0.10941 (11) | 0.06823 (15) | 0.0522 (4) | |
N4 | 1.08031 (14) | 0.15773 (11) | 0.25732 (15) | 0.0591 (4) | |
N1 | 1.56053 (12) | 0.35772 (12) | −0.02307 (15) | 0.0597 (4) | |
C8 | 1.21068 (14) | 0.15830 (13) | −0.01584 (17) | 0.0520 (4) | |
C14 | 1.33120 (14) | 0.27924 (13) | 0.06329 (17) | 0.0527 (4) | |
C9 | 1.29891 (13) | 0.21151 (12) | −0.01924 (16) | 0.0490 (4) | |
C7 | 1.04293 (14) | 0.10515 (12) | 0.16271 (16) | 0.0510 (4) | |
C12 | 1.47208 (13) | 0.30889 (12) | −0.02447 (17) | 0.0508 (4) | |
C13 | 1.41611 (15) | 0.32736 (13) | 0.06068 (18) | 0.0534 (4) | |
C15 | 1.58656 (15) | 0.38294 (13) | −0.13237 (19) | 0.0554 (5) | |
C11 | 1.43998 (16) | 0.24198 (14) | −0.10803 (19) | 0.0611 (5) | |
C10 | 1.35392 (16) | 0.19418 (14) | −0.10567 (18) | 0.0585 (5) | |
C6 | 1.04960 (16) | 0.15504 (13) | 0.37043 (18) | 0.0573 (5) | |
C21 | 1.62500 (14) | 0.38028 (13) | 0.09250 (18) | 0.0559 (5) | |
C20 | 1.68751 (18) | 0.39145 (16) | −0.1348 (3) | 0.0717 (6) | |
C5 | 0.97506 (19) | 0.20986 (19) | 0.3890 (2) | 0.0749 (6) | |
C16 | 1.5132 (2) | 0.40044 (16) | −0.2379 (2) | 0.0706 (6) | |
C22 | 1.66006 (18) | 0.46481 (15) | 0.1163 (2) | 0.0680 (6) | |
C3 | 0.9924 (3) | 0.1471 (2) | 0.5872 (3) | 0.0880 (8) | |
C1 | 1.0965 (2) | 0.09751 (18) | 0.4592 (2) | 0.0832 (7) | |
C19 | 1.7123 (3) | 0.4176 (2) | −0.2411 (4) | 0.0966 (10) | |
C23 | 1.7227 (2) | 0.4862 (2) | 0.2285 (3) | 0.0841 (7) | |
C17 | 1.5399 (3) | 0.4254 (2) | −0.3436 (3) | 0.0895 (8) | |
C18 | 1.6401 (3) | 0.4340 (2) | −0.3447 (4) | 0.1005 (10) | |
C26 | 1.6521 (2) | 0.31817 (18) | 0.1832 (2) | 0.0818 (7) | |
C2 | 1.0684 (3) | 0.0947 (2) | 0.5689 (3) | 0.1006 (10) | |
C4 | 0.9469 (2) | 0.2052 (2) | 0.5001 (3) | 0.0877 (8) | |
C24 | 1.7493 (2) | 0.4241 (2) | 0.3180 (3) | 0.0984 (9) | |
C25 | 1.7131 (3) | 0.3415 (2) | 0.2959 (3) | 0.1070 (11) | |
H8 | 1.1832 (15) | 0.1157 (13) | −0.0856 (18) | 0.052 (5)* | |
H13 | 1.4370 (18) | 0.3751 (16) | 0.116 (2) | 0.069 (6)* | |
H10 | 1.3326 (17) | 0.1481 (15) | −0.163 (2) | 0.064 (6)* | |
H27 | 1.0675 (17) | 0.0693 (16) | −0.001 (2) | 0.069 (6)* | |
H14 | 1.2919 (17) | 0.2952 (15) | 0.123 (2) | 0.067 (6)* | |
H28 | 1.131 (2) | 0.1912 (18) | 0.249 (2) | 0.076 (7)* | |
H11 | 1.4793 (19) | 0.2228 (16) | −0.164 (2) | 0.076 (7)* | |
H22 | 1.639 (2) | 0.509 (2) | 0.055 (3) | 0.088 (8)* | |
H5 | 0.945 (2) | 0.249 (2) | 0.327 (3) | 0.094 (9)* | |
H20 | 1.737 (2) | 0.3775 (17) | −0.064 (2) | 0.076 (7)* | |
H16 | 1.446 (2) | 0.3934 (18) | −0.237 (2) | 0.085 (8)* | |
H1 | 1.157 (3) | 0.057 (2) | 0.454 (3) | 0.116 (10)* | |
H26 | 1.631 (2) | 0.259 (2) | 0.162 (3) | 0.099 (9)* | |
H23 | 1.743 (2) | 0.545 (2) | 0.249 (3) | 0.100 (9)* | |
H4 | 0.893 (3) | 0.242 (3) | 0.507 (3) | 0.127 (12)* | |
H3 | 0.970 (3) | 0.139 (2) | 0.657 (3) | 0.110 (10)* | |
H17 | 1.486 (2) | 0.4377 (19) | −0.416 (3) | 0.095 (9)* | |
H25 | 1.729 (2) | 0.295 (2) | 0.356 (3) | 0.114 (10)* | |
H18 | 1.650 (3) | 0.453 (2) | −0.425 (3) | 0.123 (11)* | |
H24 | 1.793 (3) | 0.435 (2) | 0.402 (3) | 0.117 (10)* | |
H2 | 1.094 (3) | 0.047 (3) | 0.627 (4) | 0.156 (15)* | |
H19 | 1.776 (3) | 0.418 (2) | −0.242 (3) | 0.115 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0620 (3) | 0.0902 (4) | 0.0645 (3) | −0.0305 (3) | 0.0346 (3) | −0.0166 (2) |
N2 | 0.0435 (8) | 0.0544 (9) | 0.0571 (9) | −0.0051 (6) | 0.0197 (7) | 0.0061 (6) |
N3 | 0.0470 (8) | 0.0611 (9) | 0.0538 (9) | −0.0103 (6) | 0.0227 (7) | 0.0001 (7) |
N4 | 0.0621 (10) | 0.0633 (10) | 0.0595 (10) | −0.0172 (8) | 0.0291 (8) | −0.0071 (7) |
N1 | 0.0513 (9) | 0.0729 (11) | 0.0580 (10) | −0.0204 (7) | 0.0194 (7) | 0.0007 (7) |
C8 | 0.0469 (10) | 0.0628 (11) | 0.0496 (10) | −0.0083 (8) | 0.0181 (8) | 0.0027 (8) |
C14 | 0.0495 (10) | 0.0655 (11) | 0.0478 (10) | −0.0069 (8) | 0.0208 (8) | −0.0009 (8) |
C9 | 0.0435 (9) | 0.0603 (10) | 0.0457 (9) | −0.0073 (7) | 0.0158 (7) | 0.0046 (7) |
C7 | 0.0456 (10) | 0.0591 (11) | 0.0518 (10) | −0.0002 (7) | 0.0187 (8) | 0.0028 (7) |
C12 | 0.0446 (9) | 0.0591 (10) | 0.0511 (10) | −0.0118 (7) | 0.0164 (8) | 0.0016 (7) |
C13 | 0.0527 (11) | 0.0601 (11) | 0.0504 (10) | −0.0097 (8) | 0.0180 (8) | −0.0041 (8) |
C15 | 0.0517 (10) | 0.0556 (10) | 0.0659 (12) | −0.0092 (8) | 0.0274 (9) | 0.0009 (8) |
C11 | 0.0612 (12) | 0.0715 (13) | 0.0593 (12) | −0.0200 (9) | 0.0315 (10) | −0.0112 (9) |
C10 | 0.0605 (12) | 0.0674 (12) | 0.0533 (11) | −0.0206 (9) | 0.0244 (9) | −0.0099 (9) |
C6 | 0.0601 (11) | 0.0618 (11) | 0.0555 (11) | −0.0156 (8) | 0.0248 (9) | −0.0101 (8) |
C21 | 0.0446 (10) | 0.0610 (11) | 0.0626 (11) | −0.0097 (8) | 0.0141 (8) | 0.0007 (8) |
C20 | 0.0556 (13) | 0.0799 (15) | 0.0902 (17) | −0.0125 (10) | 0.0380 (13) | −0.0069 (12) |
C5 | 0.0682 (14) | 0.0901 (17) | 0.0703 (15) | 0.0024 (12) | 0.0241 (12) | −0.0077 (12) |
C16 | 0.0648 (14) | 0.0816 (15) | 0.0711 (14) | −0.0047 (11) | 0.0274 (11) | 0.0119 (11) |
C22 | 0.0681 (14) | 0.0619 (13) | 0.0732 (14) | −0.0122 (10) | 0.0160 (11) | −0.0012 (10) |
C3 | 0.109 (2) | 0.100 (2) | 0.0674 (16) | −0.0263 (16) | 0.0463 (16) | −0.0164 (14) |
C1 | 0.109 (2) | 0.0796 (16) | 0.0722 (15) | 0.0111 (14) | 0.0446 (14) | 0.0038 (11) |
C19 | 0.088 (2) | 0.100 (2) | 0.125 (3) | −0.0330 (16) | 0.071 (2) | −0.0205 (18) |
C23 | 0.0795 (17) | 0.0834 (18) | 0.0887 (18) | −0.0274 (13) | 0.0189 (13) | −0.0199 (14) |
C17 | 0.111 (2) | 0.0909 (19) | 0.0725 (17) | −0.0087 (15) | 0.0344 (16) | 0.0171 (13) |
C18 | 0.133 (3) | 0.097 (2) | 0.094 (2) | −0.0332 (18) | 0.070 (2) | 0.0010 (16) |
C26 | 0.0736 (15) | 0.0710 (15) | 0.0876 (17) | −0.0168 (12) | −0.0056 (12) | 0.0146 (12) |
C2 | 0.144 (3) | 0.097 (2) | 0.0718 (17) | 0.0073 (19) | 0.0487 (18) | 0.0130 (14) |
C4 | 0.0747 (17) | 0.111 (2) | 0.0872 (19) | −0.0094 (15) | 0.0392 (15) | −0.0299 (16) |
C24 | 0.0808 (18) | 0.124 (3) | 0.0789 (18) | −0.0342 (17) | −0.0022 (14) | −0.0033 (16) |
C25 | 0.097 (2) | 0.111 (2) | 0.091 (2) | −0.0268 (17) | −0.0221 (16) | 0.0267 (17) |
S1—C7 | 1.6757 (19) | C21—C26 | 1.378 (3) |
N2—C8 | 1.286 (2) | C21—C22 | 1.380 (3) |
N2—N3 | 1.372 (2) | C20—C19 | 1.380 (4) |
N3—C7 | 1.345 (2) | C20—H20 | 0.94 (3) |
N3—N2 | 1.372 (2) | C5—C4 | 1.399 (4) |
N3—H27 | 0.98 (2) | C5—H5 | 0.94 (3) |
N4—C7 | 1.333 (2) | C16—C17 | 1.382 (3) |
N4—C6 | 1.436 (2) | C16—H16 | 0.92 (3) |
N4—H28 | 0.88 (3) | C22—C23 | 1.381 (4) |
N1—C12 | 1.413 (2) | C22—H22 | 0.96 (3) |
N1—C15 | 1.416 (2) | C3—C4 | 1.357 (5) |
N1—C21 | 1.425 (3) | C3—C2 | 1.362 (5) |
C8—N2 | 1.286 (2) | C3—H3 | 0.92 (4) |
C8—C9 | 1.458 (2) | C1—C2 | 1.381 (4) |
C8—H8 | 1.02 (2) | C1—H1 | 1.04 (4) |
C14—C13 | 1.376 (3) | C19—C18 | 1.354 (5) |
C14—C9 | 1.390 (3) | C19—H19 | 0.87 (4) |
C14—H14 | 0.98 (2) | C23—C24 | 1.368 (4) |
C9—C10 | 1.391 (3) | C23—H23 | 0.95 (3) |
C12—C11 | 1.387 (3) | C17—C18 | 1.373 (5) |
C12—C13 | 1.392 (3) | C17—H17 | 0.98 (3) |
C13—H13 | 0.96 (2) | C18—H18 | 0.99 (4) |
C15—C16 | 1.381 (3) | C26—C25 | 1.385 (4) |
C15—C20 | 1.387 (3) | C26—H26 | 0.97 (3) |
C11—C10 | 1.386 (3) | C2—H2 | 0.99 (5) |
C11—H11 | 0.97 (3) | C4—H4 | 0.94 (4) |
C10—H10 | 0.95 (2) | C24—C25 | 1.356 (5) |
C6—C1 | 1.368 (4) | C24—H24 | 1.01 (3) |
C6—C5 | 1.370 (3) | C25—H25 | 0.97 (4) |
C8—N2—N3 | 115.86 (16) | C19—C20—H20 | 121.7 (17) |
C7—N3—N2 | 119.97 (16) | C15—C20—H20 | 118.5 (17) |
C7—N3—H27 | 121.1 (14) | C6—C5—C4 | 118.7 (3) |
N2—N3—H27 | 118.4 (14) | C6—C5—H5 | 118.7 (18) |
C7—N4—C6 | 123.82 (16) | C4—C5—H5 | 122.6 (18) |
C7—N4—H28 | 114.7 (17) | C15—C16—C17 | 120.7 (3) |
C6—N4—H28 | 121.1 (17) | C15—C16—H16 | 118.7 (17) |
C12—N1—C15 | 121.79 (16) | C17—C16—H16 | 120.6 (17) |
C12—N1—C21 | 118.09 (15) | C21—C22—C23 | 120.4 (2) |
C15—N1—C21 | 120.11 (15) | C21—C22—H22 | 118.8 (17) |
N2—C8—C9 | 121.06 (17) | C23—C22—H22 | 120.8 (17) |
N2—C8—H8 | 119.9 (11) | C4—C3—C2 | 120.3 (3) |
C9—C8—H8 | 119.0 (11) | C4—C3—H3 | 121 (2) |
C13—C14—C9 | 120.91 (18) | C2—C3—H3 | 118 (2) |
C13—C14—H14 | 118.7 (13) | C6—C1—C2 | 119.6 (3) |
C9—C14—H14 | 120.3 (13) | C6—C1—H1 | 125.0 (19) |
C14—C9—C10 | 118.33 (16) | C2—C1—H1 | 115.3 (19) |
C14—C9—C8 | 121.71 (17) | C18—C19—C20 | 121.6 (3) |
C10—C9—C8 | 119.95 (17) | C18—C19—H19 | 120 (2) |
N4—C7—N3 | 116.64 (16) | C20—C19—H19 | 118 (2) |
N4—C7—S1 | 123.79 (14) | C24—C23—C22 | 120.4 (3) |
N3—C7—S1 | 119.57 (14) | C24—C23—H23 | 118.0 (18) |
C11—C12—C13 | 118.91 (16) | C22—C23—H23 | 121.4 (18) |
C11—C12—N1 | 121.55 (17) | C18—C17—C16 | 120.3 (3) |
C13—C12—N1 | 119.53 (17) | C18—C17—H17 | 121.6 (18) |
C14—C13—C12 | 120.66 (18) | C16—C17—H17 | 118.1 (18) |
C14—C13—H13 | 120.6 (14) | C19—C18—C17 | 119.2 (3) |
C12—C13—H13 | 118.7 (14) | C19—C18—H18 | 128 (2) |
C16—C15—C20 | 118.5 (2) | C17—C18—H18 | 113 (2) |
C16—C15—N1 | 121.41 (18) | C21—C26—C25 | 119.8 (3) |
C20—C15—N1 | 120.1 (2) | C21—C26—H26 | 117.1 (18) |
C10—C11—C12 | 120.20 (19) | C25—C26—H26 | 122.9 (18) |
C10—C11—H11 | 117.2 (14) | C3—C2—C1 | 120.2 (3) |
C12—C11—H11 | 122.3 (14) | C3—C2—H2 | 120 (3) |
C11—C10—C9 | 120.97 (18) | C1—C2—H2 | 119 (3) |
C11—C10—H10 | 119.6 (14) | C3—C4—C5 | 120.4 (3) |
C9—C10—H10 | 119.4 (14) | C3—C4—H4 | 124 (2) |
C1—C6—C5 | 120.8 (2) | C5—C4—H4 | 116 (2) |
C1—C6—N4 | 118.9 (2) | C25—C24—C23 | 119.4 (3) |
C5—C6—N4 | 120.3 (2) | C25—C24—H24 | 116 (2) |
C26—C21—C22 | 118.8 (2) | C23—C24—H24 | 125 (2) |
C26—C21—N1 | 120.42 (19) | C24—C25—C26 | 121.2 (3) |
C22—C21—N1 | 120.73 (19) | C24—C25—H25 | 123 (2) |
C19—C20—C15 | 119.8 (3) | C26—C25—H25 | 116 (2) |
C8—N2—N3—C7 | 175.71 (17) | C7—N4—C6—C1 | 85.9 (3) |
N3—N2—C8—C9 | 179.95 (16) | C7—N4—C6—C5 | −94.6 (3) |
C13—C14—C9—C10 | −0.8 (3) | C12—N1—C21—C26 | 46.8 (3) |
C13—C14—C9—C8 | 178.35 (18) | C15—N1—C21—C26 | −132.2 (2) |
N2—C8—C9—C14 | −11.5 (3) | C12—N1—C21—C22 | −132.1 (2) |
N2—C8—C9—C14 | −11.5 (3) | C15—N1—C21—C22 | 48.9 (3) |
N2—C8—C9—C10 | 167.58 (19) | C16—C15—C20—C19 | 0.5 (4) |
N2—C8—C9—C10 | 167.58 (19) | N1—C15—C20—C19 | −178.8 (2) |
C6—N4—C7—N3 | −173.22 (18) | C1—C6—C5—C4 | −0.7 (4) |
C6—N4—C7—S1 | 7.0 (3) | N4—C6—C5—C4 | 179.8 (2) |
N2—N3—C7—N4 | 3.5 (3) | C20—C15—C16—C17 | 0.3 (4) |
N2—N3—C7—N4 | 3.5 (3) | N1—C15—C16—C17 | 179.7 (2) |
N2—N3—C7—S1 | −176.74 (13) | C26—C21—C22—C23 | 1.1 (4) |
N2—N3—C7—S1 | −176.74 (13) | N1—C21—C22—C23 | −179.9 (2) |
C15—N1—C12—C11 | 39.0 (3) | C5—C6—C1—C2 | −0.1 (4) |
C21—N1—C12—C11 | −139.9 (2) | N4—C6—C1—C2 | 179.4 (3) |
C15—N1—C12—C13 | −141.7 (2) | C15—C20—C19—C18 | −1.1 (4) |
C21—N1—C12—C13 | 39.3 (3) | C21—C22—C23—C24 | −1.0 (4) |
C9—C14—C13—C12 | −0.4 (3) | C15—C16—C17—C18 | −0.7 (4) |
C11—C12—C13—C14 | 1.0 (3) | C20—C19—C18—C17 | 0.8 (5) |
N1—C12—C13—C14 | −178.29 (18) | C16—C17—C18—C19 | 0.1 (5) |
C12—N1—C15—C16 | 31.7 (3) | C22—C21—C26—C25 | 0.3 (4) |
C21—N1—C15—C16 | −149.4 (2) | N1—C21—C26—C25 | −178.6 (3) |
C12—N1—C15—C20 | −149.0 (2) | C4—C3—C2—C1 | −3.0 (5) |
C21—N1—C15—C20 | 30.0 (3) | C6—C1—C2—C3 | 1.9 (5) |
C13—C12—C11—C10 | −0.4 (3) | C2—C3—C4—C5 | 2.2 (5) |
N1—C12—C11—C10 | 178.82 (19) | C6—C5—C4—C3 | −0.3 (4) |
C12—C11—C10—C9 | −0.7 (3) | C22—C23—C24—C25 | −0.5 (5) |
C14—C9—C10—C11 | 1.3 (3) | C23—C24—C25—C26 | 2.0 (6) |
C8—C9—C10—C11 | −177.8 (2) | C21—C26—C25—C24 | −2.0 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H28···N2 | 0.88 (3) | 2.19 (3) | 2.629 (2) | 110 (2) |
N3—H27···S1i | 0.98 (2) | 2.36 (3) | 3.318 (2) | 169 (2) |
Symmetry code: (i) −x+2, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | C26H22N4S |
Mr | 422.55 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 285 |
a, b, c (Å) | 13.6069 (3), 15.2763 (3), 11.2778 (2) |
β (°) | 104.094 (2) |
V (Å3) | 2273.67 (8) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 1.41 |
Crystal size (mm) | 0.17 × 0.09 × 0.05 |
Data collection | |
Diffractometer | Oxford Xcalibur diffractometer with Onyx Nova detector |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.726, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 26370, 4623, 3535 |
Rint | 0.067 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.149, 1.07 |
No. of reflections | 4623 |
No. of parameters | 369 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.20, −0.29 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SIR08 (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999), PLATON (Spek, 2009), PARST95 (Nardelli, 1995) and publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H28···N2 | 0.88 (3) | 2.19 (3) | 2.629 (2) | 110 (2) |
N3—H27···S1i | 0.98 (2) | 2.36 (3) | 3.318 (2) | 169 (2) |
Symmetry code: (i) −x+2, −y, −z. |
Acknowledgements
Financial support of this work was given by the Agencia Española de Cooperación Internacional y Desarrollo (AECID). The authors also acknowledge FEDER funding and funds from the Spanish MINECO (grant Nos. MAT2006-01997, MAT2010-15094) and Factoría de Cristalización Consolider Ingenio-2010.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573. CrossRef CAS Web of Science Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gupta, R. A., Gupta, A. K., Soni, L. K. & Kaskhedikar, S. G. (2007). Eur. J. Med. 42, 1109-1116. Web of Science CrossRef CAS Google Scholar
Lee, K. C., Thanigaimalai, P., Sharma, V. K., Kim, M. S., Roh, E., Hwang, B. Y., Kim, Y. & Jung, S. H. (2010). Bioorg. Med. Chem. Lett. 20, 6794–6796. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Odenike, O. M., Larson, R. A., Gajria, D., Dolan, M. E., Delaney, S. M., Karrison, T. G., Ratain, M. J. & Stock, W. (2008). Invest. New Drugs, 26, 233–239. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2010). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiosemicarbazones are a broad class of biologically active organic compounds with antibacterial (Gupta et al.,2007) and antitumoral (Odenike et al., 2008) properties. According to recent studies, apolar groups in thiosemicarbazone compounds enhanced in some cases the biological activity (Lee et al., 2010). Following this work line, we have synthesized and crystallized a new thiosemicarbazone (Fig. 1), which is composed of three main parts: triphenylamine group (R1R2R3 lipophylic domain) conected to phenyl ring (R4 -liphophilic group) by thiosemicarbazone moiety (H-bonding domain an and electron-donor group) (Fig. 2).
Molecule is the trans isomer with respect to the C═N double bond. The values of distances N(2)–N(3) length (1.372 (2) Å) and the dihedral angle C(8)═N(2)—N(3)—C(7) (175.71 (2)°) are similar to those found in CSD (Allen, 2002) for thiosemicarbazone systems [selected 371 hits, distance mean N—N is 1.374 Å and dihedral angle mean is 178.21°]. The N atom in the triaphenylamine is sp2 and the three benzene rings [(R1(C21–C26), R2(C15–C20 ), R3(C9–C14)] are twisted with respect to one another, with followed dihedral angle between rings [R1R2 = 66.82 (7)° R2R3 = 61.05 (7)° R1R3 = 71.07 (7) °].
Molecular crystals are dominated by strong hydrogen bonds interactions through thiosemicarbazone moiety, forming a centrosymmetry synthon through N(3)—H(27)···S(1) hydrogen bond, this interactions form a R22(8) graph set (Bernstein et al., 1995). Additional intramolecular hydrogen N(4)—H(28)···N(2) helps to stabilize the molecular conformation (Fig. 3a and 3b).
Taking into account geometrical values calculated with Platon program is not feasible the existence π–π interactions involved triaphenylamine group. However, we observed a weak π–π stacking interaction between phenyl ring (R4) and the thiosemicarbazone deslocalized system (C═N—NH—C═S—NH) with distance to N3 (3.834 (3) Å) and dihedral angle (4.68 (2)°) shown in Fig. 4.