organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Di­phenyl­amino)­benzaldehyde 4-phenyl­thio­semicarbazone

aDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo – CINN, C/ Julián Clavería, 8, 33006 Oviedo, Spain
*Correspondence e-mail: sgg@uniovi.es

(Received 13 June 2012; accepted 4 July 2012; online 10 July 2012)

The title mol­ecule, C26H22N4S, is composed of three main parts, viz. a triphenyl­amine group is connected to a phenyl ring by a thio­semicarbazone moiety. The C= N double bond has an E conformation. The crystal packing is dominated by strong hydrogen bonds through the thio­semicarbazone moiety, with pairs of N—H⋯S hydrogen bonds linking the mol­ecules to form inversion dimers with an R22(8) ring motif. An intra­molecular N—H⋯N hydrogen bond is also present, generating an S(5) ring motif. Although the structure contains four phenyl rings, ππ stacking inter­actions are not formed between them, probably due to the conformation adopted by the triphenyl­amine group. However, a weak ππ stacking inter­action is observed between the phenyl ring and the delocalized thio­semicarbazone moiety.

Related literature

For related compounds and their biological activity, see: Gupta et al. (2007[Gupta, R. A., Gupta, A. K., Soni, L. K. & Kaskhedikar, S. G. (2007). Eur. J. Med. 42, 1109-1116.]); Lee et al. (2010[Lee, K. C., Thanigaimalai, P., Sharma, V. K., Kim, M. S., Roh, E., Hwang, B. Y., Kim, Y. & Jung, S. H. (2010). Bioorg. Med. Chem. Lett. 20, 6794-6796.]); Odenike et al. (2008[Odenike, O. M., Larson, R. A., Gajria, D., Dolan, M. E., Delaney, S. M., Karrison, T. G., Ratain, M. J. & Stock, W. (2008). Invest. New Drugs, 26, 233-239.]). For hydrogen-bond motifs, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C26H22N4S

  • Mr = 422.55

  • Monoclinic, P 21 /c

  • a = 13.6069 (3) Å

  • b = 15.2763 (3) Å

  • c = 11.2778 (2) Å

  • β = 104.094 (2)°

  • V = 2273.67 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.41 mm−1

  • T = 285 K

  • 0.17 × 0.09 × 0.05 mm

Data collection
  • Oxford Xcalibur diffractometer with Onyx Nova detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.726, Tmax = 1.000

  • 26370 measured reflections

  • 4623 independent reflections

  • 3535 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.149

  • S = 1.07

  • 4623 reflections

  • 369 parameters

  • All H-atom parameters refined

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H28⋯N2 0.88 (3) 2.19 (3) 2.629 (2) 110 (2)
N3—H27⋯S1i 0.98 (2) 2.36 (3) 3.318 (2) 169 (2)
Symmetry code: (i) -x+2, -y, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR08 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), PARST95 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thiosemicarbazones are a broad class of biologically active organic compounds with antibacterial (Gupta et al.,2007) and antitumoral (Odenike et al., 2008) properties. According to recent studies, apolar groups in thiosemicarbazone compounds enhanced in some cases the biological activity (Lee et al., 2010). Following this work line, we have synthesized and crystallized a new thiosemicarbazone (Fig. 1), which is composed of three main parts: triphenylamine group (R1R2R3 lipophylic domain) conected to phenyl ring (R4 -liphophilic group) by thiosemicarbazone moiety (H-bonding domain an and electron-donor group) (Fig. 2).

Molecule is the trans isomer with respect to the CN double bond. The values of distances N(2)–N(3) length (1.372 (2) Å) and the dihedral angle C(8)N(2)—N(3)—C(7) (175.71 (2)°) are similar to those found in CSD (Allen, 2002) for thiosemicarbazone systems [selected 371 hits, distance mean N—N is 1.374 Å and dihedral angle mean is 178.21°]. The N atom in the triaphenylamine is sp2 and the three benzene rings [(R1(C21–C26), R2(C15–C20 ), R3(C9–C14)] are twisted with respect to one another, with followed dihedral angle between rings [R1R2 = 66.82 (7)° R2R3 = 61.05 (7)° R1R3 = 71.07 (7) °].

Molecular crystals are dominated by strong hydrogen bonds interactions through thiosemicarbazone moiety, forming a centrosymmetry synthon through N(3)—H(27)···S(1) hydrogen bond, this interactions form a R22(8) graph set (Bernstein et al., 1995). Additional intramolecular hydrogen N(4)—H(28)···N(2) helps to stabilize the molecular conformation (Fig. 3a and 3b).

Taking into account geometrical values calculated with Platon program is not feasible the existence ππ interactions involved triaphenylamine group. However, we observed a weak ππ stacking interaction between phenyl ring (R4) and the thiosemicarbazone deslocalized system (CN—NH—CS—NH) with distance to N3 (3.834 (3) Å) and dihedral angle (4.68 (2)°) shown in Fig. 4.

Related literature top

For related compounds and their biological activity, see: Gupta et al. (2007); Lee et al. (2010); Odenike et al. (2008). For hydrogen-bond motifs, see Bernstein et al. (1995). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

A solution of 4-(diphenylamino)benzaldehyde (2.7333 g, 0.01 mol) and 4-phenylthiosemicarbazide (1.6723 g, 0.01 mol) in absolute ethanol (70 ml) was refluxed for 4 h in the presence of p-toluenesulfonic acid as catalyst, with continuous stirring. On cooling to room temperature the precipitate was filtered off, washed with copious cold ethanol and dried in air. Yellow single crystals of compound (I) were obtained after recrystallization from a solution in ethanol after 2 d.

Refinement top

All H atoms located at the difference Fourier maps and isotropically refined. At the end of the refinement the highest peak in the electron density was 0.201 eÅ -3, while the deepest hole was -0.291 eÅ -3.

Structure description top

Thiosemicarbazones are a broad class of biologically active organic compounds with antibacterial (Gupta et al.,2007) and antitumoral (Odenike et al., 2008) properties. According to recent studies, apolar groups in thiosemicarbazone compounds enhanced in some cases the biological activity (Lee et al., 2010). Following this work line, we have synthesized and crystallized a new thiosemicarbazone (Fig. 1), which is composed of three main parts: triphenylamine group (R1R2R3 lipophylic domain) conected to phenyl ring (R4 -liphophilic group) by thiosemicarbazone moiety (H-bonding domain an and electron-donor group) (Fig. 2).

Molecule is the trans isomer with respect to the CN double bond. The values of distances N(2)–N(3) length (1.372 (2) Å) and the dihedral angle C(8)N(2)—N(3)—C(7) (175.71 (2)°) are similar to those found in CSD (Allen, 2002) for thiosemicarbazone systems [selected 371 hits, distance mean N—N is 1.374 Å and dihedral angle mean is 178.21°]. The N atom in the triaphenylamine is sp2 and the three benzene rings [(R1(C21–C26), R2(C15–C20 ), R3(C9–C14)] are twisted with respect to one another, with followed dihedral angle between rings [R1R2 = 66.82 (7)° R2R3 = 61.05 (7)° R1R3 = 71.07 (7) °].

Molecular crystals are dominated by strong hydrogen bonds interactions through thiosemicarbazone moiety, forming a centrosymmetry synthon through N(3)—H(27)···S(1) hydrogen bond, this interactions form a R22(8) graph set (Bernstein et al., 1995). Additional intramolecular hydrogen N(4)—H(28)···N(2) helps to stabilize the molecular conformation (Fig. 3a and 3b).

Taking into account geometrical values calculated with Platon program is not feasible the existence ππ interactions involved triaphenylamine group. However, we observed a weak ππ stacking interaction between phenyl ring (R4) and the thiosemicarbazone deslocalized system (CN—NH—CS—NH) with distance to N3 (3.834 (3) Å) and dihedral angle (4.68 (2)°) shown in Fig. 4.

For related compounds and their biological activity, see: Gupta et al. (2007); Lee et al. (2010); Odenike et al. (2008). For hydrogen-bond motifs, see Bernstein et al. (1995). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis RED (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SIR08 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2009), PARST95 (Nardelli, 1995) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The three main parts of the molecular structure, divided into apolar groups (R1, R2, R3, R4) and H-bonding domain.
[Figure 3] Fig. 3. (a) Intermolecular and intramolecular hydrogen bonds, atoms not involved in hydrogen bonding have been omitted for clarity. (b) Packing diagram viewed down the c axis.
[Figure 4] Fig. 4. Representation of the weak ππ stacking interaction between phenyl ring (R4) and the thiosemicarbazone deslocalized system.
4-(Diphenylamino)benzaldehyde 4-phenylthiosemicarbazone top
Crystal data top
C26H22N4SF(000) = 888
Mr = 422.55Dx = 1.234 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 8693 reflections
a = 13.6069 (3) Åθ = 2.9–75.3°
b = 15.2763 (3) ŵ = 1.41 mm1
c = 11.2778 (2) ÅT = 285 K
β = 104.094 (2)°Plate, dark yellow
V = 2273.67 (8) Å30.17 × 0.09 × 0.05 mm
Z = 4
Data collection top
Oxford Xcalibur
diffractometer with Onyx Nova detector
4623 independent reflections
Radiation source: Nova (Cu) X-ray Source3535 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.067
Detector resolution: 8.2640 pixels mm-1θmax = 75.5°, θmin = 3.4°
ω scansh = 1616
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1718
Tmin = 0.726, Tmax = 1.000l = 1114
26370 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049All H-atom parameters refined
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0766P)2 + 0.2813P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4623 reflectionsΔρmax = 0.20 e Å3
369 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0012 (3)
Crystal data top
C26H22N4SV = 2273.67 (8) Å3
Mr = 422.55Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.6069 (3) ŵ = 1.41 mm1
b = 15.2763 (3) ÅT = 285 K
c = 11.2778 (2) Å0.17 × 0.09 × 0.05 mm
β = 104.094 (2)°
Data collection top
Oxford Xcalibur
diffractometer with Onyx Nova detector
4623 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3535 reflections with I > 2σ(I)
Tmin = 0.726, Tmax = 1.000Rint = 0.067
26370 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.149All H-atom parameters refined
S = 1.07Δρmax = 0.20 e Å3
4623 reflectionsΔρmin = 0.29 e Å3
369 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.36 (release 02-08-2010 CrysAlis171 .NET) (compiled Aug 2 2010,13:00:58) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.94600 (4)0.03619 (4)0.15627 (5)0.0689 (2)
N21.16947 (11)0.16240 (10)0.07520 (14)0.0504 (4)
N31.08689 (11)0.10941 (11)0.06823 (15)0.0522 (4)
N41.08031 (14)0.15773 (11)0.25732 (15)0.0591 (4)
N11.56053 (12)0.35772 (12)0.02307 (15)0.0597 (4)
C81.21068 (14)0.15830 (13)0.01584 (17)0.0520 (4)
C141.33120 (14)0.27924 (13)0.06329 (17)0.0527 (4)
C91.29891 (13)0.21151 (12)0.01924 (16)0.0490 (4)
C71.04293 (14)0.10515 (12)0.16271 (16)0.0510 (4)
C121.47208 (13)0.30889 (12)0.02447 (17)0.0508 (4)
C131.41611 (15)0.32736 (13)0.06068 (18)0.0534 (4)
C151.58656 (15)0.38294 (13)0.13237 (19)0.0554 (5)
C111.43998 (16)0.24198 (14)0.10803 (19)0.0611 (5)
C101.35392 (16)0.19418 (14)0.10567 (18)0.0585 (5)
C61.04960 (16)0.15504 (13)0.37043 (18)0.0573 (5)
C211.62500 (14)0.38028 (13)0.09250 (18)0.0559 (5)
C201.68751 (18)0.39145 (16)0.1348 (3)0.0717 (6)
C50.97506 (19)0.20986 (19)0.3890 (2)0.0749 (6)
C161.5132 (2)0.40044 (16)0.2379 (2)0.0706 (6)
C221.66006 (18)0.46481 (15)0.1163 (2)0.0680 (6)
C30.9924 (3)0.1471 (2)0.5872 (3)0.0880 (8)
C11.0965 (2)0.09751 (18)0.4592 (2)0.0832 (7)
C191.7123 (3)0.4176 (2)0.2411 (4)0.0966 (10)
C231.7227 (2)0.4862 (2)0.2285 (3)0.0841 (7)
C171.5399 (3)0.4254 (2)0.3436 (3)0.0895 (8)
C181.6401 (3)0.4340 (2)0.3447 (4)0.1005 (10)
C261.6521 (2)0.31817 (18)0.1832 (2)0.0818 (7)
C21.0684 (3)0.0947 (2)0.5689 (3)0.1006 (10)
C40.9469 (2)0.2052 (2)0.5001 (3)0.0877 (8)
C241.7493 (2)0.4241 (2)0.3180 (3)0.0984 (9)
C251.7131 (3)0.3415 (2)0.2959 (3)0.1070 (11)
H81.1832 (15)0.1157 (13)0.0856 (18)0.052 (5)*
H131.4370 (18)0.3751 (16)0.116 (2)0.069 (6)*
H101.3326 (17)0.1481 (15)0.163 (2)0.064 (6)*
H271.0675 (17)0.0693 (16)0.001 (2)0.069 (6)*
H141.2919 (17)0.2952 (15)0.123 (2)0.067 (6)*
H281.131 (2)0.1912 (18)0.249 (2)0.076 (7)*
H111.4793 (19)0.2228 (16)0.164 (2)0.076 (7)*
H221.639 (2)0.509 (2)0.055 (3)0.088 (8)*
H50.945 (2)0.249 (2)0.327 (3)0.094 (9)*
H201.737 (2)0.3775 (17)0.064 (2)0.076 (7)*
H161.446 (2)0.3934 (18)0.237 (2)0.085 (8)*
H11.157 (3)0.057 (2)0.454 (3)0.116 (10)*
H261.631 (2)0.259 (2)0.162 (3)0.099 (9)*
H231.743 (2)0.545 (2)0.249 (3)0.100 (9)*
H40.893 (3)0.242 (3)0.507 (3)0.127 (12)*
H30.970 (3)0.139 (2)0.657 (3)0.110 (10)*
H171.486 (2)0.4377 (19)0.416 (3)0.095 (9)*
H251.729 (2)0.295 (2)0.356 (3)0.114 (10)*
H181.650 (3)0.453 (2)0.425 (3)0.123 (11)*
H241.793 (3)0.435 (2)0.402 (3)0.117 (10)*
H21.094 (3)0.047 (3)0.627 (4)0.156 (15)*
H191.776 (3)0.418 (2)0.242 (3)0.115 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0620 (3)0.0902 (4)0.0645 (3)0.0305 (3)0.0346 (3)0.0166 (2)
N20.0435 (8)0.0544 (9)0.0571 (9)0.0051 (6)0.0197 (7)0.0061 (6)
N30.0470 (8)0.0611 (9)0.0538 (9)0.0103 (6)0.0227 (7)0.0001 (7)
N40.0621 (10)0.0633 (10)0.0595 (10)0.0172 (8)0.0291 (8)0.0071 (7)
N10.0513 (9)0.0729 (11)0.0580 (10)0.0204 (7)0.0194 (7)0.0007 (7)
C80.0469 (10)0.0628 (11)0.0496 (10)0.0083 (8)0.0181 (8)0.0027 (8)
C140.0495 (10)0.0655 (11)0.0478 (10)0.0069 (8)0.0208 (8)0.0009 (8)
C90.0435 (9)0.0603 (10)0.0457 (9)0.0073 (7)0.0158 (7)0.0046 (7)
C70.0456 (10)0.0591 (11)0.0518 (10)0.0002 (7)0.0187 (8)0.0028 (7)
C120.0446 (9)0.0591 (10)0.0511 (10)0.0118 (7)0.0164 (8)0.0016 (7)
C130.0527 (11)0.0601 (11)0.0504 (10)0.0097 (8)0.0180 (8)0.0041 (8)
C150.0517 (10)0.0556 (10)0.0659 (12)0.0092 (8)0.0274 (9)0.0009 (8)
C110.0612 (12)0.0715 (13)0.0593 (12)0.0200 (9)0.0315 (10)0.0112 (9)
C100.0605 (12)0.0674 (12)0.0533 (11)0.0206 (9)0.0244 (9)0.0099 (9)
C60.0601 (11)0.0618 (11)0.0555 (11)0.0156 (8)0.0248 (9)0.0101 (8)
C210.0446 (10)0.0610 (11)0.0626 (11)0.0097 (8)0.0141 (8)0.0007 (8)
C200.0556 (13)0.0799 (15)0.0902 (17)0.0125 (10)0.0380 (13)0.0069 (12)
C50.0682 (14)0.0901 (17)0.0703 (15)0.0024 (12)0.0241 (12)0.0077 (12)
C160.0648 (14)0.0816 (15)0.0711 (14)0.0047 (11)0.0274 (11)0.0119 (11)
C220.0681 (14)0.0619 (13)0.0732 (14)0.0122 (10)0.0160 (11)0.0012 (10)
C30.109 (2)0.100 (2)0.0674 (16)0.0263 (16)0.0463 (16)0.0164 (14)
C10.109 (2)0.0796 (16)0.0722 (15)0.0111 (14)0.0446 (14)0.0038 (11)
C190.088 (2)0.100 (2)0.125 (3)0.0330 (16)0.071 (2)0.0205 (18)
C230.0795 (17)0.0834 (18)0.0887 (18)0.0274 (13)0.0189 (13)0.0199 (14)
C170.111 (2)0.0909 (19)0.0725 (17)0.0087 (15)0.0344 (16)0.0171 (13)
C180.133 (3)0.097 (2)0.094 (2)0.0332 (18)0.070 (2)0.0010 (16)
C260.0736 (15)0.0710 (15)0.0876 (17)0.0168 (12)0.0056 (12)0.0146 (12)
C20.144 (3)0.097 (2)0.0718 (17)0.0073 (19)0.0487 (18)0.0130 (14)
C40.0747 (17)0.111 (2)0.0872 (19)0.0094 (15)0.0392 (15)0.0299 (16)
C240.0808 (18)0.124 (3)0.0789 (18)0.0342 (17)0.0022 (14)0.0033 (16)
C250.097 (2)0.111 (2)0.091 (2)0.0268 (17)0.0221 (16)0.0267 (17)
Geometric parameters (Å, º) top
S1—C71.6757 (19)C21—C261.378 (3)
N2—C81.286 (2)C21—C221.380 (3)
N2—N31.372 (2)C20—C191.380 (4)
N3—C71.345 (2)C20—H200.94 (3)
N3—N21.372 (2)C5—C41.399 (4)
N3—H270.98 (2)C5—H50.94 (3)
N4—C71.333 (2)C16—C171.382 (3)
N4—C61.436 (2)C16—H160.92 (3)
N4—H280.88 (3)C22—C231.381 (4)
N1—C121.413 (2)C22—H220.96 (3)
N1—C151.416 (2)C3—C41.357 (5)
N1—C211.425 (3)C3—C21.362 (5)
C8—N21.286 (2)C3—H30.92 (4)
C8—C91.458 (2)C1—C21.381 (4)
C8—H81.02 (2)C1—H11.04 (4)
C14—C131.376 (3)C19—C181.354 (5)
C14—C91.390 (3)C19—H190.87 (4)
C14—H140.98 (2)C23—C241.368 (4)
C9—C101.391 (3)C23—H230.95 (3)
C12—C111.387 (3)C17—C181.373 (5)
C12—C131.392 (3)C17—H170.98 (3)
C13—H130.96 (2)C18—H180.99 (4)
C15—C161.381 (3)C26—C251.385 (4)
C15—C201.387 (3)C26—H260.97 (3)
C11—C101.386 (3)C2—H20.99 (5)
C11—H110.97 (3)C4—H40.94 (4)
C10—H100.95 (2)C24—C251.356 (5)
C6—C11.368 (4)C24—H241.01 (3)
C6—C51.370 (3)C25—H250.97 (4)
C8—N2—N3115.86 (16)C19—C20—H20121.7 (17)
C7—N3—N2119.97 (16)C15—C20—H20118.5 (17)
C7—N3—H27121.1 (14)C6—C5—C4118.7 (3)
N2—N3—H27118.4 (14)C6—C5—H5118.7 (18)
C7—N4—C6123.82 (16)C4—C5—H5122.6 (18)
C7—N4—H28114.7 (17)C15—C16—C17120.7 (3)
C6—N4—H28121.1 (17)C15—C16—H16118.7 (17)
C12—N1—C15121.79 (16)C17—C16—H16120.6 (17)
C12—N1—C21118.09 (15)C21—C22—C23120.4 (2)
C15—N1—C21120.11 (15)C21—C22—H22118.8 (17)
N2—C8—C9121.06 (17)C23—C22—H22120.8 (17)
N2—C8—H8119.9 (11)C4—C3—C2120.3 (3)
C9—C8—H8119.0 (11)C4—C3—H3121 (2)
C13—C14—C9120.91 (18)C2—C3—H3118 (2)
C13—C14—H14118.7 (13)C6—C1—C2119.6 (3)
C9—C14—H14120.3 (13)C6—C1—H1125.0 (19)
C14—C9—C10118.33 (16)C2—C1—H1115.3 (19)
C14—C9—C8121.71 (17)C18—C19—C20121.6 (3)
C10—C9—C8119.95 (17)C18—C19—H19120 (2)
N4—C7—N3116.64 (16)C20—C19—H19118 (2)
N4—C7—S1123.79 (14)C24—C23—C22120.4 (3)
N3—C7—S1119.57 (14)C24—C23—H23118.0 (18)
C11—C12—C13118.91 (16)C22—C23—H23121.4 (18)
C11—C12—N1121.55 (17)C18—C17—C16120.3 (3)
C13—C12—N1119.53 (17)C18—C17—H17121.6 (18)
C14—C13—C12120.66 (18)C16—C17—H17118.1 (18)
C14—C13—H13120.6 (14)C19—C18—C17119.2 (3)
C12—C13—H13118.7 (14)C19—C18—H18128 (2)
C16—C15—C20118.5 (2)C17—C18—H18113 (2)
C16—C15—N1121.41 (18)C21—C26—C25119.8 (3)
C20—C15—N1120.1 (2)C21—C26—H26117.1 (18)
C10—C11—C12120.20 (19)C25—C26—H26122.9 (18)
C10—C11—H11117.2 (14)C3—C2—C1120.2 (3)
C12—C11—H11122.3 (14)C3—C2—H2120 (3)
C11—C10—C9120.97 (18)C1—C2—H2119 (3)
C11—C10—H10119.6 (14)C3—C4—C5120.4 (3)
C9—C10—H10119.4 (14)C3—C4—H4124 (2)
C1—C6—C5120.8 (2)C5—C4—H4116 (2)
C1—C6—N4118.9 (2)C25—C24—C23119.4 (3)
C5—C6—N4120.3 (2)C25—C24—H24116 (2)
C26—C21—C22118.8 (2)C23—C24—H24125 (2)
C26—C21—N1120.42 (19)C24—C25—C26121.2 (3)
C22—C21—N1120.73 (19)C24—C25—H25123 (2)
C19—C20—C15119.8 (3)C26—C25—H25116 (2)
C8—N2—N3—C7175.71 (17)C7—N4—C6—C185.9 (3)
N3—N2—C8—C9179.95 (16)C7—N4—C6—C594.6 (3)
C13—C14—C9—C100.8 (3)C12—N1—C21—C2646.8 (3)
C13—C14—C9—C8178.35 (18)C15—N1—C21—C26132.2 (2)
N2—C8—C9—C1411.5 (3)C12—N1—C21—C22132.1 (2)
N2—C8—C9—C1411.5 (3)C15—N1—C21—C2248.9 (3)
N2—C8—C9—C10167.58 (19)C16—C15—C20—C190.5 (4)
N2—C8—C9—C10167.58 (19)N1—C15—C20—C19178.8 (2)
C6—N4—C7—N3173.22 (18)C1—C6—C5—C40.7 (4)
C6—N4—C7—S17.0 (3)N4—C6—C5—C4179.8 (2)
N2—N3—C7—N43.5 (3)C20—C15—C16—C170.3 (4)
N2—N3—C7—N43.5 (3)N1—C15—C16—C17179.7 (2)
N2—N3—C7—S1176.74 (13)C26—C21—C22—C231.1 (4)
N2—N3—C7—S1176.74 (13)N1—C21—C22—C23179.9 (2)
C15—N1—C12—C1139.0 (3)C5—C6—C1—C20.1 (4)
C21—N1—C12—C11139.9 (2)N4—C6—C1—C2179.4 (3)
C15—N1—C12—C13141.7 (2)C15—C20—C19—C181.1 (4)
C21—N1—C12—C1339.3 (3)C21—C22—C23—C241.0 (4)
C9—C14—C13—C120.4 (3)C15—C16—C17—C180.7 (4)
C11—C12—C13—C141.0 (3)C20—C19—C18—C170.8 (5)
N1—C12—C13—C14178.29 (18)C16—C17—C18—C190.1 (5)
C12—N1—C15—C1631.7 (3)C22—C21—C26—C250.3 (4)
C21—N1—C15—C16149.4 (2)N1—C21—C26—C25178.6 (3)
C12—N1—C15—C20149.0 (2)C4—C3—C2—C13.0 (5)
C21—N1—C15—C2030.0 (3)C6—C1—C2—C31.9 (5)
C13—C12—C11—C100.4 (3)C2—C3—C4—C52.2 (5)
N1—C12—C11—C10178.82 (19)C6—C5—C4—C30.3 (4)
C12—C11—C10—C90.7 (3)C22—C23—C24—C250.5 (5)
C14—C9—C10—C111.3 (3)C23—C24—C25—C262.0 (6)
C8—C9—C10—C11177.8 (2)C21—C26—C25—C242.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H28···N20.88 (3)2.19 (3)2.629 (2)110 (2)
N3—H27···S1i0.98 (2)2.36 (3)3.318 (2)169 (2)
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC26H22N4S
Mr422.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)285
a, b, c (Å)13.6069 (3), 15.2763 (3), 11.2778 (2)
β (°) 104.094 (2)
V3)2273.67 (8)
Z4
Radiation typeCu Kα
µ (mm1)1.41
Crystal size (mm)0.17 × 0.09 × 0.05
Data collection
DiffractometerOxford Xcalibur
diffractometer with Onyx Nova detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.726, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
26370, 4623, 3535
Rint0.067
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.149, 1.07
No. of reflections4623
No. of parameters369
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.20, 0.29

Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SIR08 (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999), PLATON (Spek, 2009), PARST95 (Nardelli, 1995) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H28···N20.88 (3)2.19 (3)2.629 (2)110 (2)
N3—H27···S1i0.98 (2)2.36 (3)3.318 (2)169 (2)
Symmetry code: (i) x+2, y, z.
 

Acknowledgements

Financial support of this work was given by the Agencia Española de Cooperación Inter­nacional y Desarrollo (AECID). The authors also acknowledge FEDER funding and funds from the Spanish MINECO (grant Nos. MAT2006-01997, MAT2010-15094) and Factoría de Cristalización Consolider Ingenio-2010.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGupta, R. A., Gupta, A. K., Soni, L. K. & Kaskhedikar, S. G. (2007). Eur. J. Med. 42, 1109-1116.  Web of Science CrossRef CAS Google Scholar
First citationLee, K. C., Thanigaimalai, P., Sharma, V. K., Kim, M. S., Roh, E., Hwang, B. Y., Kim, Y. & Jung, S. H. (2010). Bioorg. Med. Chem. Lett. 20, 6794–6796.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOdenike, O. M., Larson, R. A., Gajria, D., Dolan, M. E., Delaney, S. M., Karrison, T. G., Ratain, M. J. & Stock, W. (2008). Invest. New Drugs, 26, 233–239.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds