organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis­(2-bromo­eth­yl)ammonium bromide

aSchool of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
*Correspondence e-mail: alvaro.desousa@wits.ac.za

(Received 2 July 2012; accepted 24 July 2012; online 28 July 2012)

The title salt, C4H10Br2N+·Br, crystallizes with four cations and four anions in the asymmetric unit. In the crystal, the bis­(2-bromo­eth­yl)ammonium cations and bromide anions are linked into chains by N—H⋯Br hydrogen bonds describing a binary C21(4) motif along [010]. Each of these chains is formed by a unique cation and anion pair. The ammonium cations occur in the less preferred anti conformation, characterized by different NCCBr torsion angles. Adjacent chains are linked by weak C—H⋯Br inter­actions, forming a three-dimensional network. The crystal studied was a pseudo-merohedral twin with twin ratio 0.640 (2):0.360 (2).

Related literature

For structures of related 2-haloethyl­ammonium salts, see: Bojan et al. (2008[Bojan, R. V., Varga, R. A. & Silvestru, C. (2008). Acta Cryst. E64, o86.]); Briggs et al. (2004[Briggs, C. R. S., Allen, M. J., O'Hagan, D., Tozer, D. J., Slawin, A. M. Z., Goeta, A. E. & Howard, J. A. K. (2004). Org. Biomol. Chem. 2, 732-740.]); Fischer et al. (1994[Fischer, A., Neda, I., Jones, P. G. & Schmutzler, R. (1994). Phosphorus Sulfur Silicon Relat. Elem. 91, 103-127.]); Kane et al. (1992[Kane, C. J., Long, R., Pettit, W. E., Breneman, G. L. & Pettit, G. R. (1992). Acta Cryst. C48, 1490-1491.]); Kumar et al. (1998[Kumar, J. S., Singh, A. K., Yang, J. & Drake, J. E. (1998). J. Coord. Chem. 44, 217-223.]). For graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shinoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the preparation of N-bis­(2-bromo­ethyl­amine) hydro­bromide, see: Pettit et al. (1964)[Pettit, G. R., Chamberland, M. R., Blonda, D. S. & Vickers, M. A. (1964). Can. J. Chem. 42, 1699-1706.].

[Scheme 1]

Experimental

Crystal data
  • C4H10Br2N+·Br

  • Mr = 311.86

  • Monoclinic, P 21

  • a = 15.8861 (13) Å

  • b = 7.4891 (6) Å

  • c = 17.1018 (18) Å

  • β = 117.450 (5)°

  • V = 1805.6 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 13.32 mm−1

  • T = 173 K

  • 0.59 × 0.08 × 0.02 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: integration [face indexed absorption corrections carried out with XPREP (Bruker, 2005[Bruker (2005). APEX2 and SAINT-NT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])] Tmin = 0.083, Tmax = 0.552

  • 10233 measured reflections

  • 6819 independent reflections

  • 4058 reflections with I > 2σ(I)

  • Rint = 0.143

Refinement
  • R[F2 > 2σ(F2)] = 0.107

  • wR(F2) = 0.285

  • S = 0.98

  • 6819 reflections

  • 290 parameters

  • 85 restraints

  • H-atom parameters constrained

  • Δρmax = 2.13 e Å−3

  • Δρmin = −2.01 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2573 Friedel pairs

  • Flack parameter: 0.15 (12)

Table 1
Selected torsion angles (°)

Br1—C1—C2—N1 65 (3)
N1—C3—C4—Br2 172 (2)
Br6—C5—C6—N2 176 (2)
N2—C7—C8—Br5 −63 (4)
Br9—C9—C10—N3 −57 (4)
N3—C11—C12—Br8 −169 (2)
Br12—C13—C14—N4 −62 (3)
N4—C15—C16—Br11 −169 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br4 0.92 2.34 3.26 (3) 175
N1—H1B⋯Br4i 0.92 2.41 3.31 (3) 165
N2—H2B⋯Br3 0.92 2.30 3.18 (3) 161
N2—H2A⋯Br3ii 0.92 2.37 3.23 (3) 157
N3—H3B⋯Br7 0.92 2.37 3.29 (3) 178
N3—H3A⋯Br7iii 0.92 2.46 3.33 (3) 159
N4—H4B⋯Br10 0.92 2.35 3.27 (3) 178
N4—H4A⋯Br10iv 0.92 2.40 3.29 (3) 162
C1—H1D⋯Br12v 1.00 2.92 3.66 (3) 131
C2—H2C⋯Br4vi 0.99 2.93 3.73 (4) 138
C2—H2D⋯Br3 0.99 2.87 3.70 (4) 143
C3—H3C⋯Br8 0.98 2.87 3.84 (5) 170
C7—H7B⋯Br3vii 0.99 2.69 3.68 (5) 173
C9—H9A⋯Br1viii 0.99 2.87 3.65 (3) 137
C10—H10A⋯Br7vi 0.99 2.90 3.77 (4) 148
C10—H10B⋯Br10iii 0.99 2.82 3.72 (4) 153
C12—H12A⋯Br2 1.00 2.83 3.73 (5) 150
C14—H14A⋯Br10vi 0.99 2.93 3.75 (4) 142
C14—H14B⋯Br7iii 0.99 2.88 3.74 (4) 145
C15—H15B⋯Br2 0.99 2.88 3.87 (5) 173
C16—H16A⋯Br6i 0.99 2.83 3.66 (5) 141
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) [-x+1, y+{\script{1\over 2}}, -z]; (iv) [-x+2, y+{\script{1\over 2}}, -z]; (v) x, y, z+1; (vi) x, y+1, z; (vii) x, y-1, z; (viii) x-1, y, z-1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT-NT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT-NT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT (Bruker, 2005[Bruker (2005). APEX2 and SAINT-NT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Conformational analysis of 2-fluoroethylammonium hydrochloride compounds indicate gauche relationships between C—F and C—N bonds are inevitably preferred (Briggs et al., 2004). Stabilization of related syn conformers is attributed to weak stereoelectronic gauche effect and/or favourable intramolecular F···H—N+ hydrogen bonding interactions. Syn conformers exhibiting gauche relationships have also been observed in metal complexes (Kumar et al., 1998) and adducts (Kane et al., 1992) of these compounds. However, the anti conformation has been observed in the solid state for a N-alkylated derivative (Bojan et al., 2008) and in 2-chloroethylammonium hydrochloride (Fischer et al., 1994). The latter structure shows pairs of anti bis(2-chloroethyl)ammonium cations are linked via N—H···Cl hydrogen bonds to a syn cation to form chains along (1 0 0). In the solid state structure of the title compound (I), only anti conformations of bis(2-bromoethyl) ammonium cations (Figure 1) are observed, that are characterised by different NCCBr torsion angles (Table 1). Discreet intermolecular N—H···Br hydrogen bonding interactions (Table 2) mimic N-H···Cl interactions of 2-haloethylammonium compounds (Briggs et al., 2004, Fischer et al., 1994), and link cations into staggered chains along the b-axis, to define a binary C21(4) motif (Bernstein et al., 1995). Weak van der Waals C—H···Br interactions link 2-bromoethylammonium cations into layers parallel to the ac plane. The structure is also stabilized by several Br···Br interactions, the shortest being between Br3 and Br8 [3.559 (4) Å], and between Br2 and Br7 [3.594 (5) Å].

Related literature top

For structures of related 2-haloethylammonium salts, see: Bojan et al. (2008); Briggs et al. (2004); Fischer et al. (1994); Kane et al. (1992); Kumar et al. (1998). For graph-set analysis, see: Bernstein et al. (1995). For the preparation of N-bis(2-bromoethylamine) hydrobromide, see: Pettit et al. (1964).

Experimental top

N-Bis(2-bromoethylamine) hydrobromide was prepared as reported by Pettit et al. (1964). Diethanolamine (12 g, 0.114 mol) was added, with cooling, to 100 mL of 48% HBr. The reaction vessel was fitted with a Vigreaux column and Dean-Stark apparatus and the solution heated collecting approximately 70 mL of water through azeotropic distillation. The remaining HBr was removed under reduced pressure to yield viscous orange oil that crystallized upon cooling.

1H(D2O, 300 MHz) 3.342 (4H, t, CH2NH), 3.992 (4H, t,CH2Br).

Refinement top

Crystals of the title compound seem to be inherently pseudo-merohedrally twinned as several recrystallizations led to twinned crystals. The pseudo-merohedral twin is approximately described by the twin law [-1.00 0.00 0.00 0.00 -1.00 0.00 1.00 0.00 1.00]. Hydrogen atoms were visible in the difference map and those bonded to carbon atoms were positioned geometrically and allowed for as riding atoms with C—H = 0.99 Å (CH2) and N—H = 0.92 Å (NH2). The coordinates of hydrogen atoms involved in hydrogen bonding were refined freely. During the refinements the Uiso(H) values were set at 1.2Ueq of the parent atom.

Structure description top

Conformational analysis of 2-fluoroethylammonium hydrochloride compounds indicate gauche relationships between C—F and C—N bonds are inevitably preferred (Briggs et al., 2004). Stabilization of related syn conformers is attributed to weak stereoelectronic gauche effect and/or favourable intramolecular F···H—N+ hydrogen bonding interactions. Syn conformers exhibiting gauche relationships have also been observed in metal complexes (Kumar et al., 1998) and adducts (Kane et al., 1992) of these compounds. However, the anti conformation has been observed in the solid state for a N-alkylated derivative (Bojan et al., 2008) and in 2-chloroethylammonium hydrochloride (Fischer et al., 1994). The latter structure shows pairs of anti bis(2-chloroethyl)ammonium cations are linked via N—H···Cl hydrogen bonds to a syn cation to form chains along (1 0 0). In the solid state structure of the title compound (I), only anti conformations of bis(2-bromoethyl) ammonium cations (Figure 1) are observed, that are characterised by different NCCBr torsion angles (Table 1). Discreet intermolecular N—H···Br hydrogen bonding interactions (Table 2) mimic N-H···Cl interactions of 2-haloethylammonium compounds (Briggs et al., 2004, Fischer et al., 1994), and link cations into staggered chains along the b-axis, to define a binary C21(4) motif (Bernstein et al., 1995). Weak van der Waals C—H···Br interactions link 2-bromoethylammonium cations into layers parallel to the ac plane. The structure is also stabilized by several Br···Br interactions, the shortest being between Br3 and Br8 [3.559 (4) Å], and between Br2 and Br7 [3.594 (5) Å].

For structures of related 2-haloethylammonium salts, see: Bojan et al. (2008); Briggs et al. (2004); Fischer et al. (1994); Kane et al. (1992); Kumar et al. (1998). For graph-set analysis, see: Bernstein et al. (1995). For the preparation of N-bis(2-bromoethylamine) hydrobromide, see: Pettit et al. (1964).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT-NT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (1). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Chains along [010] arising from intermolecular N—H···Br hydrogen bonds. [symmetry codes: (i) -x+1, y+1/2,-z+1; (ii) x,y+1,z; (iii) -x+2, y-1/2,-z+1; (iv) -x+2, y+1/2, -z+1; (v) -x+1,y-1/2,-z; (vi) -x+1, y+1/2,-z; (vii) -x+2,y-1/2, -z; (viii) -x+2, y+1/2,-z]
[Figure 3] Fig. 3. Weak C—H···Br interactions linking chains into a three-dimensional network parallel to (101).
bis(2-bromoethyl)ammonium bromide top
Crystal data top
C4H10Br2N+·BrF(000) = 1168
Mr = 311.86Dx = 2.294 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1740 reflections
a = 15.8861 (13) Åθ = 2.7–28.0°
b = 7.4891 (6) ŵ = 13.32 mm1
c = 17.1018 (18) ÅT = 173 K
β = 117.450 (5)°Needle, colourless
V = 1805.6 (3) Å30.59 × 0.08 × 0.02 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6819 independent reflections
Radiation source: fine-focus sealed tube4058 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.143
phi and ω scansθmax = 27.0°, θmin = 1.3°
Absorption correction: integration
[face indexed absorption corrections carried out with XPREP (Bruker, 2005)]
h = 1920
Tmin = 0.083, Tmax = 0.552k = 99
10233 measured reflectionsl = 218
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.107H-atom parameters constrained
wR(F2) = 0.285 w = 1/[σ2(Fo2) + (0.1648P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
6819 reflectionsΔρmax = 2.13 e Å3
290 parametersΔρmin = 2.01 e Å3
85 restraintsAbsolute structure: Flack (1983), 2573 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.15 (12)
Crystal data top
C4H10Br2N+·BrV = 1805.6 (3) Å3
Mr = 311.86Z = 8
Monoclinic, P21Mo Kα radiation
a = 15.8861 (13) ŵ = 13.32 mm1
b = 7.4891 (6) ÅT = 173 K
c = 17.1018 (18) Å0.59 × 0.08 × 0.02 mm
β = 117.450 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6819 independent reflections
Absorption correction: integration
[face indexed absorption corrections carried out with XPREP (Bruker, 2005)]
4058 reflections with I > 2σ(I)
Tmin = 0.083, Tmax = 0.552Rint = 0.143
10233 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.107H-atom parameters constrained
wR(F2) = 0.285Δρmax = 2.13 e Å3
S = 0.98Δρmin = 2.01 e Å3
6819 reflectionsAbsolute structure: Flack (1983), 2573 Friedel pairs
290 parametersAbsolute structure parameter: 0.15 (12)
85 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.890 (2)0.595 (5)0.623 (2)0.032 (8)
H1C0.85980.47610.60600.038*
H1D0.86210.65520.65800.038*
C20.868 (2)0.699 (5)0.5452 (19)0.023 (7)
H2C0.90020.81610.56280.028*
H2D0.79890.72050.51330.028*
C30.842 (3)0.666 (5)0.388 (2)0.032 (8)
H3C0.77390.64470.36720.038*
H3D0.85220.79490.38240.038*
C40.877 (3)0.559 (5)0.334 (2)0.038 (10)
H4C0.87560.43020.34610.046*
H4D0.94250.59350.34870.046*
N10.8992 (19)0.607 (4)0.4843 (16)0.024 (6)
H1A0.89260.48550.48770.029*
H1B0.96240.63050.50300.029*
Br11.0262 (4)0.5657 (7)0.6975 (3)0.0567 (14)
Br20.7909 (3)0.6111 (6)0.2100 (2)0.0343 (9)
C50.635 (2)0.016 (4)0.6613 (18)0.024 (7)
H5A0.66750.06720.63930.028*
H5B0.56870.02480.63990.028*
C60.636 (2)0.202 (4)0.6290 (19)0.024 (7)
H6A0.70280.24460.65490.029*
H6B0.60100.28250.64930.029*
C70.649 (3)0.109 (6)0.492 (2)0.041 (9)
H7A0.71740.13020.52960.049*
H7B0.63660.02010.49240.049*
C80.623 (2)0.165 (4)0.4031 (18)0.027 (7)
H8A0.66520.10420.38340.033*
H8B0.63500.29530.40360.033*
N20.5926 (19)0.211 (4)0.5289 (15)0.027 (7)
H2A0.53210.16490.50500.032*
H2B0.58800.32840.51190.032*
Br50.4962 (3)0.1204 (6)0.3201 (2)0.0408 (9)
Br60.7005 (3)0.0235 (6)0.7903 (2)0.0346 (9)
C90.273 (2)0.611 (5)0.1351 (19)0.029 (7)
H9A0.21230.67030.17290.034*
H9B0.25920.48820.12350.034*
C100.321 (2)0.710 (5)0.048 (2)0.039 (9)
H10A0.32970.83640.05940.047*
H10B0.27880.70640.01970.047*
C110.455 (3)0.690 (5)0.106 (2)0.034 (9)
H11A0.47650.81590.11010.040*
H11B0.40650.68390.12610.040*
C120.538 (3)0.574 (6)0.163 (2)0.046 (11)
H12A0.59260.59790.15100.055*
H12B0.52070.44630.15070.055*
N30.4142 (18)0.629 (4)0.0114 (15)0.023 (6)
H3A0.45640.65490.00980.028*
H3B0.40740.50640.01010.028*
Br80.5708 (3)0.6336 (6)0.2858 (2)0.0334 (9)
Br90.3459 (3)0.5968 (8)0.1998 (3)0.0546 (13)
C130.769 (3)0.542 (5)0.121 (2)0.037 (9)
H13A0.70710.60120.15410.045*
H13B0.75830.42020.10560.045*
C140.830 (2)0.647 (5)0.037 (2)0.031 (8)
H14A0.84050.76890.05320.037*
H14B0.79440.65840.00240.037*
C150.966 (3)0.625 (5)0.111 (2)0.035 (8)
H15A0.98120.75330.11290.042*
H15B0.91950.61040.13420.042*
C161.051 (3)0.525 (5)0.165 (2)0.038 (9)
H16A1.10150.55750.14910.046*
H16B1.03820.39590.15460.046*
N40.9227 (19)0.561 (4)0.0182 (16)0.026 (6)
H4A0.96340.58560.00510.031*
H4B0.91470.43940.01720.031*
Br111.0931 (3)0.5783 (5)0.2892 (2)0.0327 (10)
Br120.8319 (3)0.5275 (7)0.1957 (3)0.0483 (11)
Br30.6231 (2)0.6258 (6)0.5118 (2)0.0284 (8)
Br40.8830 (2)0.1738 (4)0.4877 (2)0.0282 (9)
Br70.3904 (2)0.1919 (5)0.0112 (2)0.0289 (9)
Br100.8945 (2)0.1288 (5)0.0195 (2)0.0284 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.033 (9)0.032 (9)0.032 (9)0.000 (5)0.017 (6)0.001 (5)
C20.024 (8)0.021 (8)0.023 (8)0.003 (5)0.009 (5)0.002 (5)
C30.030 (9)0.033 (10)0.033 (9)0.000 (5)0.015 (6)0.000 (5)
C40.039 (11)0.038 (11)0.036 (10)0.000 (5)0.017 (6)0.000 (5)
N10.032 (15)0.014 (13)0.034 (13)0.009 (12)0.022 (13)0.002 (13)
Br10.042 (3)0.070 (4)0.044 (2)0.009 (2)0.008 (2)0.005 (2)
Br20.0287 (19)0.041 (2)0.0319 (18)0.000 (2)0.0127 (16)0.005 (2)
C50.025 (8)0.026 (8)0.022 (8)0.000 (5)0.013 (5)0.001 (5)
C60.024 (8)0.025 (8)0.026 (8)0.001 (5)0.013 (5)0.001 (5)
C70.042 (10)0.040 (10)0.041 (10)0.001 (5)0.020 (6)0.002 (5)
C80.025 (8)0.029 (9)0.028 (8)0.001 (5)0.013 (5)0.000 (5)
N20.032 (17)0.012 (12)0.019 (12)0.006 (12)0.003 (12)0.003 (11)
Br50.034 (2)0.037 (2)0.049 (2)0.004 (2)0.0167 (18)0.005 (2)
Br60.032 (2)0.040 (2)0.0327 (19)0.0076 (17)0.0154 (17)0.0036 (17)
C90.026 (8)0.027 (8)0.031 (8)0.001 (5)0.011 (5)0.001 (5)
C100.012 (17)0.04 (2)0.06 (2)0.003 (16)0.008 (17)0.005 (19)
C110.05 (3)0.017 (15)0.05 (2)0.006 (16)0.04 (2)0.001 (16)
C120.045 (11)0.047 (12)0.045 (11)0.002 (5)0.022 (7)0.002 (5)
N30.023 (7)0.022 (7)0.024 (7)0.001 (5)0.011 (5)0.002 (5)
Br80.0307 (19)0.037 (2)0.0353 (18)0.0017 (19)0.0178 (16)0.0001 (19)
Br90.055 (3)0.070 (3)0.039 (2)0.010 (3)0.022 (2)0.006 (2)
C130.037 (10)0.037 (10)0.037 (10)0.000 (5)0.016 (6)0.003 (5)
C140.027 (18)0.022 (18)0.032 (17)0.002 (15)0.003 (15)0.011 (15)
C150.034 (9)0.034 (9)0.035 (9)0.003 (5)0.014 (6)0.002 (5)
C160.036 (10)0.038 (10)0.038 (10)0.004 (5)0.016 (6)0.003 (5)
N40.023 (14)0.032 (16)0.019 (12)0.017 (12)0.007 (12)0.005 (11)
Br110.026 (2)0.041 (2)0.0324 (19)0.0030 (17)0.0152 (17)0.0005 (16)
Br120.054 (3)0.054 (3)0.041 (2)0.018 (2)0.025 (2)0.009 (2)
Br30.0292 (18)0.0185 (18)0.0437 (18)0.0031 (16)0.0221 (15)0.0011 (17)
Br40.0198 (17)0.023 (2)0.047 (2)0.0011 (13)0.0193 (16)0.0033 (15)
Br70.0259 (19)0.0210 (19)0.046 (2)0.0032 (14)0.0216 (17)0.0019 (15)
Br100.0318 (19)0.0171 (17)0.0480 (19)0.0017 (16)0.0284 (17)0.0005 (17)
Geometric parameters (Å, º) top
C1—C21.44 (5)C9—C101.51 (5)
C1—Br11.96 (3)C9—Br91.93 (3)
C1—H1C0.9900C9—H9A0.9900
C1—H1D0.9900C9—H9B0.9900
C2—N11.51 (4)C10—N31.49 (4)
C2—H2C0.9900C10—H10A0.9900
C2—H2D0.9900C10—H10B0.9900
C3—C41.50 (5)C11—C121.50 (5)
C3—N11.53 (4)C11—N31.51 (4)
C3—H3C0.9900C11—H11A0.9900
C3—H3D0.9900C11—H11B0.9900
C4—Br21.96 (3)C12—Br81.97 (4)
C4—H4C0.9900C12—H12A0.9900
C4—H4D0.9900C12—H12B0.9900
N1—H1A0.9200N3—H3A0.9200
N1—H1B0.9200N3—H3B0.9200
C5—C61.50 (4)C13—C141.53 (5)
C5—Br61.96 (3)C13—Br121.94 (4)
C5—H5A0.9900C13—H13A0.9900
C5—H5B0.9900C13—H13B0.9900
C6—N21.52 (4)C14—N41.48 (4)
C6—H6A0.9900C14—H14A0.9900
C6—H6B0.9900C14—H14B0.9900
C7—C81.44 (5)C15—C161.45 (5)
C7—N21.51 (5)C15—N41.49 (4)
C7—H7A0.9900C15—H15A0.9900
C7—H7B0.9900C15—H15B0.9900
C8—Br51.89 (3)C16—Br111.95 (3)
C8—H8A0.9900C16—H16A0.9900
C8—H8B0.9900C16—H16B0.9900
N2—H2A0.9200N4—H4A0.9200
N2—H2B0.9200N4—H4B0.9200
C2—C1—Br1112 (2)C10—C9—Br9116 (2)
C2—C1—H1C109.2C10—C9—H9A108.4
Br1—C1—H1C109.2Br9—C9—H9A108.4
C2—C1—H1D109.2C10—C9—H9B108.4
Br1—C1—H1D109.2Br9—C9—H9B108.4
H1C—C1—H1D107.9H9A—C9—H9B107.4
C1—C2—N1112 (3)N3—C10—C9111 (3)
C1—C2—H2C109.1N3—C10—H10A109.4
N1—C2—H2C109.1C9—C10—H10A109.4
C1—C2—H2D109.1N3—C10—H10B109.4
N1—C2—H2D109.1C9—C10—H10B109.4
H2C—C2—H2D107.8H10A—C10—H10B108.0
C4—C3—N1108 (3)C12—C11—N3110 (3)
C4—C3—H3C110.1C12—C11—H11A109.8
N1—C3—H3C110.1N3—C11—H11A109.8
C4—C3—H3D110.1C12—C11—H11B109.8
N1—C3—H3D110.1N3—C11—H11B109.8
H3C—C3—H3D108.4H11A—C11—H11B108.2
C3—C4—Br2107 (2)C11—C12—Br8106 (3)
C3—C4—H4C110.3C11—C12—H12A110.5
Br2—C4—H4C110.3Br8—C12—H12A110.5
C3—C4—H4D110.3C11—C12—H12B110.5
Br2—C4—H4D110.3Br8—C12—H12B110.5
H4C—C4—H4D108.6H12A—C12—H12B108.6
C2—N1—C3113 (3)C10—N3—C11114 (3)
C2—N1—H1A108.9C10—N3—H3A108.7
C3—N1—H1A108.9C11—N3—H3A108.7
C2—N1—H1B108.9C10—N3—H3B108.7
C3—N1—H1B108.9C11—N3—H3B108.7
H1A—N1—H1B107.8H3A—N3—H3B107.6
C6—C5—Br6107 (2)C14—C13—Br12111 (3)
C6—C5—H5A110.2C14—C13—H13A109.4
Br6—C5—H5A110.2Br12—C13—H13A109.4
C6—C5—H5B110.2C14—C13—H13B109.4
Br6—C5—H5B110.2Br12—C13—H13B109.4
H5A—C5—H5B108.5H13A—C13—H13B108.0
C5—C6—N2112 (3)N4—C14—C13113 (3)
C5—C6—H6A109.2N4—C14—H14A109.1
N2—C6—H6A109.2C13—C14—H14A109.1
C5—C6—H6B109.2N4—C14—H14B109.1
N2—C6—H6B109.2C13—C14—H14B109.1
H6A—C6—H6B107.9H14A—C14—H14B107.8
C8—C7—N2111 (3)C16—C15—N4111 (3)
C8—C7—H7A109.4C16—C15—H15A109.5
N2—C7—H7A109.4N4—C15—H15A109.5
C8—C7—H7B109.4C16—C15—H15B109.5
N2—C7—H7B109.4N4—C15—H15B109.5
H7A—C7—H7B108.0H15A—C15—H15B108.1
C7—C8—Br5115 (2)C15—C16—Br11110 (3)
C7—C8—H8A108.5C15—C16—H16A109.6
Br5—C8—H8A108.5Br11—C16—H16A109.6
C7—C8—H8B108.5C15—C16—H16B109.6
Br5—C8—H8B108.5Br11—C16—H16B109.6
H8A—C8—H8B107.5H16A—C16—H16B108.1
C7—N2—C6113 (3)C14—N4—C15112 (3)
C7—N2—H2A108.9C14—N4—H4A109.2
C6—N2—H2A108.9C15—N4—H4A109.2
C7—N2—H2B108.9C14—N4—H4B109.2
C6—N2—H2B108.9C15—N4—H4B109.2
H2A—N2—H2B107.7H4A—N4—H4B107.9
Br1—C1—C2—N165 (3)Br9—C9—C10—N357 (4)
N1—C3—C4—Br2172 (2)N3—C11—C12—Br8169 (2)
C1—C2—N1—C3155 (3)C9—C10—N3—C11167 (3)
C4—C3—N1—C2177 (3)C12—C11—N3—C10168 (3)
Br6—C5—C6—N2176 (2)Br12—C13—C14—N462 (3)
N2—C7—C8—Br563 (4)N4—C15—C16—Br11169 (2)
C8—C7—N2—C6162 (3)C13—C14—N4—C15160 (3)
C5—C6—N2—C766 (4)C16—C15—N4—C14174 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br40.922.343.26 (3)175
N1—H1B···Br4i0.922.413.31 (3)165
N2—H2B···Br30.922.303.18 (3)161
N2—H2A···Br3ii0.922.373.23 (3)157
N3—H3B···Br70.922.373.29 (3)178
N3—H3A···Br7iii0.922.463.33 (3)159
N4—H4B···Br100.922.353.27 (3)178
N4—H4A···Br10iv0.922.403.29 (3)162
C1—H1D···Br12v1.002.923.66 (3)131
C2—H2C···Br4vi0.992.933.73 (4)138
C2—H2D···Br30.992.873.70 (4)143
C3—H3C···Br80.982.873.84 (5)170
C7—H7B···Br3vii0.992.693.68 (5)173
C9—H9A···Br1viii0.992.873.65 (3)137
C10—H10A···Br7vi0.992.903.77 (4)148
C10—H10B···Br10iii0.992.823.72 (4)153
C12—H12A···Br21.002.833.73 (5)150
C14—H14A···Br10vi0.992.933.75 (4)142
C14—H14B···Br7iii0.992.883.74 (4)145
C15—H15B···Br20.992.883.87 (5)173
C16—H16A···Br6i0.992.833.66 (5)141
Symmetry codes: (i) x+2, y+1/2, z+1; (ii) x+1, y1/2, z+1; (iii) x+1, y+1/2, z; (iv) x+2, y+1/2, z; (v) x, y, z+1; (vi) x, y+1, z; (vii) x, y1, z; (viii) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC4H10Br2N+·Br
Mr311.86
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)15.8861 (13), 7.4891 (6), 17.1018 (18)
β (°) 117.450 (5)
V3)1805.6 (3)
Z8
Radiation typeMo Kα
µ (mm1)13.32
Crystal size (mm)0.59 × 0.08 × 0.02
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionIntegration
[face indexed absorption corrections carried out with XPREP (Bruker, 2005)]
Tmin, Tmax0.083, 0.552
No. of measured, independent and
observed [I > 2σ(I)] reflections
10233, 6819, 4058
Rint0.143
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.107, 0.285, 0.98
No. of reflections6819
No. of parameters290
No. of restraints85
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.13, 2.01
Absolute structureFlack (1983), 2573 Friedel pairs
Absolute structure parameter0.15 (12)

Computer programs: APEX2 (Bruker, 2005), SAINT-NT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected torsion angles (º) top
Br1—C1—C2—N165 (3)Br9—C9—C10—N357 (4)
N1—C3—C4—Br2172 (2)N3—C11—C12—Br8169 (2)
Br6—C5—C6—N2176 (2)Br12—C13—C14—N462 (3)
N2—C7—C8—Br563 (4)N4—C15—C16—Br11169 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br40.922.343.26 (3)174.6
N1—H1B···Br4i0.922.413.31 (3)164.9
N2—H2B···Br30.922.303.18 (3)161.0
N2—H2A···Br3ii0.922.373.23 (3)156.5
N3—H3B···Br70.922.373.29 (3)178.2
N3—H3A···Br7iii0.922.463.33 (3)158.9
N4—H4B···Br100.922.353.27 (3)178.0
N4—H4A···Br10iv0.922.403.29 (3)162.0
C1—H1D···Br12v1.002.923.66 (3)131
C2—H2C···Br4vi0.992.933.73 (4)138
C2—H2D···Br30.992.873.70 (4)143
C3—H3C···Br80.982.873.84 (5)170
C7—H7B···Br3vii0.992.693.68 (5)173
C9—H9A···Br1viii0.992.873.65 (3)137
C10—H10A···Br7vi0.992.903.77 (4)148
C10—H10B···Br10iii0.992.823.72 (4)153
C12—H12A···Br21.002.833.73 (5)150
C14—H14A···Br10vi0.992.933.75 (4)142
C14—H14B···Br7iii0.992.883.74 (4)145
C15—H15B···Br20.992.883.87 (5)173
C16—H16A···Br6i0.992.833.66 (5)141
Symmetry codes: (i) x+2, y+1/2, z+1; (ii) x+1, y1/2, z+1; (iii) x+1, y+1/2, z; (iv) x+2, y+1/2, z; (v) x, y, z+1; (vi) x, y+1, z; (vii) x, y1, z; (viii) x1, y, z1.
 

Acknowledgements

This work was supported by the National Research Foundation (South Africa).

References

First citationBernstein, J., Davis, R. E., Shinoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBojan, R. V., Varga, R. A. & Silvestru, C. (2008). Acta Cryst. E64, o86.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBriggs, C. R. S., Allen, M. J., O'Hagan, D., Tozer, D. J., Slawin, A. M. Z., Goeta, A. E. & Howard, J. A. K. (2004). Org. Biomol. Chem. 2, 732–740.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT-NT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFischer, A., Neda, I., Jones, P. G. & Schmutzler, R. (1994). Phosphorus Sulfur Silicon Relat. Elem. 91, 103–127.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKane, C. J., Long, R., Pettit, W. E., Breneman, G. L. & Pettit, G. R. (1992). Acta Cryst. C48, 1490–1491.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKumar, J. S., Singh, A. K., Yang, J. & Drake, J. E. (1998). J. Coord. Chem. 44, 217–223.  Web of Science CrossRef CAS Google Scholar
First citationPettit, G. R., Chamberland, M. R., Blonda, D. S. & Vickers, M. A. (1964). Can. J. Chem. 42, 1699–1706.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds