organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Di­benzyl­imidazolidine-2-thione

aDepartment of Inorganic Chemistry, Chemical Faculty, Gdansk University of Technology, 11/12 G. Narutowicza Street, 80-233 Gdańsk, Poland
*Correspondence e-mail: anna.mietlarek-kropidlowska@pg.gda.pl

(Received 3 July 2012; accepted 18 July 2012; online 21 July 2012)

In the title compound, C17H18N2S, the imidazolidine ring adopts a twisted conformation. In the crystal, mol­ecules are linked by slipped ππ inter­actions between the benzene rings of neighbouring mol­ecules [centroid-to-centroid distance = 3.903 (2) Å].

Related literature

For background information and the synthesis of related compounds, see: Savjani & Gajjar (2011[Savjani, J. K. & Gajjar, A. K. (2011). Pak. J. Biol. Sci. 14, 1076-1089.]); Wazeer et al. (2007[Wazeer, M. I. M., Isab, A. A. & Fettouhi, M. (2007). Polyhedron, 26, 1725-1730.]); Zhivotova et al. (2006[Zhivotova, T. S., Gazaliev, A. M., Fazylov, S. D., Aitpaeva, Z. K. & Turdybekov, D. M. (2006). Zh. Org. Khim. 42, 448-450.]); Jayaram et al. (2008[Jayaram, P. N., Roy, G. & Mugesh, G. (2008). J. Chem. Sci. 120, 143-154.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N2S

  • Mr = 282.39

  • Monoclinic, P 21 /c

  • a = 14.8492 (8) Å

  • b = 10.2284 (5) Å

  • c = 10.1314 (6) Å

  • β = 107.131 (6)°

  • V = 1470.53 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 120 K

  • 0.45 × 0.15 × 0.03 mm

Data collection
  • Oxford Xcalibur Sapphire2 diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.938, Tmax = 0.993

  • 5840 measured reflections

  • 2890 independent reflections

  • 2148 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.092

  • S = 0.94

  • 2890 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

2-Imidazolidinethione derivatives exhibit applications in diverse therapeutic areas such as antimicrobial activity (Wazeer et al., 2007). Moreover, 2-imidazolidinethiones are also used as a chiral auxiliary and ligands for asymmetric catalysis (Savjani & Gajjar, 2011). Herein, we report the crystal structure of the title compound.

In the title molecule (Fig. 1), the imidazolidine ring has twisted (T, i.e. half-chair) conformation. In the crystal structure (Fig. 2), molecules are connected by slipped ππ interactions between the benzene rings of neighbouring molecules, with a Cg–Cgi distance of 3.903 (2) Å and an interplanar distance of 3.595 (2) Å resulting in a slippage of 1.519 Å (Cg is the centroid of the C5–C10 benzene ring).

The volume 1470.53 (14) Å3 as well as the number of molecules in the elemental cell (Z = 4) of 1,3-dibenzylimidazolidine-2-thione match the values determined for closely related 1,3-dibenzyl-1H-imidazole-2(3H)-thione (Jayaram et al., 2008). These molecules differ in their 5-membered ring being either aromatic or aliphatic. Nevertheless any closer comparison of the bond lengths and angles between these two compounds is difficult due to the lack of atomic coordinates for 1,3-dibenzyl-1H-imidazole-2(3H)-thione either in the above mentioned paper or in Cambridge Structural Database. The 5-membered imidazolidine ring in the present structure adopts the conformation which is most closely described as half-chair or twisted (T) on C2—C3. Parameter Q2 (Cremer & Pople, 1975), which specifies the puckering amplitude and thus differentiate planar from non-planar systems, is significantly greater than zero 0.1565 (16) Å and φ2 parameter is 301.2 (6)° pointing to the mentioned T type of pucker.

Related literature top

For background information and the synthesis of related compounds, see: Savjani & Gajjar (2011); Wazeer et al. (2007); Zhivotova et al. (2006); Jayaram et al. (2008). For ring-puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was synthesized according to the procedure reported by Zhivotova et al. (2006). The reaction was carried out between N,N'-dibenzylethylenediamine and carbon disulfide in the presence of KOH (molar ratio 1:1:1) in methanol. The mixture was stirred 50 min, filtered and then left for crystallization at 278 K. After a week yellowish needle-like crystals were appeared. These were filtered off and dried. The melting point was determined to be 393 K.

Refinement top

All of the C-bonded hydrogen atoms were placed in the calculated positions (aromatic: dCH = 0.95 Å, methylene: dCH = 0.99 Å) and were treated as riding on their parent atoms with Uiso(H) = 1.2Ueq(C).

Structure description top

2-Imidazolidinethione derivatives exhibit applications in diverse therapeutic areas such as antimicrobial activity (Wazeer et al., 2007). Moreover, 2-imidazolidinethiones are also used as a chiral auxiliary and ligands for asymmetric catalysis (Savjani & Gajjar, 2011). Herein, we report the crystal structure of the title compound.

In the title molecule (Fig. 1), the imidazolidine ring has twisted (T, i.e. half-chair) conformation. In the crystal structure (Fig. 2), molecules are connected by slipped ππ interactions between the benzene rings of neighbouring molecules, with a Cg–Cgi distance of 3.903 (2) Å and an interplanar distance of 3.595 (2) Å resulting in a slippage of 1.519 Å (Cg is the centroid of the C5–C10 benzene ring).

The volume 1470.53 (14) Å3 as well as the number of molecules in the elemental cell (Z = 4) of 1,3-dibenzylimidazolidine-2-thione match the values determined for closely related 1,3-dibenzyl-1H-imidazole-2(3H)-thione (Jayaram et al., 2008). These molecules differ in their 5-membered ring being either aromatic or aliphatic. Nevertheless any closer comparison of the bond lengths and angles between these two compounds is difficult due to the lack of atomic coordinates for 1,3-dibenzyl-1H-imidazole-2(3H)-thione either in the above mentioned paper or in Cambridge Structural Database. The 5-membered imidazolidine ring in the present structure adopts the conformation which is most closely described as half-chair or twisted (T) on C2—C3. Parameter Q2 (Cremer & Pople, 1975), which specifies the puckering amplitude and thus differentiate planar from non-planar systems, is significantly greater than zero 0.1565 (16) Å and φ2 parameter is 301.2 (6)° pointing to the mentioned T type of pucker.

For background information and the synthesis of related compounds, see: Savjani & Gajjar (2011); Wazeer et al. (2007); Zhivotova et al. (2006); Jayaram et al. (2008). For ring-puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the ππ interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. Cg is the centroid of the C5–C10 benzene ring. [Symmetry code: (i) -x + 1, -y + 1, -z + 1.]
1,3-Dibenzylimidazolidine-2-thione top
Crystal data top
C17H18N2SF(000) = 600
Mr = 282.39Dx = 1.276 Mg m3
Monoclinic, P21/cMelting point: 393 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.8492 (8) ÅCell parameters from 3149 reflections
b = 10.2284 (5) Åθ = 2.9–28.3°
c = 10.1314 (6) ŵ = 0.21 mm1
β = 107.131 (6)°T = 120 K
V = 1470.53 (14) Å3Needle, light yellow
Z = 40.45 × 0.15 × 0.03 mm
Data collection top
Oxford Xcalibur Sapphire2
diffractometer
2890 independent reflections
Graphite monochromator2148 reflections with I > 2σ(I)
Detector resolution: 8.1883 pixels mm-1Rint = 0.020
ω scansθmax = 26°, θmin = 2.9°
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 1718
Tmin = 0.938, Tmax = 0.993k = 1112
5840 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0605P)2]
where P = (Fo2 + 2Fc2)/3
2890 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C17H18N2SV = 1470.53 (14) Å3
Mr = 282.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.8492 (8) ŵ = 0.21 mm1
b = 10.2284 (5) ÅT = 120 K
c = 10.1314 (6) Å0.45 × 0.15 × 0.03 mm
β = 107.131 (6)°
Data collection top
Oxford Xcalibur Sapphire2
diffractometer
2890 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2010)
2148 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.993Rint = 0.020
5840 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 0.94Δρmax = 0.32 e Å3
2890 reflectionsΔρmin = 0.17 e Å3
181 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.06996 (8)0.45939 (12)0.28050 (13)0.0281 (3)
N20.20826 (8)0.36922 (12)0.37091 (13)0.0268 (3)
S10.11232 (3)0.27228 (4)0.12140 (4)0.03308 (14)
C10.13043 (10)0.36852 (14)0.26067 (15)0.0233 (3)
C20.20697 (11)0.47669 (16)0.46506 (17)0.0334 (4)
H2A0.25010.54780.45650.04*
H2B0.22460.44640.56210.04*
C30.10445 (11)0.52096 (16)0.41609 (17)0.0335 (4)
H3A0.06920.48990.47910.04*
H3B0.09970.61740.40880.04*
C40.28837 (10)0.28334 (16)0.38936 (18)0.0329 (4)
H4A0.26850.20640.32840.039*
H4B0.30810.25150.48590.039*
C50.37268 (10)0.34615 (14)0.35870 (16)0.0270 (3)
C60.46349 (11)0.30853 (16)0.43384 (18)0.0338 (4)
H60.47210.2460.50590.041*
C70.54126 (11)0.36151 (16)0.40445 (19)0.0388 (4)
H70.60280.33430.45550.047*
C80.52966 (11)0.45327 (17)0.30165 (19)0.0388 (4)
H80.58320.490.28240.047*
C90.43962 (12)0.49221 (17)0.22599 (18)0.0365 (4)
H90.43140.55580.15510.044*
C100.36144 (11)0.43758 (16)0.25455 (16)0.0328 (4)
H100.29990.46340.2020.039*
C110.02190 (10)0.48742 (16)0.18592 (18)0.0341 (4)
H11A0.01990.46890.09090.041*
H11B0.03450.5820.19120.041*
C120.10361 (10)0.41236 (14)0.21001 (15)0.0234 (3)
C130.09255 (10)0.31025 (14)0.30325 (15)0.0259 (3)
H130.03110.28520.35720.031*
C140.17071 (11)0.24423 (15)0.31840 (17)0.0317 (4)
H140.16230.17410.38240.038*
C150.26067 (11)0.27991 (17)0.24095 (18)0.0360 (4)
H150.31410.23510.25170.043*
C170.27181 (10)0.38191 (17)0.14751 (17)0.0358 (4)
H170.33330.40690.09390.043*
C180.19466 (10)0.44741 (15)0.13154 (16)0.0285 (4)
H180.20340.51690.06680.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0252 (6)0.0280 (7)0.0329 (8)0.0007 (5)0.0113 (5)0.0046 (6)
N20.0244 (6)0.0293 (7)0.0257 (7)0.0010 (5)0.0059 (5)0.0015 (6)
S10.0371 (2)0.0336 (2)0.0283 (2)0.00352 (17)0.00927 (17)0.00815 (18)
C10.0240 (7)0.0229 (7)0.0252 (8)0.0053 (6)0.0109 (6)0.0004 (6)
C20.0391 (9)0.0360 (9)0.0276 (9)0.0154 (7)0.0139 (7)0.0060 (7)
C30.0452 (10)0.0290 (8)0.0328 (9)0.0040 (7)0.0214 (8)0.0040 (7)
C40.0266 (8)0.0317 (9)0.0375 (9)0.0010 (7)0.0050 (7)0.0085 (8)
C50.0265 (8)0.0245 (8)0.0288 (9)0.0006 (6)0.0064 (6)0.0026 (6)
C60.0293 (8)0.0303 (9)0.0384 (10)0.0034 (7)0.0044 (7)0.0008 (7)
C70.0237 (8)0.0355 (10)0.0542 (12)0.0050 (7)0.0066 (7)0.0051 (9)
C80.0305 (9)0.0398 (10)0.0509 (11)0.0061 (7)0.0196 (8)0.0116 (8)
C90.0388 (9)0.0378 (10)0.0348 (10)0.0027 (7)0.0138 (7)0.0011 (8)
C100.0270 (8)0.0373 (9)0.0321 (9)0.0003 (7)0.0057 (7)0.0012 (7)
C110.0282 (8)0.0341 (9)0.0418 (10)0.0062 (7)0.0133 (7)0.0128 (8)
C120.0254 (7)0.0228 (7)0.0236 (8)0.0029 (6)0.0095 (6)0.0034 (6)
C130.0267 (8)0.0257 (8)0.0252 (8)0.0032 (6)0.0076 (6)0.0006 (6)
C140.0406 (9)0.0279 (8)0.0294 (9)0.0035 (7)0.0145 (7)0.0003 (7)
C150.0310 (8)0.0375 (9)0.0433 (10)0.0097 (7)0.0167 (7)0.0102 (8)
C170.0242 (8)0.0425 (10)0.0371 (10)0.0022 (7)0.0036 (7)0.0073 (8)
C180.0316 (8)0.0291 (8)0.0241 (8)0.0052 (7)0.0072 (6)0.0008 (7)
Geometric parameters (Å, º) top
N1—C11.3479 (18)C7—H70.95
N1—C111.446 (2)C8—C91.389 (2)
N1—C31.460 (2)C8—H80.95
N2—C11.3501 (19)C9—C101.393 (2)
N2—C41.4459 (18)C9—H90.95
N2—C21.4591 (19)C10—H100.95
S1—C11.6759 (15)C11—C121.515 (2)
C2—C31.524 (2)C11—H11A0.99
C2—H2A0.99C11—H11B0.99
C2—H2B0.99C12—C131.385 (2)
C3—H3A0.99C12—C181.398 (2)
C3—H3B0.99C13—C141.390 (2)
C4—C51.518 (2)C13—H130.95
C4—H4A0.99C14—C151.384 (2)
C4—H4B0.99C14—H140.95
C5—C101.383 (2)C15—C171.385 (2)
C5—C61.393 (2)C15—H150.95
C6—C71.385 (2)C17—C181.377 (2)
C6—H60.95C17—H170.95
C7—C81.375 (3)C18—H180.95
C1—N1—C11125.29 (13)C6—C7—H7119.9
C1—N1—C3111.91 (12)C7—C8—C9119.96 (15)
C11—N1—C3122.62 (13)C7—C8—H8120
C1—N2—C4125.09 (13)C9—C8—H8120
C1—N2—C2111.84 (12)C8—C9—C10119.72 (16)
C4—N2—C2122.81 (12)C8—C9—H9120.1
N1—C1—N2108.57 (13)C10—C9—H9120.1
N1—C1—S1125.58 (12)C5—C10—C9120.59 (14)
N2—C1—S1125.84 (11)C5—C10—H10119.7
N2—C2—C3102.42 (12)C9—C10—H10119.7
N2—C2—H2A111.3N1—C11—C12115.89 (13)
C3—C2—H2A111.3N1—C11—H11A108.3
N2—C2—H2B111.3C12—C11—H11A108.3
C3—C2—H2B111.3N1—C11—H11B108.3
H2A—C2—H2B109.2C12—C11—H11B108.3
N1—C3—C2102.60 (12)H11A—C11—H11B107.4
N1—C3—H3A111.2C13—C12—C18118.78 (13)
C2—C3—H3A111.2C13—C12—C11123.52 (13)
N1—C3—H3B111.2C18—C12—C11117.68 (13)
C2—C3—H3B111.2C12—C13—C14120.44 (14)
H3A—C3—H3B109.2C12—C13—H13119.8
N2—C4—C5114.39 (12)C14—C13—H13119.8
N2—C4—H4A108.7C15—C14—C13120.48 (15)
C5—C4—H4A108.7C15—C14—H14119.8
N2—C4—H4B108.7C13—C14—H14119.8
C5—C4—H4B108.7C14—C15—C17119.14 (14)
H4A—C4—H4B107.6C14—C15—H15120.4
C10—C5—C6118.92 (14)C17—C15—H15120.4
C10—C5—C4121.38 (13)C18—C17—C15120.70 (14)
C6—C5—C4119.67 (14)C18—C17—H17119.7
C7—C6—C5120.57 (16)C15—C17—H17119.7
C7—C6—H6119.7C17—C18—C12120.46 (14)
C5—C6—H6119.7C17—C18—H18119.8
C8—C7—C6120.24 (15)C12—C18—H18119.8
C8—C7—H7119.9
C11—N1—C1—N2179.34 (13)C5—C6—C7—C80.8 (3)
C3—N1—C1—N24.12 (17)C6—C7—C8—C90.6 (3)
C11—N1—C1—S11.4 (2)C7—C8—C9—C100.2 (3)
C3—N1—C1—S1176.58 (11)C6—C5—C10—C90.6 (2)
C4—N2—C1—N1178.56 (12)C4—C5—C10—C9178.66 (15)
C2—N2—C1—N17.22 (16)C8—C9—C10—C50.8 (2)
C4—N2—C1—S12.2 (2)C1—N1—C11—C1291.76 (18)
C2—N2—C1—S1172.08 (10)C3—N1—C11—C1282.97 (18)
C1—N2—C2—C314.63 (16)N1—C11—C12—C138.5 (2)
C4—N2—C2—C3170.99 (13)N1—C11—C12—C18172.64 (13)
C1—N1—C3—C212.79 (16)C18—C12—C13—C140.1 (2)
C11—N1—C3—C2171.84 (13)C11—C12—C13—C14178.92 (14)
N2—C2—C3—N115.51 (14)C12—C13—C14—C150.3 (2)
C1—N2—C4—C5101.77 (17)C13—C14—C15—C170.3 (2)
C2—N2—C4—C571.85 (19)C14—C15—C17—C180.1 (2)
N2—C4—C5—C1035.3 (2)C15—C17—C18—C120.3 (2)
N2—C4—C5—C6146.64 (14)C13—C12—C18—C170.4 (2)
C10—C5—C6—C70.2 (2)C11—C12—C18—C17179.26 (15)
C4—C5—C6—C7177.88 (15)

Experimental details

Crystal data
Chemical formulaC17H18N2S
Mr282.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)14.8492 (8), 10.2284 (5), 10.1314 (6)
β (°) 107.131 (6)
V3)1470.53 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.45 × 0.15 × 0.03
Data collection
DiffractometerOxford Xcalibur Sapphire2
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.938, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
5840, 2890, 2148
Rint0.020
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.092, 0.94
No. of reflections2890
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.17

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The research was supported by grants from the Polish Ministry of Education and Science (grant Nos. NN204 543339 and NN204 150237).

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJayaram, P. N., Roy, G. & Mugesh, G. (2008). J. Chem. Sci. 120, 143–154.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSavjani, J. K. & Gajjar, A. K. (2011). Pak. J. Biol. Sci. 14, 1076–1089.  CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWazeer, M. I. M., Isab, A. A. & Fettouhi, M. (2007). Polyhedron, 26, 1725–1730.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhivotova, T. S., Gazaliev, A. M., Fazylov, S. D., Aitpaeva, Z. K. & Turdybekov, D. M. (2006). Zh. Org. Khim. 42, 448–450.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds