organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1-Methyl-1H-imidazol-3-ium-2-yl)(phen­yl)phosphinate monohydrate

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: literabc@hotmail.com

(Received 16 May 2012; accepted 21 June 2012; online 4 July 2012)

The title compound, C10H11N2O2P·H2O, contains a tetra­coordinate penta­valent P atom. The phosphinate group plays a predominant role in the cohesion of the crystal structure by forming chains along the b axis via inter­molecular C—H⋯O hydrogen bonds. These chains are connected by O—H⋯O and N—H⋯O hydrogen bonding involving the lattice water.

Related literature

For background infomation on phospho­rylated imidazoles, see: Andrej et al. (1999[Andrej, A. T., Aleksandr, A. Y. & Anatolij, S. M. (1999). Heteroat. Chem. 10, 585-597.]); Matevosyan & Zavlin (1990[Matevosyan, G. L. & Zavlin, P. M. (1990). Khim Geterotsikl Soedin. 6, 723-740.]); Grotjahn (2010[Grotjahn, D. B. (2010). Top. Catal. 53, 1009-1014.]). For the structures of related imidazolyl phosphinic acids and the function of phospho­rylated imidazoles, see: Kunz & Frank (2010[Kunz, P. C. & Frank, W. (2010). Acta Cryst. E66, o1440.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11N2O2P·H2O

  • Mr = 240.19

  • Monoclinic, P 21 /n

  • a = 6.7946 (5) Å

  • b = 24.753 (2) Å

  • c = 7.5277 (7) Å

  • β = 114.433 (1)°

  • V = 1152.70 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 K

  • 0.40 × 0.31 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.913, Tmax = 0.968

  • 6904 measured reflections

  • 2597 independent reflections

  • 1489 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.154

  • S = 1.02

  • 2597 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1i 0.85 1.86 2.709 (3) 174
C10—H10B⋯O1ii 0.96 2.51 3.268 (4) 136
N2—H20⋯O3iii 0.87 1.82 2.665 (3) 162
Symmetry codes: (i) -x+1, -y, -z; (ii) x, y, z+1; (iii) x+1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phosphorylated imidazoles have attracted the attention of chemists and biochemists in the past decades because they are promising as synthons, pesticides, and drugs (Matevosyan & Zavlin, 1990). Pyridylphosphanes are well-established P—N ligands in transition metal chemistry (Grotjahn, 2010) while phosphinic acids have found use in the construction of coordination polymers for a wide range of applications (Kunz & Frank, 2010). The title compound, C10H13N2O3P, contains a tetracoordinate pentavalent P atom and the phosphinic function plays a predominant role in the cohesion of the crystal structure, both by forming chains along the b axis via weak intermolecular C—H···O hydrogen bonds and by connecting these chains by O—H···O and N—H···O hydrogen bonding with the lattice water molecules. The O—H···O and C—H···O interactions form 12-membered hydrogen bonded rings that are located on centers of inversion (Kunz & Frank, 2010) while the O—H···O and N—H···O interaction form 14-membered hydrogen bonded rings (Fig. 2).

Related literature top

For background infomation on phosphorylated imidazoles, see: Andrej et al. (1999); Matevosyan & Zavlin (1990); Grotjahn (2010). For the structures of related imidazolyl phosphinic acids and the function of phosphorylated imidazoles, see: Kunz & Frank (2010).

Experimental top

Triethylamine (14.74 mmol) was added dropwise at 0°C to dichlorophenylphosphine (7.37 mmol) dissolved in dichloromethane (10 ml) and the mixture was stirred for 10 min. Methylimidazole (14.74 mmol) was added and the reaction mixture was warmed to room temperature and stirred for 10 h. After removal of the solvent, ethanol (30 ml) and sodium hydroxide (14.74 mmol) were added and the mixture stirred for 3 h. The solvent was removed in vacuo, dichloromethane (10 ml) was added, the precipitate was filtered off and the solvent removed in vacuo to give the crude product (2,2'-(phenylphosphinediyl)bis(1-methyl-1H-imidazole)). Butyl ether was used to recrystallize. Single crystals of the title compound suitable for X–ray diffraction were obtained by slow evaporation of a methanol solution of the product.

Refinement top

All H atoms attached to C, N and O atoms were fixed geometrically and treated as riding with C—H = 0.93–0.96 Å, O—H = 0.85 Å, N—H = 0.87 Å, with Uiso(H) = 1.5 Ueq(methyl) and Uiso(H) = 1.2 Ueq(C) for all other H atoms.

Structure description top

Phosphorylated imidazoles have attracted the attention of chemists and biochemists in the past decades because they are promising as synthons, pesticides, and drugs (Matevosyan & Zavlin, 1990). Pyridylphosphanes are well-established P—N ligands in transition metal chemistry (Grotjahn, 2010) while phosphinic acids have found use in the construction of coordination polymers for a wide range of applications (Kunz & Frank, 2010). The title compound, C10H13N2O3P, contains a tetracoordinate pentavalent P atom and the phosphinic function plays a predominant role in the cohesion of the crystal structure, both by forming chains along the b axis via weak intermolecular C—H···O hydrogen bonds and by connecting these chains by O—H···O and N—H···O hydrogen bonding with the lattice water molecules. The O—H···O and C—H···O interactions form 12-membered hydrogen bonded rings that are located on centers of inversion (Kunz & Frank, 2010) while the O—H···O and N—H···O interaction form 14-membered hydrogen bonded rings (Fig. 2).

For background infomation on phosphorylated imidazoles, see: Andrej et al. (1999); Matevosyan & Zavlin (1990); Grotjahn (2010). For the structures of related imidazolyl phosphinic acids and the function of phosphorylated imidazoles, see: Kunz & Frank (2010).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The two–dimensional plane, linked by C—H···O, N—H···O and O—H···O interactions.
(1-Methyl-1H-imidazol-3-ium-2-yl)(phenyl)phosphinate monohydrate top
Crystal data top
C10H11N2O2P·H2OF(000) = 504
Mr = 240.19Dx = 1.384 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1313 reflections
a = 6.7946 (5) Åθ = 2.5–23.3°
b = 24.753 (2) ŵ = 0.23 mm1
c = 7.5277 (7) ÅT = 298 K
β = 114.433 (1)°Block, colourless
V = 1152.70 (17) Å30.40 × 0.31 × 0.14 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2597 independent reflections
Radiation source: fine-focus sealed tube1489 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
φ and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.913, Tmax = 0.968k = 2932
6904 measured reflectionsl = 97
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0721P)2 + 0.0591P]
where P = (Fo2 + 2Fc2)/3
2597 reflections(Δ/σ)max = 0.001
146 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C10H11N2O2P·H2OV = 1152.70 (17) Å3
Mr = 240.19Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.7946 (5) ŵ = 0.23 mm1
b = 24.753 (2) ÅT = 298 K
c = 7.5277 (7) Å0.40 × 0.31 × 0.14 mm
β = 114.433 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2597 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1489 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.968Rint = 0.048
6904 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.02Δρmax = 0.32 e Å3
2597 reflectionsΔρmin = 0.31 e Å3
146 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.73237 (13)0.10122 (3)0.11830 (10)0.0428 (3)
O10.8280 (4)0.07348 (9)0.0024 (3)0.0608 (7)
O20.5092 (3)0.09076 (9)0.0956 (3)0.0578 (6)
N10.8906 (4)0.09159 (8)0.5352 (3)0.0346 (5)
N21.1068 (4)0.06002 (9)0.4191 (3)0.0403 (6)
H201.15420.04900.33370.048*
C10.7732 (5)0.17278 (12)0.1149 (4)0.0428 (7)
C20.9522 (5)0.19315 (13)0.0927 (5)0.0562 (9)
H21.05060.16950.07750.067*
C30.9849 (7)0.24800 (15)0.0931 (6)0.0784 (12)
H31.10500.26130.07780.094*
C40.8414 (8)0.28317 (15)0.1158 (6)0.0796 (12)
H40.86440.32020.11530.096*
C50.6659 (7)0.26430 (14)0.1391 (6)0.0727 (11)
H50.56980.28840.15570.087*
C60.6298 (5)0.20933 (14)0.1381 (5)0.0580 (9)
H60.50860.19660.15290.070*
C70.9148 (4)0.08320 (10)0.3684 (4)0.0331 (6)
C81.0715 (5)0.07368 (11)0.6899 (4)0.0435 (7)
H81.09650.07500.82100.052*
C91.2055 (5)0.05385 (12)0.6160 (4)0.0459 (7)
H91.34090.03870.68640.055*
C100.7023 (5)0.11496 (13)0.5516 (4)0.0502 (8)
H10A0.65800.14680.47210.075*
H10B0.73820.12430.68520.075*
H10C0.58640.08920.50830.075*
O30.3180 (3)0.01614 (8)0.2251 (3)0.0536 (6)
H3A0.27530.01100.14940.080*
H3B0.37740.03850.17670.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0533 (5)0.0472 (5)0.0242 (4)0.0145 (4)0.0123 (3)0.0023 (3)
O10.0936 (18)0.0620 (14)0.0352 (12)0.0157 (12)0.0352 (12)0.0120 (10)
O20.0458 (13)0.0743 (15)0.0405 (12)0.0237 (11)0.0049 (10)0.0042 (10)
N10.0410 (13)0.0363 (13)0.0267 (12)0.0040 (10)0.0141 (10)0.0016 (9)
N20.0485 (15)0.0392 (13)0.0404 (14)0.0012 (11)0.0256 (12)0.0044 (10)
C10.0460 (18)0.0491 (17)0.0261 (14)0.0061 (14)0.0077 (13)0.0049 (12)
C20.057 (2)0.055 (2)0.062 (2)0.0071 (16)0.0288 (18)0.0050 (16)
C30.081 (3)0.062 (3)0.097 (3)0.021 (2)0.042 (3)0.011 (2)
C40.100 (3)0.049 (2)0.086 (3)0.008 (2)0.035 (3)0.011 (2)
C50.076 (3)0.057 (2)0.085 (3)0.017 (2)0.033 (2)0.0152 (19)
C60.052 (2)0.063 (2)0.055 (2)0.0026 (17)0.0188 (17)0.0143 (16)
C70.0410 (16)0.0315 (14)0.0298 (15)0.0055 (12)0.0176 (13)0.0046 (11)
C80.0488 (18)0.0485 (17)0.0273 (15)0.0014 (14)0.0098 (14)0.0058 (12)
C90.0415 (17)0.0509 (18)0.0411 (17)0.0036 (14)0.0128 (14)0.0055 (14)
C100.055 (2)0.060 (2)0.0399 (17)0.0137 (16)0.0243 (15)0.0035 (14)
O30.0665 (15)0.0514 (13)0.0562 (14)0.0079 (10)0.0388 (12)0.0118 (10)
Geometric parameters (Å, º) top
P1—O21.477 (2)C3—H30.9300
P1—O11.486 (2)C4—C51.358 (5)
P1—C11.795 (3)C4—H40.9300
P1—C71.830 (3)C5—C61.382 (5)
N1—C71.348 (3)C5—H50.9300
N1—C81.371 (3)C6—H60.9300
N1—C101.455 (3)C8—C91.341 (4)
N2—C71.329 (3)C8—H80.9300
N2—C91.359 (3)C9—H90.9300
N2—H200.8730C10—H10A0.9600
C1—C21.389 (4)C10—H10B0.9600
C1—C61.393 (4)C10—H10C0.9600
C2—C31.376 (4)O3—H3A0.8502
C2—H20.9300O3—H3B0.8510
C3—C41.369 (5)
O2—P1—O1122.39 (13)C3—C4—H4119.8
O2—P1—C1109.20 (14)C4—C5—C6120.1 (4)
O1—P1—C1109.76 (13)C4—C5—H5120.0
O2—P1—C7107.60 (12)C6—C5—H5120.0
O1—P1—C7103.61 (13)C5—C6—C1120.6 (3)
C1—P1—C7102.25 (12)C5—C6—H6119.7
C7—N1—C8109.3 (2)C1—C6—H6119.7
C7—N1—C10126.2 (2)N2—C7—N1106.4 (2)
C8—N1—C10124.5 (2)N2—C7—P1124.5 (2)
C7—N2—C9110.1 (2)N1—C7—P1129.0 (2)
C7—N2—H20122.7C9—C8—N1106.8 (3)
C9—N2—H20127.0C9—C8—H8126.6
C2—C1—C6118.2 (3)N1—C8—H8126.6
C2—C1—P1120.6 (2)C8—C9—N2107.4 (2)
C6—C1—P1121.3 (2)C8—C9—H9126.3
C3—C2—C1120.5 (3)N2—C9—H9126.3
C3—C2—H2119.8N1—C10—H10A109.5
C1—C2—H2119.8N1—C10—H10B109.5
C4—C3—C2120.3 (4)H10A—C10—H10B109.5
C4—C3—H3119.8N1—C10—H10C109.5
C2—C3—H3119.8H10A—C10—H10C109.5
C5—C4—C3120.4 (4)H10B—C10—H10C109.5
C5—C4—H4119.8H3A—O3—H3B108.5
O2—P1—C1—C2166.5 (2)C9—N2—C7—P1177.64 (19)
O1—P1—C1—C229.7 (3)C8—N1—C7—N20.5 (3)
C7—P1—C1—C279.8 (3)C10—N1—C7—N2178.4 (2)
O2—P1—C1—C614.8 (3)C8—N1—C7—P1177.3 (2)
O1—P1—C1—C6151.5 (2)C10—N1—C7—P13.7 (4)
C7—P1—C1—C699.0 (2)O2—P1—C7—N2142.8 (2)
C6—C1—C2—C30.2 (5)O1—P1—C7—N211.9 (3)
P1—C1—C2—C3179.0 (3)C1—P1—C7—N2102.2 (2)
C1—C2—C3—C40.2 (6)O2—P1—C7—N139.7 (3)
C2—C3—C4—C50.3 (6)O1—P1—C7—N1170.6 (2)
C3—C4—C5—C60.6 (6)C1—P1—C7—N175.3 (3)
C4—C5—C6—C10.5 (5)C7—N1—C8—C90.5 (3)
C2—C1—C6—C50.1 (4)C10—N1—C8—C9178.5 (3)
P1—C1—C6—C5178.7 (3)N1—C8—C9—N20.3 (3)
C9—N2—C7—N10.3 (3)C7—N2—C9—C80.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.851.862.709 (3)174
C10—H10B···O1ii0.962.513.268 (4)136
N2—H20···O3iii0.871.822.665 (3)162
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H11N2O2P·H2O
Mr240.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)6.7946 (5), 24.753 (2), 7.5277 (7)
β (°) 114.433 (1)
V3)1152.70 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.40 × 0.31 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.913, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
6904, 2597, 1489
Rint0.048
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.154, 1.02
No. of reflections2597
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.31

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.851.862.709 (3)174
C10—H10B···O1ii0.962.513.268 (4)136
N2—H20···O3iii0.871.822.665 (3)162
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x+1, y, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20772055) for financial support of this study.

References

First citationAndrej, A. T., Aleksandr, A. Y. & Anatolij, S. M. (1999). Heteroat. Chem. 10, 585–597.  Google Scholar
First citationGrotjahn, D. B. (2010). Top. Catal. 53, 1009–1014.  Web of Science CrossRef CAS Google Scholar
First citationKunz, P. C. & Frank, W. (2010). Acta Cryst. E66, o1440.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMatevosyan, G. L. & Zavlin, P. M. (1990). Khim Geterotsikl Soedin. 6, 723–740.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds