organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Fluoro-4-hy­dr­oxy­benz­yl)isoindoline-1,3-dione

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey, and cDepartment of Physics, Faculty of Arts and Sciences, Dokuz Eylül University, Tınaztepe Kampüsü, TR-35160 Buca-İzmir, Turkey
*Correspondence e-mail: hilal.vesek@oposta.omu.tr

(Received 31 May 2012; accepted 30 June 2012; online 18 July 2012)

In the title compound, C15H10FNO3, the dihedral angle between the isoindoline-1,3-dione and 3-fluoro-4-methyl­phenol groups is 86.88 (8)°. The isoindoline-1,3-dione fragment is almost planar, with an r.m.s. deviation of 0.0154 Å within the group. Inter­molecular C—H⋯O hydrogen bonds generate C(6) chains running parallel to the [010] direction.

Related literature

For background to indoline-1,3-dione and its derivatives, see: Raza et al. (2010[Raza, A. R., Saddiqa, A., Tahir, M. N. & Saddiq, S. (2010). Acta Cryst. E66, o2979.]). For discussion of the broad spectrum of properties of these compounds, see: Bhattacharya & Chakrabarti (1998[Bhattacharya, S. K. & Chakrabarti, A. (1998). Indian J. Exp. Biol. 36, 118-121.]). For discussion of their anti-inflammatory properties, see: Sridhar & Ramesh (2001[Sridhar, S. K. & Ramesh, A. (2001). Biol. Pharm. Bull. 24, 1149-1152.]). For discussion of their anxiogenic activities, see: Medvedev et al. (1996[Medvedev, A. E., Clow, A., Sandler, M. & Glover, V. (1996). Biochem. Pharmacol. 52, 385-391.]). For related structures, see: Asad et al. (2012[Asad, M., Oo, C.-W., Osman, H., Fun, H.-K. & Arshad, S. (2012). Acta Cryst. E68, o38.]); Fu et al. (2010[Fu, X.-S., Yu, X.-P., Wang, W.-M. & Lin, F. (2010). Acta Cryst. E66, o1745.]). For classification of hydrogen-bonding patterns, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10FNO3

  • Mr = 271.24

  • Monoclinic, P 21 /c

  • a = 12.4362 (7) Å

  • b = 13.8189 (8) Å

  • c = 7.2376 (4) Å

  • β = 105.784 (6)°

  • V = 1196.92 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.49 × 0.36 × 0.16 mm

Data collection
  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) and Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.977, Tmax = 0.995

  • 6558 measured reflections

  • 2475 independent reflections

  • 1455 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.141

  • S = 1.04

  • 2475 reflections

  • 182 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯F1i 0.82 2.52 3.267 (2) 152
C2—H6⋯O2ii 0.93 2.51 3.303 (3) 144
C12—H12⋯O2iii 0.93 2.51 3.403 (3) 161
C15—H15⋯O3iv 0.93 2.47 3.346 (3) 157
Symmetry codes: (i) x, y, z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Indoline-2,3-dione and its derivatives are well known for their broad spectrum properties including anticonvulsant (Bhattacharya & Chakrabarti, 1998), anti-inflammatory (Sridhar & Ramesh, 2001) and anxiogenic (Medvedev et al., 1996) activities. On the other hand, dithiocarbamates also show a large range of biological activities for example fungicidal (Ozkirimli et al., 2005) and antitumor activities (Cao et al., 2005; Gaspari et al., 2006).

As an extension of the work on the structural characterization of indoline-2,3-dione derivatives, the crystal structure of the title compound is reported here. The isoindoline-1,3-dione fragment is almost planar with an r.m.s. deviation of 0.0154 Å within the group. This unit makes a dihedral angle of 86.88 (8)° with the benzene ring.

The F1—C4 bond length of 1.349 (3) Å agrees with the corresponding distance in 9-(7-fluoro-4-oxo-4H-chromen-3-yl)-3,3,6,6-tetramethyl-2,3,4,5,6, 7,8,9-octahydro-1H-xanthene-1,8-dione [1.349 (2) Å (Asad et al., 2012)]. The CO bond lengths are 1.205 (3) Å for C8O2 and C11O3 which are similar to the corresponding values found in 2-(2-oxothiolan-3-yl)isoindoline-1,3-dione [1.202 (5) Å and 1.207 (5) Å (Raza et al., 2010)].

The molecules are linked into sheets by a combination of C—H···O and O—H···F interactions (Table 1). C(6) chains along [010] are created by pairwise C12—H12···O2 and C15—H15···O3 hydrogen bond interactions. The combination of the C(6) chains generates chain edge-fused R22(10) rings running along [010]. C(6) chains along [001] are formed by O1—H1···F1 hydrogen bond interactions (Fig.2).

Related literature top

For background to indoline-1,3-dione and its derivatives, see: Raza et al. (2010). For discussion of the broad spectrum of properties of these compounds, see: Bhattacharya & Chakrabarti (1998). For discussion of their anti-inflammatory properties, see: Sridhar & Ramesh (2001). For discussion of their anxiogenic activities, see: Medvedev et al. (1996). For related structures, see: Asad et al. (2012); Fu et al. (2010). For classification of hydrogen-bonding patterns, see: Bernstein et al. (1995).

Experimental top

The compound 2-(2-fluoro-4-hydroxybenzyl)-1H-isoindole-1,3(2H)-dione was prepared by combining solutions of 2-hydroxy-1H-isoindole-1,3(2H)-dione (0.011 g 0.067 mmol) in 20 ml of ethanol and 1-(2,4-difluorophenyl)methanamine (0.009 g, 0.067 mmol) in 20 ml of ethanol and refluxing the resulting mixture for 1 h with stirring. Crystals of 2-(2-fluoro-4-hydroxybenzyl)-1H-isoindole-1,3(2H)-dione suitable for X-ray analysis were obtained from ethyl alcohol by slow evaporation (yield 72%; m.p. 155–158°C).

Refinement top

The H1 atom was located in a difference map and the O—H distance adjusted to 0.82 (2) Å while the other H atoms were placed in calculated positions. All were constrained to ride on their parent atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C,O).

Structure description top

Indoline-2,3-dione and its derivatives are well known for their broad spectrum properties including anticonvulsant (Bhattacharya & Chakrabarti, 1998), anti-inflammatory (Sridhar & Ramesh, 2001) and anxiogenic (Medvedev et al., 1996) activities. On the other hand, dithiocarbamates also show a large range of biological activities for example fungicidal (Ozkirimli et al., 2005) and antitumor activities (Cao et al., 2005; Gaspari et al., 2006).

As an extension of the work on the structural characterization of indoline-2,3-dione derivatives, the crystal structure of the title compound is reported here. The isoindoline-1,3-dione fragment is almost planar with an r.m.s. deviation of 0.0154 Å within the group. This unit makes a dihedral angle of 86.88 (8)° with the benzene ring.

The F1—C4 bond length of 1.349 (3) Å agrees with the corresponding distance in 9-(7-fluoro-4-oxo-4H-chromen-3-yl)-3,3,6,6-tetramethyl-2,3,4,5,6, 7,8,9-octahydro-1H-xanthene-1,8-dione [1.349 (2) Å (Asad et al., 2012)]. The CO bond lengths are 1.205 (3) Å for C8O2 and C11O3 which are similar to the corresponding values found in 2-(2-oxothiolan-3-yl)isoindoline-1,3-dione [1.202 (5) Å and 1.207 (5) Å (Raza et al., 2010)].

The molecules are linked into sheets by a combination of C—H···O and O—H···F interactions (Table 1). C(6) chains along [010] are created by pairwise C12—H12···O2 and C15—H15···O3 hydrogen bond interactions. The combination of the C(6) chains generates chain edge-fused R22(10) rings running along [010]. C(6) chains along [001] are formed by O1—H1···F1 hydrogen bond interactions (Fig.2).

For background to indoline-1,3-dione and its derivatives, see: Raza et al. (2010). For discussion of the broad spectrum of properties of these compounds, see: Bhattacharya & Chakrabarti (1998). For discussion of their anti-inflammatory properties, see: Sridhar & Ramesh (2001). For discussion of their anxiogenic activities, see: Medvedev et al. (1996). For related structures, see: Asad et al. (2012); Fu et al. (2010). For classification of hydrogen-bonding patterns, see: Bernstein et al. (1995).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing, viewed along the b axis,of the title compound. The C—H···O and O—H···F interactions are shown as dashed lines (see Table 1 for details).
2-(2-Fluoro-4-hydroxybenzyl)isoindoline-1,3-dione top
Crystal data top
C15H10FNO3F(000) = 560
Mr = 271.24Dx = 1.505 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 1089 reflections
a = 12.4362 (7) Åθ = 3.3–29.3°
b = 13.8189 (8) ŵ = 0.12 mm1
c = 7.2376 (4) ÅT = 296 K
β = 105.784 (6)°Plate, yellow
V = 1196.92 (12) Å30.49 × 0.36 × 0.16 mm
Z = 4
Data collection top
Agilent Xcalibur Eos
diffractometer
2475 independent reflections
Radiation source: Enhance (Mo) X-ray Source1455 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 16.1333 pixels mm-1θmax = 26.5°, θmin = 3.3°
ω scansh = 1515
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012) and Clark & Reid (1995)]
k = 1017
Tmin = 0.977, Tmax = 0.995l = 99
6558 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.052P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2475 reflectionsΔρmax = 0.27 e Å3
182 parametersΔρmin = 0.25 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (2)
Crystal data top
C15H10FNO3V = 1196.92 (12) Å3
Mr = 271.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.4362 (7) ŵ = 0.12 mm1
b = 13.8189 (8) ÅT = 296 K
c = 7.2376 (4) Å0.49 × 0.36 × 0.16 mm
β = 105.784 (6)°
Data collection top
Agilent Xcalibur Eos
diffractometer
2475 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012) and Clark & Reid (1995)]
1455 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.995Rint = 0.030
6558 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0571 restraint
wR(F2) = 0.141H-atom parameters constrained
S = 1.04Δρmax = 0.27 e Å3
2475 reflectionsΔρmin = 0.25 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.51132 (13)0.39770 (13)0.2014 (2)0.0744 (5)
O10.62844 (14)0.34620 (14)0.8605 (2)0.0669 (6)
H10.60250.33780.95210.100*
O20.14305 (15)0.22946 (14)0.1784 (3)0.0688 (6)
O30.15474 (15)0.55595 (13)0.2472 (2)0.0640 (6)
C10.4371 (2)0.3540 (2)0.7088 (4)0.0587 (7)
H20.42090.34370.82530.070*
C20.3525 (2)0.36576 (18)0.5413 (4)0.0512 (7)
H60.27860.36350.54600.061*
C30.37512 (19)0.38080 (16)0.3672 (3)0.0432 (6)
C40.4864 (2)0.38324 (18)0.3694 (3)0.0489 (6)
C50.5730 (2)0.37230 (18)0.5324 (4)0.0555 (7)
H30.64720.37450.52920.067*
C60.5443 (2)0.35796 (19)0.6992 (4)0.0573 (7)
C70.2863 (2)0.39461 (19)0.1803 (3)0.0513 (7)
H7A0.29880.45600.12440.062*
H7B0.29340.34380.09200.062*
C80.1105 (2)0.31010 (19)0.1968 (4)0.0486 (7)
C90.00117 (19)0.34221 (18)0.2184 (3)0.0443 (6)
C100.00446 (19)0.44188 (18)0.2373 (3)0.0423 (6)
C110.1162 (2)0.47537 (19)0.2301 (3)0.0464 (6)
C120.0859 (2)0.4927 (2)0.2606 (3)0.0536 (7)
H120.08350.55960.27480.064*
C130.1802 (2)0.4405 (2)0.2620 (3)0.0603 (8)
H130.24300.47310.27560.072*
C140.1837 (2)0.3410 (2)0.2438 (4)0.0602 (8)
H140.24840.30790.24600.072*
C150.0921 (2)0.2898 (2)0.2221 (4)0.0553 (7)
H150.09370.22280.21070.066*
N10.17380 (16)0.39322 (15)0.2016 (3)0.0475 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0609 (10)0.1071 (14)0.0657 (9)0.0106 (9)0.0350 (8)0.0019 (9)
O10.0467 (11)0.0929 (15)0.0528 (9)0.0076 (10)0.0006 (7)0.0201 (10)
O20.0605 (13)0.0456 (12)0.1070 (15)0.0039 (10)0.0341 (11)0.0083 (11)
O30.0674 (13)0.0437 (11)0.0819 (13)0.0074 (10)0.0220 (10)0.0014 (10)
C10.0578 (18)0.0648 (18)0.0557 (16)0.0048 (15)0.0195 (13)0.0081 (14)
C20.0432 (15)0.0527 (16)0.0620 (16)0.0025 (12)0.0217 (12)0.0039 (13)
C30.0406 (14)0.0352 (13)0.0560 (14)0.0028 (11)0.0168 (11)0.0023 (11)
C40.0478 (16)0.0486 (16)0.0568 (15)0.0043 (13)0.0253 (13)0.0021 (12)
C50.0404 (15)0.0561 (18)0.0729 (18)0.0019 (13)0.0201 (14)0.0016 (14)
C60.0463 (16)0.0572 (17)0.0596 (15)0.0028 (13)0.0008 (10)0.0059 (14)
C70.0428 (14)0.0555 (16)0.0582 (14)0.0021 (13)0.0182 (12)0.0023 (13)
C80.0467 (16)0.0416 (16)0.0569 (15)0.0002 (13)0.0132 (12)0.0039 (12)
C90.0415 (15)0.0431 (15)0.0461 (13)0.0022 (12)0.0084 (11)0.0006 (12)
C100.0400 (15)0.0453 (15)0.0389 (12)0.0038 (12)0.0061 (10)0.0012 (11)
C110.0489 (16)0.0408 (16)0.0465 (13)0.0005 (13)0.0078 (11)0.0014 (12)
C120.0541 (17)0.0522 (16)0.0524 (14)0.0086 (14)0.0108 (12)0.0037 (13)
C130.0474 (17)0.075 (2)0.0585 (15)0.0138 (16)0.0148 (13)0.0021 (15)
C140.0421 (16)0.076 (2)0.0631 (16)0.0033 (15)0.0163 (13)0.0001 (15)
C150.0466 (16)0.0528 (16)0.0664 (16)0.0080 (14)0.0153 (13)0.0047 (14)
N10.0387 (12)0.0445 (12)0.0589 (12)0.0009 (10)0.0126 (10)0.0005 (10)
Geometric parameters (Å, º) top
F1—C41.349 (3)C7—H7A0.9700
O1—C61.349 (3)C7—H7B0.9700
O1—H10.8200C8—N11.388 (3)
O2—C81.205 (3)C8—C91.478 (3)
O3—C111.205 (3)C9—C151.374 (3)
C1—C61.354 (4)C9—C101.384 (3)
C1—C21.382 (3)C10—C121.373 (3)
C1—H20.9300C10—C111.479 (3)
C2—C31.379 (3)C11—N11.388 (3)
C2—H60.9300C12—C131.380 (4)
C3—C41.380 (3)C12—H120.9300
C3—C71.508 (3)C13—C141.380 (4)
C4—C51.372 (3)C13—H130.9300
C5—C61.364 (4)C14—C151.385 (4)
C5—H30.9300C14—H140.9300
C7—N11.449 (3)C15—H150.9300
C6—O1—H1109.5O2—C8—C9129.5 (2)
C6—C1—C2118.4 (2)N1—C8—C9106.3 (2)
C6—C1—H2120.8C15—C9—C10121.7 (2)
C2—C1—H2120.8C15—C9—C8130.5 (2)
C3—C2—C1121.5 (2)C10—C9—C8107.8 (2)
C3—C2—H6119.2C12—C10—C9121.2 (2)
C1—C2—H6119.2C12—C10—C11130.7 (2)
C2—C3—C4116.5 (2)C9—C10—C11108.1 (2)
C2—C3—C7123.9 (2)O3—C11—N1124.3 (2)
C4—C3—C7119.6 (2)O3—C11—C10129.6 (2)
F1—C4—C5118.2 (2)N1—C11—C10106.1 (2)
F1—C4—C3118.0 (2)C10—C12—C13117.3 (3)
C5—C4—C3123.9 (2)C10—C12—H12121.3
C6—C5—C4116.3 (2)C13—C12—H12121.3
C6—C5—H3121.8C12—C13—C14121.6 (3)
C4—C5—H3121.8C12—C13—H13119.2
O1—C6—C1119.6 (3)C14—C13—H13119.2
O1—C6—C5117.1 (3)C13—C14—C15120.9 (3)
C1—C6—C5123.3 (2)C13—C14—H14119.5
N1—C7—C3113.3 (2)C15—C14—H14119.5
N1—C7—H7A108.9C9—C15—C14117.2 (3)
C3—C7—H7A108.9C9—C15—H15121.4
N1—C7—H7B108.9C14—C15—H15121.4
C3—C7—H7B108.9C11—N1—C8111.6 (2)
H7A—C7—H7B107.7C11—N1—C7123.9 (2)
O2—C8—N1124.2 (2)C8—N1—C7124.5 (2)
C6—C1—C2—C30.2 (4)C8—C9—C10—C110.5 (2)
C1—C2—C3—C40.2 (4)C12—C10—C11—O31.8 (4)
C1—C2—C3—C7179.6 (2)C9—C10—C11—O3177.4 (2)
C2—C3—C4—F1179.9 (2)C12—C10—C11—N1179.3 (2)
C7—C3—C4—F10.3 (3)C9—C10—C11—N11.6 (2)
C2—C3—C4—C50.4 (4)C9—C10—C12—C130.7 (3)
C7—C3—C4—C5179.4 (2)C11—C10—C12—C13179.8 (2)
F1—C4—C5—C6179.9 (2)C10—C12—C13—C141.0 (3)
C3—C4—C5—C60.2 (4)C12—C13—C14—C150.4 (4)
C2—C1—C6—O1179.6 (2)C10—C9—C15—C140.7 (3)
C2—C1—C6—C50.4 (4)C8—C9—C15—C14179.7 (2)
C4—C5—C6—O1179.4 (2)C13—C14—C15—C90.4 (4)
C4—C5—C6—C10.2 (4)O3—C11—N1—C8177.0 (2)
C2—C3—C7—N11.6 (3)C10—C11—N1—C82.1 (2)
C4—C3—C7—N1178.2 (2)O3—C11—N1—C72.8 (4)
O2—C8—C9—C150.5 (4)C10—C11—N1—C7178.11 (18)
N1—C8—C9—C15179.6 (2)O2—C8—N1—C11178.1 (2)
O2—C8—C9—C10179.2 (3)C9—C8—N1—C111.8 (3)
N1—C8—C9—C100.7 (2)O2—C8—N1—C71.7 (4)
C15—C9—C10—C120.1 (3)C9—C8—N1—C7178.4 (2)
C8—C9—C10—C12179.79 (19)C3—C7—N1—C1192.4 (3)
C15—C9—C10—C11179.2 (2)C3—C7—N1—C887.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···F1i0.822.523.267 (2)152
C2—H6···O2ii0.932.513.303 (3)144
C12—H12···O2iii0.932.513.403 (3)161
C15—H15···O3iv0.932.473.346 (3)157
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H10FNO3
Mr271.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.4362 (7), 13.8189 (8), 7.2376 (4)
β (°) 105.784 (6)
V3)1196.92 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.49 × 0.36 × 0.16
Data collection
DiffractometerAgilent Xcalibur Eos
Absorption correctionAnalytical
[CrysAlis PRO (Agilent, 2012) and Clark & Reid (1995)]
Tmin, Tmax0.977, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
6558, 2475, 1455
Rint0.030
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.141, 1.04
No. of reflections2475
No. of parameters182
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.25

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···F1i0.822.523.267 (2)152
C2—H6···O2ii0.932.513.303 (3)144
C12—H12···O2iii0.932.513.403 (3)161
C15—H15···O3iv0.932.473.346 (3)157
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences of Dokuz Eylul University, Turkey, for the use of the Agilent Xcalibur Eos diffractometer (purchased under University Research grant No. 2010.KB.FEN.13).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAsad, M., Oo, C.-W., Osman, H., Fun, H.-K. & Arshad, S. (2012). Acta Cryst. E68, o38.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhattacharya, S. K. & Chakrabarti, A. (1998). Indian J. Exp. Biol. 36, 118–121.  CAS PubMed Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFu, X.-S., Yu, X.-P., Wang, W.-M. & Lin, F. (2010). Acta Cryst. E66, o1745.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMedvedev, A. E., Clow, A., Sandler, M. & Glover, V. (1996). Biochem. Pharmacol. 52, 385–391.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRaza, A. R., Saddiqa, A., Tahir, M. N. & Saddiq, S. (2010). Acta Cryst. E66, o2979.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, S. K. & Ramesh, A. (2001). Biol. Pharm. Bull. 24, 1149–1152.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds