organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[3-(Pyridin-4-yl)prop­yl]pyridinium 2-carb­­oxy­benzoate

aCenter of Applied Solid State Chemistry Research, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: xuwei@nbu.edu.cn

(Received 19 June 2012; accepted 27 June 2012; online 4 July 2012)

In the title molecular salt, C13H15N2+·C8H5O4, the 2-carb­oxy­benzoate anions are joined into a chain along [010] by strong O—H⋯O hydrogen bonds, with the H atoms disordered about the inter­vening centres of inversion. The presence of N—H⋯O hydrogen bonds between cations generates an additional chain along [010] and parallel to that of the anions. The chains are assembled into a three-dimensional framework via weak C—H⋯O inter­chain inter­actions. In the cation, thee dihedral angle between the pyridine rings is 48.91 (4)°.

Related literature

For the applications of co-crystals, see: Schultheiss & Newman (2009[Schultheiss, N. & Newman, A. (2009). Cryst. Growth Des. 9, 2950-2967.]); Sarma et al. (2011[Sarma, B., Chen, J., Hsi, H. Y. & Myerson, A. S. (2011). Korean J. Chem. Eng. 28, 315-322.]). For the design of co-crystals, see: Callear et al. (2010[Callear, S. K., Hursthouse, M. B. & Threlfall, T. L. (2010). CrystEngComm, 12, 898-908.]); Braga et al. (2011[Braga, D., d'Agostino, S., Dichiarante, E., Maini, L. & Grepioni, F. (2011). Chem. Asian J. 6, 2214-2223.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15N2+·C8H5O4

  • Mr = 364.39

  • Orthorhombic, P b c m

  • a = 7.5950 (15) Å

  • b = 12.822 (3) Å

  • c = 17.340 (4) Å

  • V = 1688.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.35 × 0.24 × 0.21 mm

Data collection
  • Rigaku R-AXIS RAPID CCD diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.761, Tmax = 0.865

  • 16479 measured reflections

  • 2097 independent reflections

  • 1468 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.118

  • S = 1.14

  • 2097 reflections

  • 134 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1C⋯N1i 0.89 1.90 2.776 (2) 169
O1—H1B⋯O1ii 0.86 1.52 2.378 (2) 176
C1—H1A⋯O2iii 0.96 2.41 3.278 (2) 150
C8—H8A⋯O1iv 0.96 2.56 3.190 (2) 124
C9—H9A⋯O2v 0.96 2.32 3.1903 (19) 150
Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y, -z+1; (iii) [-x+2, y-{\script{1\over 2}}, z]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Co-crystals have been proven particularly successful as functional materials with applications in pharmaceuticals, molecular electronics, optical applications, and synthetic organic chemistry (Schultheiss & Newman 2009; Sarma et al., 2011). For any given two chemical partners it is always possible to obtain more than one crystalline solid due to the differences in stoichiometries or supramolecular synthons (Callear et al., 2010). The idea of engineering co-crystals serves the purpose of building large solid-state structures without the hassles of covalent synthesis. The synthon that is formed between carboxylic acids and pyridine moieties is one of the most exploited synthon for designing co-crystals (Braga et al., 2011). In this contribution, we present the crystal structure of the phthalic acid and 1,3-bis(4-pyridyl)propane (bpp) co-crystal.

In the title compound the bppH+ cation lies on a mirror plane while the 2-carboxybenzoate anion lies on a two-fold axis (Fig. 1). The anions are linked into chains parallel to the [010] direction by strong O—H···O hydrogen bonds with an O···O distance of 2.378 (2) Å and with the H atom disordered about the intervening inversion centre. The bppH+ cations engage in N—H···O hydrogen bonds to forms chains extending along the b axis (Fig. 2). Weak C—H···O hydrogen bond interactions between the cationic and anionic chains are responsible for the three-dimensional framework assembly (Table 1).

Related literature top

For applications of co-crystals, see: Schultheiss & Newman (2009); Sarma et al. (2011). For design of the co-crystals, see: Callear et al. (2010); Braga et al. (2011).

Experimental top

1:1 molar quantities of phthalic acid (0.166 g, 1 mmol) and 1,3-bis(4-pyridyl)propane (0.198 g, 1 mmol) were dissolved in a water-methanol (1:1) mixture (15 mL) and the solution stirred for 10 min. After slow evaporation of the solution for one week at room temperature, colorless block crystals suitable for X-ray diffraction were obtained.

Refinement top

All H atoms were located in a difference map. Those attached to C and N were adjusted to give C—H = 0.97 - 0.98 Å and N—H = 0.89 Å and included as riding contributions with Uiso(H) = 1.2Ueq(C, N). Careful inspection of a difference map in the region between the oxygen atoms of the anions flanking the inversion centre indicated a significant elongation of the density along the line joining the two oxygen atoms suggesting a disorder of this hydrogen about the centre. This atom was placed in the best location indicated by the difference map (O—H = 0.86 Å) and included as a riding contribution with Uiso(H) = 1.2Ueq(O).

Structure description top

Co-crystals have been proven particularly successful as functional materials with applications in pharmaceuticals, molecular electronics, optical applications, and synthetic organic chemistry (Schultheiss & Newman 2009; Sarma et al., 2011). For any given two chemical partners it is always possible to obtain more than one crystalline solid due to the differences in stoichiometries or supramolecular synthons (Callear et al., 2010). The idea of engineering co-crystals serves the purpose of building large solid-state structures without the hassles of covalent synthesis. The synthon that is formed between carboxylic acids and pyridine moieties is one of the most exploited synthon for designing co-crystals (Braga et al., 2011). In this contribution, we present the crystal structure of the phthalic acid and 1,3-bis(4-pyridyl)propane (bpp) co-crystal.

In the title compound the bppH+ cation lies on a mirror plane while the 2-carboxybenzoate anion lies on a two-fold axis (Fig. 1). The anions are linked into chains parallel to the [010] direction by strong O—H···O hydrogen bonds with an O···O distance of 2.378 (2) Å and with the H atom disordered about the intervening inversion centre. The bppH+ cations engage in N—H···O hydrogen bonds to forms chains extending along the b axis (Fig. 2). Weak C—H···O hydrogen bond interactions between the cationic and anionic chains are responsible for the three-dimensional framework assembly (Table 1).

For applications of co-crystals, see: Schultheiss & Newman (2009); Sarma et al. (2011). For design of the co-crystals, see: Callear et al. (2010); Braga et al. (2011).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of a cation-anion pair in the title compound. Displacement ellipsoids are drawn at 40% probability level. H atoms are presented as a small spheres of arbitrary radius. Only one location is shown for the disordered H1B atom Symmetry code: (') x, y, -z+0.5; (") x, -y+0.5, -z+1.
[Figure 2] Fig. 2. One dimensional chains through O—H···O and N—H···O hydrogen bonds along [0 1 0]. Color key: C = gray, H = orange, N = blue, O = red.
4-[3-(Pyridin-4-yl)propyl]pyridinium 2-carboxybenzoate top
Crystal data top
C13H15N2+·C8H5O4F(000) = 768
Mr = 364.39Dx = 1.433 Mg m3
Orthorhombic, PbcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2c 2bCell parameters from 10355 reflections
a = 7.5950 (15) Åθ = 3.0–27.4°
b = 12.822 (3) ŵ = 0.10 mm1
c = 17.340 (4) ÅT = 295 K
V = 1688.6 (6) Å3Block, colorless
Z = 40.35 × 0.24 × 0.21 mm
Data collection top
Rigaku R-AXIS RAPID CCD
diffractometer
2097 independent reflections
Radiation source: fine-focus sealed tube1468 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 28.8°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.761, Tmax = 0.865k = 1616
16479 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.2824P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max = 0.001
2097 reflectionsΔρmax = 0.25 e Å3
134 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.009 (2)
Crystal data top
C13H15N2+·C8H5O4V = 1688.6 (6) Å3
Mr = 364.39Z = 4
Orthorhombic, PbcmMo Kα radiation
a = 7.5950 (15) ŵ = 0.10 mm1
b = 12.822 (3) ÅT = 295 K
c = 17.340 (4) Å0.35 × 0.24 × 0.21 mm
Data collection top
Rigaku R-AXIS RAPID CCD
diffractometer
2097 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1468 reflections with I > 2σ(I)
Tmin = 0.761, Tmax = 0.865Rint = 0.039
16479 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.14Δρmax = 0.25 e Å3
2097 reflectionsΔρmin = 0.23 e Å3
134 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2s˘F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.8736 (2)0.21026 (13)0.25000.0453 (5)
N20.8483 (2)0.57374 (13)0.25000.0429 (5)
H1C0.87140.64180.25000.051*
C10.8371 (2)0.16092 (12)0.31554 (11)0.0493 (4)
H1A0.86390.19680.36270.059*
C20.7584 (2)0.06488 (12)0.31769 (10)0.0467 (4)
H2A0.73530.03390.36710.056*
C30.7146 (2)0.01559 (14)0.25000.0384 (5)
C40.6189 (3)0.08572 (14)0.25000.0479 (6)
H4A0.54470.09000.29540.057*
C50.7251 (3)0.18449 (13)0.25000.0357 (5)
H5A0.80000.18600.29530.043*
C60.6092 (3)0.27893 (15)0.25000.0498 (6)
H6A0.53450.27590.20470.060*
C70.6985 (2)0.38213 (14)0.25000.0341 (5)
C80.7398 (2)0.43148 (11)0.18191 (10)0.0440 (4)
H8A0.71510.39960.13300.053*
C90.8148 (2)0.52775 (12)0.18304 (10)0.0473 (4)
H9A0.84200.56630.13710.057*
O10.86718 (15)0.04809 (8)0.50729 (7)0.0502 (3)
H1B0.96170.01270.49970.060*0.50
O20.97024 (14)0.17373 (8)0.43243 (7)0.0512 (4)
C100.3974 (2)0.19800 (13)0.48994 (11)0.0490 (4)
H10A0.28980.16100.48010.059*
C110.54838 (18)0.14650 (12)0.48015 (9)0.0408 (4)
H11A0.54800.07470.46450.049*
C120.70198 (17)0.19725 (10)0.48994 (8)0.0302 (3)
C130.86229 (17)0.13822 (10)0.47497 (8)0.0324 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0325 (9)0.0294 (8)0.0741 (14)0.0014 (7)0.0000.000
N20.0304 (9)0.0241 (8)0.0741 (14)0.0003 (7)0.0000.000
C10.0470 (9)0.0382 (8)0.0628 (11)0.0019 (7)0.0092 (8)0.0035 (7)
C20.0489 (9)0.0369 (8)0.0542 (10)0.0009 (7)0.0054 (8)0.0073 (7)
C30.0283 (9)0.0228 (9)0.0640 (14)0.0036 (8)0.0000.000
C40.0332 (11)0.0247 (10)0.0857 (18)0.0003 (8)0.0000.000
C50.0301 (9)0.0243 (9)0.0526 (13)0.0011 (8)0.0000.000
C60.0323 (10)0.0260 (10)0.0910 (19)0.0005 (8)0.0000.000
C70.0268 (9)0.0228 (9)0.0526 (13)0.0027 (7)0.0000.000
C80.0487 (9)0.0393 (8)0.0439 (9)0.0007 (7)0.0065 (7)0.0084 (7)
C90.0466 (9)0.0405 (8)0.0549 (10)0.0019 (7)0.0135 (8)0.0077 (7)
O10.0505 (6)0.0353 (5)0.0648 (8)0.0142 (5)0.0181 (6)0.0157 (5)
O20.0420 (6)0.0424 (6)0.0693 (8)0.0060 (5)0.0224 (6)0.0121 (5)
C100.0287 (7)0.0587 (10)0.0596 (11)0.0085 (6)0.0012 (7)0.0015 (8)
C110.0390 (8)0.0348 (7)0.0484 (9)0.0082 (6)0.0007 (7)0.0002 (7)
C120.0297 (7)0.0289 (7)0.0321 (7)0.0015 (5)0.0009 (5)0.0022 (5)
C130.0340 (7)0.0279 (6)0.0354 (7)0.0004 (5)0.0030 (6)0.0020 (6)
Geometric parameters (Å, º) top
N1—C11.3299 (19)C6—H6A0.9701
N1—C1i1.3299 (19)C7—C8i1.3758 (19)
N2—C91.3269 (19)C7—C81.3758 (19)
N2—C9i1.3270 (19)C8—C91.360 (2)
N2—H1C0.8900C8—H8A0.9600
C1—C21.370 (2)C9—H9A0.9600
C1—H1A0.9600O1—C131.2849 (17)
C2—C31.3740 (19)O1—H1B0.8600
C2—H2A0.9601O2—C131.1931 (16)
C3—C2i1.3741 (19)C10—C111.334 (2)
C3—C41.489 (3)C10—C10ii1.379 (3)
C4—C51.501 (3)C10—H10A0.9600
C4—H4A0.9701C11—C121.3465 (19)
C5—C61.497 (3)C11—H11A0.9599
C5—H5A0.9701C12—C12ii1.397 (3)
C6—C71.487 (3)C12—C131.4569 (18)
C1—N1—C1i117.43 (19)C8i—C7—C8118.23 (18)
C9—N2—C9i122.11 (18)C8i—C7—C6120.88 (9)
C9—N2—H1C118.3C8—C7—C6120.88 (9)
C9i—N2—H1C118.3C9—C8—C7120.05 (15)
N1—C1—C2122.82 (17)C9—C8—H8A118.8
N1—C1—H1A117.2C7—C8—H8A121.1
C2—C1—H1A120.0N2—C9—C8119.76 (16)
C1—C2—C3119.74 (16)N2—C9—H9A117.1
C1—C2—H2A118.4C8—C9—H9A123.1
C3—C2—H2A121.8C13—O1—H1B115.6
C2—C3—C2i117.37 (18)C11—C10—C10ii120.74 (9)
C2—C3—C4121.30 (9)C11—C10—H10A117.7
C2i—C3—C4121.30 (9)C10ii—C10—H10A121.5
C3—C4—C5118.30 (17)C10—C11—C12119.30 (14)
C3—C4—H4A109.4C10—C11—H11A120.5
C5—C4—H4A105.3C12—C11—H11A120.1
C6—C5—C4111.53 (16)C11—C12—C12ii119.96 (9)
C6—C5—H5A109.2C11—C12—C13116.78 (12)
C4—C5—H5A109.4C12ii—C12—C13123.20 (7)
C7—C6—C5116.88 (17)O2—C13—O1126.37 (13)
C7—C6—H6A107.6O2—C13—C12119.09 (12)
C5—C6—H6A108.1O1—C13—C12114.43 (12)
C1i—N1—C1—C22.7 (3)C6—C7—C8—C9177.27 (16)
N1—C1—C2—C30.3 (3)C9i—N2—C9—C81.7 (3)
C1—C2—C3—C2i2.1 (3)C7—C8—C9—N20.1 (2)
C1—C2—C3—C4176.15 (16)C10ii—C10—C11—C120.2 (3)
C2—C3—C4—C590.90 (17)C10—C11—C12—C12ii0.1 (3)
C2i—C3—C4—C590.90 (17)C10—C11—C12—C13177.23 (15)
C3—C4—C5—C6180.0C11—C12—C13—O2128.23 (16)
C4—C5—C6—C7180.0C12ii—C12—C13—O248.8 (2)
C5—C6—C7—C8i90.46 (16)C11—C12—C13—O148.27 (18)
C5—C6—C7—C890.46 (16)C12ii—C12—C13—O1134.66 (18)
C8i—C7—C8—C91.8 (3)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1C···N1iii0.891.902.776 (2)169
O1—H1B···O1iv0.861.522.378 (2)176
C1—H1A···O2v0.962.413.278 (2)150
C8—H8A···O1vi0.962.563.190 (2)124
C9—H9A···O2vii0.962.323.1903 (19)150
Symmetry codes: (iii) x, y+1, z; (iv) x+2, y, z+1; (v) x+2, y1/2, z; (vi) x, y+1/2, z1/2; (vii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H15N2+·C8H5O4
Mr364.39
Crystal system, space groupOrthorhombic, Pbcm
Temperature (K)295
a, b, c (Å)7.5950 (15), 12.822 (3), 17.340 (4)
V3)1688.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.24 × 0.21
Data collection
DiffractometerRigaku R-AXIS RAPID CCD
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.761, 0.865
No. of measured, independent and
observed [I > 2σ(I)] reflections
16479, 2097, 1468
Rint0.039
(sin θ/λ)max1)0.677
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.118, 1.14
No. of reflections2097
No. of parameters134
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.23

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1C···N1i0.891.902.776 (2)169
O1—H1B···O1ii0.861.522.378 (2)176
C1—H1A···O2iii0.962.413.278 (2)150
C8—H8A···O1iv0.962.563.190 (2)124
C9—H9A···O2v0.962.323.1903 (19)150
Symmetry codes: (i) x, y+1, z; (ii) x+2, y, z+1; (iii) x+2, y1/2, z; (iv) x, y+1/2, z1/2; (v) x+2, y+1/2, z+1/2.
 

Acknowledgements

The project was sponsored by the K. C. Wong Magna Fund in Ningbo University.

References

First citationBraga, D., d'Agostino, S., Dichiarante, E., Maini, L. & Grepioni, F. (2011). Chem. Asian J. 6, 2214–2223.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCallear, S. K., Hursthouse, M. B. & Threlfall, T. L. (2010). CrystEngComm, 12, 898–908.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSarma, B., Chen, J., Hsi, H. Y. & Myerson, A. S. (2011). Korean J. Chem. Eng. 28, 315–322.  Web of Science CrossRef CAS Google Scholar
First citationSchultheiss, N. & Newman, A. (2009). Cryst. Growth Des. 9, 2950–2967.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds