metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­­[5-(pyridin-4-yl)tetra­zolido N5-oxide-κN2]manganese(II)

aCollege of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434020, Hubei, People's Republic of China
*Correspondence e-mail: xiangjing35991@sohu.com

(Received 13 May 2012; accepted 18 July 2012; online 28 July 2012)

The title compound, [Mn(C6H4N5O)2(H2O)4], is isotypic with its Zn, Ni and Cd analogues reported recently. In the crystal, the MnII cations are coordinated by four O atoms from four aqua ligands and two N atoms from two 5-(pyridin-4-yl)tetra­zolide N5-oxide ligands in a distorted octa­hedral coordination environment. The asymmetric unit consists of one MnII cation located on a crystallographic twofold axis, and two crystallographically independent water mol­ecules and one N-donor ligand in general positions. The discrete complex mol­ecules are arranged in alternating rows parallel to [100] and are linked by O—H⋯N and O—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For related structures, see: Yang et al. (2009[Yang, W. B., Lin, X., Blake, A. J., Wilson, C., Hubberstey, P., Champness, N. R. & Schröder, M. (2009). CrystEngComm, 11, 67-81.]); Yu et al. (2004a[Yu, Z.-X., Wang, X.-P. & Feng, Y. (2004a). Acta Cryst. C60, m194-m196.],b[Yu, Z. X., Wang, X. P., Feng, Y. Y. & Zhong, X. H. (2004b). Inorg. Chem. Commun. 7, 492-494.]). For the coordination properties of tetra­zolate ligands, see: Aromí et al. (2011[Aromí, G. L., Barrios, A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485-546.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C6H4N5O)2(H2O)4]

  • Mr = 451.29

  • Monoclinic, C 2/c

  • a = 21.828 (2) Å

  • b = 7.0620 (9) Å

  • c = 11.3229 (13) Å

  • β = 96.515 (10)°

  • V = 1734.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 293 K

  • 0.32 × 0.25 × 0.20 mm

Data collection
  • Bruker APEX area-dectector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.782, Tmax = 0.849

  • 5196 measured reflections

  • 1530 independent reflections

  • 1149 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.080

  • S = 1.05

  • 1530 reflections

  • 145 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H9⋯O3i 0.87 (3) 1.80 (3) 2.658 (3) 170 (3)
O1—H11⋯O3ii 0.80 (3) 1.98 (3) 2.770 (3) 173 (3)
O2—H10⋯O3iii 0.87 (3) 1.88 (3) 2.751 (3) 172 (3)
O1—H12⋯N3iv 0.81 (3) 2.05 (3) 2.861 (3) 171 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Ligands based on tetrazolates have attracted wide attention because of their versatile coordination modes and therefore, a large number of metal complexes containing these types of ligands are reported in literature (Aromí et al., 2011). Several of them have been prepared via in situ synthesis of nitriles and azides. In view of this we have reacted 4-cyanopyridine 1-oxide with manganese chloride and sodium azide, which results in the formation of crystals of the title compound that is isotypic to its Zn, Ni and Cd analogs (Yu et al., 2004a,b; Yang et al., 2009).

The coordination geometry of the Mn atom is a slightly distorted octahedron formed by the coordination of four water molecules and two tetrazolate ligands (Fig. 1). The oxygen atoms from the four water molecules form a square planar arrangement around the Mn center and the tetrazolate ligands coordinate via the N atom to the Mn cations. The discrete complex molecules are arranged in alternating rows parallel to [100] and are linked by O—H···N and O—H···O hydrogen bonds into a three-dimensional network. (Fig. 2 and Table 1)

Related literature top

For related structures, see: Yang et al. (2009); Yu et al. (2004a,b). For the coordination properties of tetrazolate ligands, see: Aromí et al. (2011).

Experimental top

The mixture of 4-cyanopyridine 1-oxide (0.42 mmol, 50.3 mg), MnCl2.6H2O (0.50 mmol, 116.5 mg) and NaN3 (0.70 mmol, 45.6 mg) in 15 ml EtOH and H2O (v/v = 2:1) were heated in a 25 ml bomb at 393 K for 3 d, then cooled to room temperature at a rate of 6 K h-1. Colorless block-shaped crystals suitable for X-ray analysis were obtained in a yield of 40% based on the ligand 4-cyanopyridine 1-oxide. The product was washed with EtOH and H2O, and then air-dried at ambient temperature. Elemental analysis for C12H16N10O6Mn found: C 31.75, H 3.52, N 30.97; calculated: C 31.94, H 3.57, N 31.04. Selected IR (KBr, cm-1): 3118 (w), 3058(w), 1532 (m), 1462 (m), 1439 (m), 1215 (s), 1193 (s), 856 (s).

Refinement top

Hydrogen atoms were placed in calculated positions (C—H 0.93 Å; U = 1.2UeqC), and were included in the refinement in the riding model approximation. The hydrogen atoms of aqua ligands were located and refined.

Structure description top

Ligands based on tetrazolates have attracted wide attention because of their versatile coordination modes and therefore, a large number of metal complexes containing these types of ligands are reported in literature (Aromí et al., 2011). Several of them have been prepared via in situ synthesis of nitriles and azides. In view of this we have reacted 4-cyanopyridine 1-oxide with manganese chloride and sodium azide, which results in the formation of crystals of the title compound that is isotypic to its Zn, Ni and Cd analogs (Yu et al., 2004a,b; Yang et al., 2009).

The coordination geometry of the Mn atom is a slightly distorted octahedron formed by the coordination of four water molecules and two tetrazolate ligands (Fig. 1). The oxygen atoms from the four water molecules form a square planar arrangement around the Mn center and the tetrazolate ligands coordinate via the N atom to the Mn cations. The discrete complex molecules are arranged in alternating rows parallel to [100] and are linked by O—H···N and O—H···O hydrogen bonds into a three-dimensional network. (Fig. 2 and Table 1)

For related structures, see: Yang et al. (2009); Yu et al. (2004a,b). For the coordination properties of tetrazolate ligands, see: Aromí et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound with labeling. Displacement ellipsoids are drawn at 30% probability level and H atoms are drawn as spheres of arbitrary radius. [Symmetry code: -x + 1, y, -z + 1/2]
[Figure 2] Fig. 2. The packing diagram of the title compound with intermolecular H bonding along ac plane shown as dashed lines.
Tetraaquabis[5-(pyridin-4-yl)tetrazolido N5-oxide-κN2]manganese(II) top
Crystal data top
[Mn(C6H4N5O)2(H2O)4]F(000) = 924
Mr = 451.29Dx = 1.729 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 65 reflections
a = 21.828 (2) Åθ = 2.2–26.0°
b = 7.0620 (9) ŵ = 0.82 mm1
c = 11.3229 (13) ÅT = 293 K
β = 96.515 (10)°Block, colourless
V = 1734.1 (3) Å30.32 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker APEX area-dectector
diffractometer
1530 independent reflections
Radiation source: fine-focus sealed tube1149 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2425
Tmin = 0.782, Tmax = 0.849k = 87
5196 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0291P)2]
where P = (Fo2 + 2Fc2)/3
1530 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Mn(C6H4N5O)2(H2O)4]V = 1734.1 (3) Å3
Mr = 451.29Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.828 (2) ŵ = 0.82 mm1
b = 7.0620 (9) ÅT = 293 K
c = 11.3229 (13) Å0.32 × 0.25 × 0.20 mm
β = 96.515 (10)°
Data collection top
Bruker APEX area-dectector
diffractometer
1530 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1149 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 0.849Rint = 0.049
5196 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.21 e Å3
1530 reflectionsΔρmin = 0.25 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.16002 (8)0.25000.0261 (2)
N10.35497 (9)0.1653 (3)0.2280 (2)0.0300 (6)
N20.40483 (10)0.1527 (3)0.3078 (2)0.0296 (5)
N30.38821 (10)0.1262 (3)0.4150 (2)0.0328 (6)
N40.32672 (10)0.1218 (3)0.4086 (2)0.0320 (6)
O10.47398 (9)0.0641 (3)0.12179 (19)0.0344 (5)
O20.52626 (10)0.3978 (3)0.3678 (2)0.0380 (6)
O30.06246 (8)0.1620 (3)0.09684 (18)0.0383 (5)
C10.30785 (11)0.1464 (4)0.2926 (2)0.0236 (6)
C20.24297 (11)0.1479 (3)0.2420 (2)0.0229 (6)
C30.19542 (12)0.1790 (3)0.3111 (3)0.0296 (6)
H30.20440.19850.39240.036*
C40.13523 (12)0.1815 (4)0.2608 (3)0.0311 (7)
H40.10370.20060.30840.037*
N50.12168 (9)0.1565 (3)0.1437 (2)0.0282 (5)
C60.16617 (12)0.1269 (4)0.0737 (3)0.0327 (7)
H60.15580.11120.00770.039*
C70.22684 (12)0.1197 (4)0.1205 (3)0.0304 (7)
H70.25730.09590.07130.036*
H90.5404 (16)0.367 (4)0.440 (3)0.058 (5)*
H110.5008 (16)0.137 (4)0.111 (3)0.058 (5)*
H100.4956 (15)0.475 (4)0.376 (3)0.058 (5)*
H120.4499 (16)0.069 (4)0.061 (3)0.058 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0187 (3)0.0362 (4)0.0234 (4)0.0000.0021 (2)0.000
N10.0206 (13)0.0446 (14)0.0245 (13)0.0004 (10)0.0011 (10)0.0032 (12)
N20.0205 (12)0.0402 (13)0.0275 (14)0.0003 (10)0.0003 (10)0.0011 (12)
N30.0210 (13)0.0499 (15)0.0274 (14)0.0011 (10)0.0023 (11)0.0025 (12)
N40.0210 (13)0.0494 (15)0.0258 (14)0.0031 (10)0.0038 (10)0.0009 (12)
O10.0257 (13)0.0483 (13)0.0278 (12)0.0033 (9)0.0032 (9)0.0070 (11)
O20.0309 (13)0.0486 (14)0.0334 (13)0.0065 (9)0.0014 (10)0.0086 (11)
O30.0202 (10)0.0496 (12)0.0429 (13)0.0007 (9)0.0065 (9)0.0007 (11)
C10.0189 (14)0.0254 (14)0.0267 (16)0.0009 (11)0.0033 (12)0.0010 (13)
C20.0205 (14)0.0222 (14)0.0257 (15)0.0017 (11)0.0011 (12)0.0036 (14)
C30.0236 (15)0.0409 (16)0.0245 (15)0.0020 (12)0.0033 (12)0.0017 (14)
C40.0232 (15)0.0427 (18)0.0286 (16)0.0007 (12)0.0086 (12)0.0010 (15)
N50.0188 (12)0.0314 (12)0.0339 (14)0.0004 (10)0.0011 (10)0.0002 (12)
C60.0275 (16)0.0464 (18)0.0235 (16)0.0020 (13)0.0005 (13)0.0061 (14)
C70.0229 (15)0.0418 (17)0.0268 (16)0.0040 (12)0.0045 (13)0.0013 (14)
Geometric parameters (Å, º) top
Mn1—O12.179 (2)O2—H100.87 (3)
Mn1—O1i2.179 (2)O3—N51.341 (3)
Mn1—O22.180 (2)C1—C21.467 (3)
Mn1—O2i2.180 (2)C2—C31.387 (4)
Mn1—N2i2.248 (2)C2—C71.394 (4)
Mn1—N22.248 (2)C3—C41.371 (4)
N1—C11.335 (3)C3—H30.9300
N1—N21.336 (3)C4—N51.338 (3)
N2—N31.319 (3)C4—H40.9300
N3—N41.336 (3)N5—C61.338 (4)
N4—C11.342 (3)C6—C71.371 (3)
O1—H110.80 (3)C6—H60.9300
O1—H120.81 (3)C7—H70.9300
O2—H90.87 (3)
O1—Mn1—O1i86.82 (11)Mn1—O2—H9115 (2)
O1—Mn1—O2175.99 (9)Mn1—O2—H10113 (2)
O1i—Mn1—O296.97 (8)H9—O2—H10104 (3)
O1—Mn1—O2i96.97 (8)N1—C1—N4112.3 (2)
O1i—Mn1—O2i175.99 (9)N1—C1—C2123.7 (2)
O2—Mn1—O2i79.27 (12)N4—C1—C2124.0 (2)
O1—Mn1—N2i88.23 (8)C3—C2—C7117.2 (2)
O1i—Mn1—N2i89.86 (8)C3—C2—C1122.1 (2)
O2—Mn1—N2i90.47 (8)C7—C2—C1120.6 (2)
O2i—Mn1—N2i91.55 (8)C4—C3—C2120.8 (3)
O1—Mn1—N289.86 (8)C4—C3—H3119.6
O1i—Mn1—N288.23 (8)C2—C3—H3119.6
O2—Mn1—N291.55 (8)N5—C4—C3120.2 (3)
O2i—Mn1—N290.47 (8)N5—C4—H4119.9
N2i—Mn1—N2177.37 (12)C3—C4—H4119.9
C1—N1—N2104.0 (2)C4—N5—C6121.0 (2)
N3—N2—N1110.08 (19)C4—N5—O3118.9 (2)
N3—N2—Mn1129.10 (16)C6—N5—O3120.1 (2)
N1—N2—Mn1120.71 (17)N5—C6—C7120.7 (3)
N2—N3—N4109.4 (2)N5—C6—H6119.6
N3—N4—C1104.2 (2)C7—C6—H6119.6
Mn1—O1—H11115 (3)C6—C7—C2120.1 (3)
Mn1—O1—H12133 (2)C6—C7—H7120.0
H11—O1—H12105 (4)C2—C7—H7120.0
C1—N1—N2—N30.4 (3)N3—N4—C1—N10.1 (3)
C1—N1—N2—Mn1176.92 (17)N3—N4—C1—C2178.7 (2)
O1—Mn1—N2—N3123.9 (2)N1—C1—C2—C3162.3 (3)
O1i—Mn1—N2—N337.1 (2)N4—C1—C2—C319.3 (4)
O2—Mn1—N2—N359.8 (2)N1—C1—C2—C717.0 (4)
O2i—Mn1—N2—N3139.1 (2)N4—C1—C2—C7161.5 (3)
N2i—Mn1—N2—N380.5 (2)C7—C2—C3—C40.0 (4)
O1—Mn1—N2—N151.82 (19)C1—C2—C3—C4179.3 (2)
O1i—Mn1—N2—N1138.64 (19)C2—C3—C4—N51.0 (4)
O2—Mn1—N2—N1124.43 (19)C3—C4—N5—C60.6 (4)
O2i—Mn1—N2—N145.15 (19)C3—C4—N5—O3179.1 (2)
N2i—Mn1—N2—N195.22 (18)C4—N5—C6—C70.7 (4)
N1—N2—N3—N40.4 (3)O3—N5—C6—C7179.6 (2)
Mn1—N2—N3—N4176.50 (17)N5—C6—C7—C21.6 (4)
N2—N3—N4—C10.2 (3)C3—C2—C7—C61.2 (4)
N2—N1—C1—N40.3 (3)C1—C2—C7—C6178.1 (2)
N2—N1—C1—C2178.9 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H9···O3ii0.87 (3)1.80 (3)2.658 (3)170 (3)
O1—H11···O3iii0.80 (3)1.98 (3)2.770 (3)173 (3)
O2—H10···O3iv0.87 (3)1.88 (3)2.751 (3)172 (3)
O1—H12···N3v0.81 (3)2.05 (3)2.861 (3)171 (3)
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z; (iv) x+1/2, y+1/2, z+1/2; (v) x, y, z1/2.

Experimental details

Crystal data
Chemical formula[Mn(C6H4N5O)2(H2O)4]
Mr451.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)21.828 (2), 7.0620 (9), 11.3229 (13)
β (°) 96.515 (10)
V3)1734.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.32 × 0.25 × 0.20
Data collection
DiffractometerBruker APEX area-dectector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.782, 0.849
No. of measured, independent and
observed [I > 2σ(I)] reflections
5196, 1530, 1149
Rint0.049
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.080, 1.05
No. of reflections1530
No. of parameters145
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.25

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H9···O3i0.87 (3)1.80 (3)2.658 (3)170 (3)
O1—H11···O3ii0.80 (3)1.98 (3)2.770 (3)173 (3)
O2—H10···O3iii0.87 (3)1.88 (3)2.751 (3)172 (3)
O1—H12···N3iv0.81 (3)2.05 (3)2.861 (3)171 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y, z1/2.
 

Acknowledgements

The authors thank the Research Office of Yangtze University for supporting this work.

References

First citationAromí, G. L., Barrios, A., Roubeau, O. & Gamez, P. (2011). Coord. Chem. Rev. 255, 485–546.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, W. B., Lin, X., Blake, A. J., Wilson, C., Hubberstey, P., Champness, N. R. & Schröder, M. (2009). CrystEngComm, 11, 67–81.  Web of Science CSD CrossRef CAS Google Scholar
First citationYu, Z.-X., Wang, X.-P. & Feng, Y. (2004a). Acta Cryst. C60, m194–m196.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYu, Z. X., Wang, X. P., Feng, Y. Y. & Zhong, X. H. (2004b). Inorg. Chem. Commun. 7, 492–494.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds