organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N-Ethyl-2-[(E)-3-(hy­dr­oxy­imino)­butan-2-yl­­idene]hydrazinecarbo­thio­amide

aSchool of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia, bUniversity of Sabha, Libya, cSchool of Chemical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia, dFaculty of Science, Sabha University, Libya, eDepartment of Chemistry, International University of Africa, Khartoum, Sudan, and fX-ray Crystallography Unit, School of Physics,Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: sgteoh@usm.my

(Received 7 June 2012; accepted 24 June 2012; online 25 July 2012)

In the crystal structure of the title compound, C7H14N4OS, mol­ecules are linked through N—H⋯S and O—H⋯N hydrogen bonds and C—H⋯S interactions, forming chains propagating along [21-1].

Related literature

For related structures, see:Abduelftah et al. (2012a[Abduelftah, H. S., Ali, A. Q., Eltayeb, N. E., Teoh, S. G. & Fun, H.-K. (2012a). Acta Cryst. E68, m183-m184.],b[Abduelftah, H. S., Qasem Ali, A., Eltayeb, N. E., Teoh, S. G. & Fun, H.-K. (2012b). Acta Cryst. E68, m108-m109.]); Choi et al. (2008[Choi, K.-Y., Yang, S.-M., Lee, K.-C., Ryu, H., Lee, C. H., Seo, J. & Suh, M. (2008). Transition Met. Chem. 33, 99-105.]). For the biological activity and pharmacological properties of thio­semicarbazones and their metal complexes, see: Cowley et al. (2002[Cowley, A. R., Dilworth, J. R., Donnelly, P. S., Labisbal, E. & Sousa, A. (2002). J. Am. Chem. Soc. 124, 5270-5271.]); Ming (2003[Ming, L.-J. (2003). Med. Res. Rev. 23, 697-762.]). For graph-set analysis of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C7H14N4OS

  • Mr = 202.28

  • Triclinic, [P \overline 1]

  • a = 5.7065 (2) Å

  • b = 9.0632 (3) Å

  • c = 10.7109 (4) Å

  • α = 71.309 (1)°

  • β = 76.318 (1)°

  • γ = 86.420 (1)°

  • V = 509.80 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 100 K

  • 0.57 × 0.20 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.854, Tmax = 0.979

  • 15442 measured reflections

  • 4093 independent reflections

  • 3648 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.093

  • S = 1.08

  • 4093 reflections

  • 121 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1i 0.85 2.00 2.7876 (10) 154
N3—H1N3⋯S1ii 0.87 2.75 3.6124 (8) 171
C4—H4A⋯S1ii 0.98 2.64 3.4302 (12) 138
Symmetry codes: (i) -x+3, -y+2, -z; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiosemicarbazones and their metal complexes have attracted significant attention because of their wide-ranging biological and pharmacological activities related to specific structures as well as chemical properties (Cowley et al., 2002; Ming, 2003). In this paper we report the crystal structure of the title compound (Fig. 1).

In the title compound, C7H14N4OS, the butyl chain is the longest carbon-carbon chain with the hydroxylamine group bound to C2 and the N-ethylhydrazinecarbothioamide moiety bound to C3.

Cyclic intramolecular N4—H1N4···N2, C1—H1A···O1 and C4—H4B···N1 hydrogen-bonding interactions [graph set S(5), (Bernstein et al., 1995)] are present (Table 1). In the crystal molecules are connected through intermolecular O1—H1O1···N1, N3—H1N3···S1 and C4—H4A···S1 hydrogen bonds into infinite chains which propagate along [2 1 - 1] (Table 1, Fig.2).

Related literature top

For related structures, see:Abduelftah et al. (2012a,b); Choi et al. (2008). For the biological activity and pharmacological properties of thiosemicarbazones and their metal complexes, see: Cowley et al. (2002); Ming (2003). For graph-set analysis of hydrogen bonds, see: Bernstein et al. (1995).

Experimental top

The ligand was prepared by mixing a solution of 2,3-butanedione monoxime (1.01 g, 1 mmol) in EtOH (20 ml) with a solution of 4-ethyl-3-thiosemicarbzide (1.19 g, 1 mmol) in EtOH (20 ml). On adding a few drops of glacial acetic acid to the mixture, a solution of yellowish-white color was formed. The reaction mixture then was heated under reflux with stirring for 3 hrs. The mixture was filtered and left to cool; a white precipitate was formed, then collected by filtration and washed by cold EtOH. Colorless crystal was grown by slow evaporation of EtOH at room temperature, yield (66%).

Refinement top

The H atoms were positioned geometrically and refined using a riding model with O—H = 0.85; Uiso(H) = 1.5Ueq(O), N—H = 0.87; Uiso(H) = 1.2Ueq(N), C—H = 0.98; Uiso(H) = 1.5Ueq(C) for methyl groups and C—H = 0.99; Uiso(H) = 1.2Ueq(C) for methylene group. The highest residual electron density peak is located 0.64 Å from C2 and the deepest hole is located 0.16 Å from H4B.

Structure description top

Thiosemicarbazones and their metal complexes have attracted significant attention because of their wide-ranging biological and pharmacological activities related to specific structures as well as chemical properties (Cowley et al., 2002; Ming, 2003). In this paper we report the crystal structure of the title compound (Fig. 1).

In the title compound, C7H14N4OS, the butyl chain is the longest carbon-carbon chain with the hydroxylamine group bound to C2 and the N-ethylhydrazinecarbothioamide moiety bound to C3.

Cyclic intramolecular N4—H1N4···N2, C1—H1A···O1 and C4—H4B···N1 hydrogen-bonding interactions [graph set S(5), (Bernstein et al., 1995)] are present (Table 1). In the crystal molecules are connected through intermolecular O1—H1O1···N1, N3—H1N3···S1 and C4—H4A···S1 hydrogen bonds into infinite chains which propagate along [2 1 - 1] (Table 1, Fig.2).

For related structures, see:Abduelftah et al. (2012a,b); Choi et al. (2008). For the biological activity and pharmacological properties of thiosemicarbazones and their metal complexes, see: Cowley et al. (2002); Ming (2003). For graph-set analysis of hydrogen bonds, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the a axis. Hydrogen bonds are shown as dashed lines.
(E)-N-Ethyl-2-[(E)-3-(hydroxyimino)butan-2- ylidene]hydrazinecarbothioamide top
Crystal data top
C7H14N4OSZ = 2
Mr = 202.28F(000) = 216
Triclinic, P1Dx = 1.318 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7065 (2) ÅCell parameters from 8235 reflections
b = 9.0632 (3) Åθ = 3.6–35.1°
c = 10.7109 (4) ŵ = 0.29 mm1
α = 71.309 (1)°T = 100 K
β = 76.318 (1)°Plate, colourless
γ = 86.420 (1)°0.57 × 0.20 × 0.07 mm
V = 509.80 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4093 independent reflections
Radiation source: fine-focus sealed tube3648 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 34.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.854, Tmax = 0.979k = 1414
15442 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.1608P]
where P = (Fo2 + 2Fc2)/3
4093 reflections(Δ/σ)max = 0.001
121 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C7H14N4OSγ = 86.420 (1)°
Mr = 202.28V = 509.80 (3) Å3
Triclinic, P1Z = 2
a = 5.7065 (2) ÅMo Kα radiation
b = 9.0632 (3) ŵ = 0.29 mm1
c = 10.7109 (4) ÅT = 100 K
α = 71.309 (1)°0.57 × 0.20 × 0.07 mm
β = 76.318 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4093 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3648 reflections with I > 2σ(I)
Tmin = 0.854, Tmax = 0.979Rint = 0.023
15442 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.08Δρmax = 0.46 e Å3
4093 reflectionsΔρmin = 0.33 e Å3
121 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.44242 (4)0.52051 (3)0.69791 (2)0.02043 (7)
O11.61220 (13)1.04092 (8)0.11132 (7)0.02309 (14)
H1O11.64521.06330.02560.035*
N11.41316 (13)0.94009 (9)0.15010 (7)0.01695 (13)
N21.01528 (13)0.74755 (9)0.45088 (7)0.01587 (13)
N30.81401 (13)0.65358 (9)0.50040 (7)0.01734 (13)
H1N30.74190.62180.45040.021*
N40.82678 (13)0.66298 (9)0.71029 (7)0.01754 (13)
H1N40.96520.70850.66620.021*
C11.41628 (18)0.94145 (12)0.37977 (9)0.02285 (17)
H1A1.58300.97970.34050.034*
H1B1.41110.85180.46130.034*
H1C1.31541.02440.40350.034*
C21.32385 (15)0.89332 (10)0.27889 (8)0.01613 (14)
C31.11201 (15)0.78830 (10)0.32272 (8)0.01645 (14)
C41.02391 (19)0.73958 (13)0.22066 (9)0.0260 (2)
H4A0.96120.63240.26160.039*
H4B1.15760.74530.14250.039*
H4C0.89530.80910.19110.039*
C50.70823 (14)0.61747 (10)0.63536 (8)0.01525 (13)
C60.73697 (16)0.63713 (11)0.85512 (8)0.01993 (15)
H6A0.71650.52400.90360.024*
H6B0.57770.68640.87140.024*
C70.91280 (18)0.70594 (12)0.90870 (10)0.02417 (18)
H7A0.85080.68821.00590.036*
H7B0.93150.81810.86120.036*
H7C1.06960.65590.89360.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01501 (10)0.03141 (12)0.01420 (10)0.00775 (7)0.00028 (6)0.00740 (8)
O10.0233 (3)0.0273 (3)0.0159 (3)0.0142 (2)0.0004 (2)0.0031 (2)
N10.0172 (3)0.0177 (3)0.0139 (3)0.0061 (2)0.0013 (2)0.0027 (2)
N20.0154 (3)0.0189 (3)0.0117 (3)0.0038 (2)0.0016 (2)0.0030 (2)
N30.0163 (3)0.0242 (3)0.0109 (3)0.0066 (2)0.0010 (2)0.0050 (2)
N40.0158 (3)0.0247 (3)0.0119 (3)0.0052 (2)0.0012 (2)0.0060 (2)
C10.0260 (4)0.0279 (4)0.0160 (4)0.0094 (3)0.0062 (3)0.0060 (3)
C20.0174 (3)0.0173 (3)0.0129 (3)0.0041 (2)0.0032 (2)0.0032 (3)
C30.0175 (3)0.0197 (3)0.0116 (3)0.0050 (3)0.0021 (2)0.0040 (3)
C40.0287 (4)0.0360 (5)0.0138 (3)0.0161 (4)0.0015 (3)0.0081 (3)
C50.0140 (3)0.0191 (3)0.0117 (3)0.0020 (2)0.0017 (2)0.0040 (3)
C60.0202 (3)0.0278 (4)0.0118 (3)0.0039 (3)0.0012 (3)0.0073 (3)
C70.0253 (4)0.0323 (5)0.0194 (4)0.0007 (3)0.0078 (3)0.0122 (3)
Geometric parameters (Å, º) top
S1—C51.6823 (8)C1—H1B0.9800
O1—N11.4004 (9)C1—H1C0.9800
O1—H1O10.8499C2—C31.4753 (11)
N1—C21.2891 (10)C3—C41.4966 (12)
N2—C31.2913 (10)C4—H4A0.9800
N2—N31.3676 (10)C4—H4B0.9800
N3—C51.3674 (10)C4—H4C0.9800
N3—H1N30.8699C6—C71.5182 (13)
N4—C51.3326 (10)C6—H6A0.9900
N4—C61.4594 (11)C6—H6B0.9900
N4—H1N40.8699C7—H7A0.9800
C1—C21.4955 (12)C7—H7B0.9800
C1—H1A0.9800C7—H7C0.9800
N1—O1—H1O1101.9C3—C4—H4A109.5
C2—N1—O1113.41 (7)C3—C4—H4B109.5
C3—N2—N3118.88 (7)H4A—C4—H4B109.5
C5—N3—N2117.92 (7)C3—C4—H4C109.5
C5—N3—H1N3117.7H4A—C4—H4C109.5
N2—N3—H1N3124.1H4B—C4—H4C109.5
C5—N4—C6123.53 (7)N4—C5—N3116.43 (7)
C5—N4—H1N4114.6N4—C5—S1123.74 (6)
C6—N4—H1N4121.9N3—C5—S1119.83 (6)
C2—C1—H1A109.5N4—C6—C7110.08 (7)
C2—C1—H1B109.5N4—C6—H6A109.6
H1A—C1—H1B109.5C7—C6—H6A109.6
C2—C1—H1C109.5N4—C6—H6B109.6
H1A—C1—H1C109.5C7—C6—H6B109.6
H1B—C1—H1C109.5H6A—C6—H6B108.2
N1—C2—C3114.67 (7)C6—C7—H7A109.5
N1—C2—C1124.68 (7)C6—C7—H7B109.5
C3—C2—C1120.63 (7)H7A—C7—H7B109.5
N2—C3—C2114.69 (7)C6—C7—H7C109.5
N2—C3—C4125.37 (8)H7A—C7—H7C109.5
C2—C3—C4119.93 (7)H7B—C7—H7C109.5
C3—N2—N3—C5177.16 (8)N1—C2—C3—C42.37 (13)
O1—N1—C2—C3179.32 (7)C1—C2—C3—C4179.18 (9)
O1—N1—C2—C10.93 (13)C6—N4—C5—N3178.54 (8)
N3—N2—C3—C2178.30 (7)C6—N4—C5—S11.47 (13)
N3—N2—C3—C40.76 (14)N2—N3—C5—N47.33 (12)
N1—C2—C3—N2176.75 (8)N2—N3—C5—S1172.68 (6)
C1—C2—C3—N21.71 (12)C5—N4—C6—C7178.86 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N1i0.852.002.7876 (10)154
N3—H1N3···S1ii0.872.753.6124 (8)171
N4—H1N4···N20.872.172.6055 (10)111
C1—H1A···O10.982.302.6970 (11)103
C4—H4A···S1ii0.982.643.4302 (12)138
C4—H4B···N10.982.392.7636 (14)102
Symmetry codes: (i) x+3, y+2, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC7H14N4OS
Mr202.28
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.7065 (2), 9.0632 (3), 10.7109 (4)
α, β, γ (°)71.309 (1), 76.318 (1), 86.420 (1)
V3)509.80 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.57 × 0.20 × 0.07
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.854, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
15442, 4093, 3648
Rint0.023
(sin θ/λ)max1)0.787
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.093, 1.08
No. of reflections4093
No. of parameters121
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.33

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N1i0.85002.00002.7876 (10)154.00
N3—H1N3···S1ii0.87002.75003.6124 (8)171.00
N4—H1N4···N20.87002.17002.6055 (10)111.00
C1—H1A···O10.98002.30002.6970 (11)103.00
C4—H4A···S1ii0.98002.64003.4302 (12)138.00
C4—H4B···N10.98002.39002.7636 (14)102.00
Symmetry codes: (i) x+3, y+2, z; (ii) x+1, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: E-9395-2011.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant (1001/PKIMIA/815067). HAF and AQA thank the Ministry of Higher Education and the University of Sabha (Libya) for a scholarship.

References

First citationAbduelftah, H. S., Ali, A. Q., Eltayeb, N. E., Teoh, S. G. & Fun, H.-K. (2012a). Acta Cryst. E68, m183–m184.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAbduelftah, H. S., Qasem Ali, A., Eltayeb, N. E., Teoh, S. G. & Fun, H.-K. (2012b). Acta Cryst. E68, m108–m109.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, K.-Y., Yang, S.-M., Lee, K.-C., Ryu, H., Lee, C. H., Seo, J. & Suh, M. (2008). Transition Met. Chem. 33, 99–105.  Web of Science CSD CrossRef CAS Google Scholar
First citationCowley, A. R., Dilworth, J. R., Donnelly, P. S., Labisbal, E. & Sousa, A. (2002). J. Am. Chem. Soc. 124, 5270–5271.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMing, L.-J. (2003). Med. Res. Rev. 23, 697–762.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds