metal-organic compounds
trans-Bis(nitrato-κO)bis(1,10-phenanthroline-κ2N,N′)manganese(II)
aDepartment of Chemistry, Faculty of Science, Naresuan University, Muang, Phitsanulok 65000, Thailand, bMolecular Technology Research Unit, Department of Chemistry, Walailak University, Nakhon Si Thammarat 80161, Thailand, and cDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: kittipongc@nu.ac.th
In the title compound, [Mn(NO3)2(C12H8N2)2], the MnII atom lies on a twofold rotation axis, and is six-coordinated in a distorted trans-N4O2 octahedral environment by four N atoms from two 1,10-phenanthroline ligands and two O atoms from two nitrate anions. The nitrate anion is disordered about a twofold rotation axis with fixed occupancy factors of 0.5. In the crystal, molecules are linked by weak C—H⋯O hydrogen bonds and π–π stacking interactions [centroid–centroid distance = 4.088 (5) Å] into a three-dimensional supramolecular network.
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536812029364/ng5277sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812029364/ng5277Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812029364/ng5277Isup3.cdx
A methanol solution (5 ml) of phen (20.0 mg, 0.1 mmol) was added dropwise to a methanol solution (5 ml) of Mn(NO3)2.4H2O (30.0 mg, 0.1 mmol) with constant stirring 1 h and filtered to remove any undissolved solid. The filtrate was allowed to stand to slowly evaporate, at room temperature. After one week, yellow blocks of I were obtained (Yield 23 mg, 88% based on Mn source). IR υmax(cm-1): 722 s, 768w, 780w, 821w, 842m, 853w, 863w, 1017m, 1048w, 1101w, 1141br, 1223w, 1290m, 1325m, 1408w, 1427w, 1459w, 1518m, 1578w, 1624w, 3059br. UV-Vis (CH3OH/H2O), λmax = 265 nm.
The C-bound hydrogen atoms were placed in geometrically idealized positions based on chemical coordinations and constrained to ride on their parent atom positions with a C–H distances of 0.93 Å and with Uiso(H) = 1.2Ueq(C) for the aromatic H atoms. The nitrate anions are disordered about a twofold rotation axis and were refined using a two site model. The site occupancy factors for the two orientations were then fixed to 0.5. The nitrogen-oxygen distances were restrained to 1.24 ± 0.01 Å and O···O of 2.15 Å, however, the anisotropic temperature factors were restrained to be nearly isotropic.
The mononuclear metal complexes of the chelating bidentate 1,10-phenanthroline (phen) and 2,2'-bipyridine (bipy) ligands are well known in the literature, and have been used in many fields. In the realm of coordination polymers, these complexes have been employed as coordination acceptor nodes for the construction of low dimensional polymer-based magnets exhibiting long-range magnetic ordering and spin crossover transitions. This communication forms part of our study of the synthesis and magnetic properties of one dimensional tube-like cyanide-bridged bimetallic coordination polymers. The main strategy of the proposed tube motif is to combine two building blocks involving one coordination donor, the chelated tetracyanoferrate, [Fe(L)(CN)4]x- (x = 1 or 2), and a coordination acceptor, [M(L)S] (where M = an octahedral metal; L = bipy or phen, S = solvents or counter ions). Here, we describe the
of a building block trans-[Mn(phen)2(NO3)2] (I), which is a new member of the mononuclear metal complexes with chelating bidentate ligands.Compound I is isostructural with the Cd analog (Shi et al., 2004). It crystallizes in a monoclinic system in the
C2/c, and contains half of the complex molecule per Fig. 1. The MnII atom lies on a twofold rotation axis, and is six-coordinate in a distorted trans-MnN4O2 octahedral environment by two O atoms from two disordered [NO3]– anions and four N atoms from two phen ligands. The dihedral angle between the least-squares planes of the two phen ligands [maximum deviation = 0.036 (1) Å] is 25.01 (5)°.In the crystal, molecules are assembled into one dimensional supramolecular chains parallel to the c axis through weak π–π stacking between adjacent aromatic rings of the phen ligands with a centroid-centroid distance of 4.088 (5) Å, Fig. 2. Weak C—H···O hydrogen bonds involving the phen ligands and the [NO3]– anions, Table 1, are further linked to neighboring chains into a three dimensional supramolecular network along the a axis, Fig. 3.
For the isotypic Cd compound, see: Shi et al. (2004).
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Mn(NO3)2(C12H8N2)2] | F(000) = 1100 |
Mr = 539.37 | Dx = 1.573 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.6191 (6) Å | Cell parameters from 3448 reflections |
b = 15.1164 (8) Å | θ = 2.5–23.1° |
c = 13.4526 (7) Å | µ = 0.64 mm−1 |
β = 105.387 (1)° | T = 298 K |
V = 2278.1 (2) Å3 | Block, yellow |
Z = 4 | 0.33 × 0.15 × 0.07 mm |
Bruker SMART CCD area-detector diffractometer | 2748 independent reflections |
Radiation source: fine-focus sealed tube | 2367 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 8 pixels mm-1 | θmax = 28.1°, θmin = 2.3° |
ω and φ scans | h = −15→15 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | k = −20→20 |
Tmin = 1.000, Tmax = 0.819 | l = −17→17 |
13250 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.15 | w = 1/[σ2(Fo2) + (0.0483P)2 + 0.5759P] where P = (Fo2 + 2Fc2)/3 |
2748 reflections | (Δ/σ)max < 0.001 |
204 parameters | Δρmax = 0.32 e Å−3 |
60 restraints | Δρmin = −0.19 e Å−3 |
[Mn(NO3)2(C12H8N2)2] | V = 2278.1 (2) Å3 |
Mr = 539.37 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 11.6191 (6) Å | µ = 0.64 mm−1 |
b = 15.1164 (8) Å | T = 298 K |
c = 13.4526 (7) Å | 0.33 × 0.15 × 0.07 mm |
β = 105.387 (1)° |
Bruker SMART CCD area-detector diffractometer | 2748 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2367 reflections with I > 2σ(I) |
Tmin = 1.000, Tmax = 0.819 | Rint = 0.028 |
13250 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 60 restraints |
wR(F2) = 0.101 | H-atom parameters constrained |
S = 1.15 | Δρmax = 0.32 e Å−3 |
2748 reflections | Δρmin = −0.19 e Å−3 |
204 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Mn1 | 0.5000 | 0.53331 (2) | 0.2500 | 0.04311 (14) | |
O2B | 0.6274 (5) | 0.4964 (4) | 0.4166 (6) | 0.0606 (12) | 0.50 |
N3B | 0.7282 (5) | 0.5186 (4) | 0.4076 (6) | 0.039 (2) | 0.50 |
N1 | 0.58698 (13) | 0.41378 (9) | 0.19902 (11) | 0.0433 (3) | |
C1 | 0.67011 (17) | 0.41303 (13) | 0.14807 (15) | 0.0509 (4) | |
H1 | 0.6993 | 0.4670 | 0.1322 | 0.061* | |
N2 | 0.46192 (14) | 0.65384 (10) | 0.33693 (12) | 0.0470 (4) | |
C2 | 0.71604 (18) | 0.33619 (14) | 0.11701 (17) | 0.0575 (5) | |
H2 | 0.7726 | 0.3390 | 0.0795 | 0.069* | |
C3 | 0.67701 (19) | 0.25688 (14) | 0.14224 (18) | 0.0608 (5) | |
H3 | 0.7077 | 0.2047 | 0.1231 | 0.073* | |
C4 | 0.59018 (18) | 0.25400 (12) | 0.19736 (16) | 0.0533 (5) | |
C5 | 0.54589 (15) | 0.33464 (11) | 0.22300 (14) | 0.0423 (4) | |
C6 | 0.5430 (2) | 0.17310 (14) | 0.2252 (2) | 0.0742 (7) | |
H6 | 0.5724 | 0.1195 | 0.2085 | 0.089* | |
C7 | 0.42093 (19) | 0.65392 (15) | 0.41958 (16) | 0.0584 (5) | |
H7 | 0.4096 | 0.5998 | 0.4485 | 0.070* | |
C8 | 0.3938 (2) | 0.73067 (18) | 0.46553 (18) | 0.0684 (6) | |
H8 | 0.3632 | 0.7275 | 0.5227 | 0.082* | |
C9 | 0.4125 (2) | 0.81020 (16) | 0.42592 (17) | 0.0702 (7) | |
H9 | 0.3957 | 0.8622 | 0.4564 | 0.084* | |
C10 | 0.45699 (18) | 0.81377 (13) | 0.33906 (16) | 0.0571 (5) | |
C11 | 0.47871 (16) | 0.73301 (11) | 0.29567 (14) | 0.0438 (4) | |
C12 | 0.4796 (2) | 0.89451 (13) | 0.29208 (19) | 0.0760 (7) | |
H12 | 0.4658 | 0.9482 | 0.3207 | 0.091* | |
O1A | 0.6994 (7) | 0.5637 (6) | 0.3267 (6) | 0.087 (3) | 0.50 |
N3A | 0.7310 (8) | 0.5230 (6) | 0.4089 (7) | 0.077 (4) | 0.50 |
O2A | 0.6590 (8) | 0.4707 (6) | 0.4282 (7) | 0.136 (4) | 0.50 |
O3A | 0.8353 (6) | 0.5253 (5) | 0.4576 (7) | 0.0747 (19) | 0.50 |
O1B | 0.7286 (8) | 0.5562 (6) | 0.3270 (6) | 0.096 (3) | 0.50 |
O3B | 0.8112 (7) | 0.5128 (8) | 0.4831 (6) | 0.105 (4) | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.0543 (2) | 0.02415 (19) | 0.0546 (3) | 0.000 | 0.02096 (18) | 0.000 |
O2B | 0.0571 (19) | 0.063 (2) | 0.065 (3) | 0.0025 (19) | 0.0224 (17) | 0.0032 (19) |
N3B | 0.038 (4) | 0.020 (3) | 0.060 (6) | 0.008 (2) | 0.017 (3) | −0.003 (3) |
N1 | 0.0468 (8) | 0.0325 (7) | 0.0534 (8) | 0.0005 (6) | 0.0183 (6) | 0.0011 (6) |
C1 | 0.0518 (10) | 0.0441 (10) | 0.0614 (11) | 0.0033 (8) | 0.0229 (9) | 0.0061 (8) |
N2 | 0.0570 (9) | 0.0363 (8) | 0.0506 (9) | 0.0010 (6) | 0.0194 (7) | −0.0003 (6) |
C2 | 0.0534 (11) | 0.0563 (12) | 0.0691 (13) | 0.0114 (9) | 0.0276 (10) | 0.0016 (10) |
C3 | 0.0657 (12) | 0.0451 (11) | 0.0764 (14) | 0.0169 (9) | 0.0273 (11) | −0.0039 (10) |
C4 | 0.0608 (11) | 0.0340 (9) | 0.0666 (12) | 0.0068 (8) | 0.0193 (10) | 0.0004 (8) |
C5 | 0.0471 (9) | 0.0308 (8) | 0.0489 (10) | 0.0011 (7) | 0.0128 (8) | 0.0004 (7) |
C6 | 0.0909 (18) | 0.0293 (10) | 0.112 (2) | 0.0061 (10) | 0.0432 (15) | −0.0026 (11) |
C7 | 0.0636 (12) | 0.0593 (13) | 0.0563 (12) | −0.0013 (9) | 0.0229 (10) | 0.0002 (9) |
C8 | 0.0662 (13) | 0.0844 (18) | 0.0570 (12) | 0.0140 (12) | 0.0206 (10) | −0.0108 (12) |
C9 | 0.0742 (14) | 0.0644 (15) | 0.0671 (14) | 0.0244 (11) | 0.0100 (11) | −0.0214 (11) |
C10 | 0.0616 (12) | 0.0383 (10) | 0.0639 (12) | 0.0112 (8) | 0.0032 (10) | −0.0098 (9) |
C11 | 0.0459 (9) | 0.0308 (8) | 0.0515 (10) | 0.0020 (7) | 0.0075 (7) | −0.0021 (7) |
C12 | 0.0973 (18) | 0.0293 (10) | 0.0893 (17) | 0.0069 (10) | 0.0033 (14) | −0.0102 (9) |
O1A | 0.091 (4) | 0.043 (3) | 0.097 (6) | −0.012 (2) | −0.027 (3) | 0.015 (3) |
N3A | 0.099 (9) | 0.068 (6) | 0.069 (8) | −0.030 (5) | 0.031 (7) | −0.036 (5) |
O2A | 0.191 (8) | 0.154 (8) | 0.083 (5) | −0.117 (6) | 0.070 (6) | −0.023 (5) |
O3A | 0.062 (3) | 0.065 (3) | 0.088 (4) | 0.013 (2) | 0.003 (3) | −0.016 (3) |
O1B | 0.154 (7) | 0.075 (5) | 0.085 (5) | −0.060 (4) | 0.076 (5) | −0.021 (3) |
O3B | 0.062 (3) | 0.162 (8) | 0.085 (5) | 0.027 (4) | 0.004 (3) | −0.050 (5) |
Mn1—N1 | 2.2636 (14) | C3—H3 | 0.9300 |
Mn1—N1i | 2.2636 (14) | C4—C5 | 1.401 (2) |
Mn1—N2 | 2.2711 (15) | C4—C6 | 1.430 (3) |
Mn1—N2i | 2.2712 (15) | C5—C5i | 1.441 (3) |
Mn1—O1A | 2.318 (8) | C6—C6i | 1.340 (5) |
Mn1—O1Ai | 2.318 (8) | C6—H6 | 0.9300 |
Mn1—O2Bi | 2.401 (7) | C7—C8 | 1.389 (3) |
Mn1—O2B | 2.401 (7) | C7—H7 | 0.9300 |
O2B—N3B | 1.255 (6) | C8—C9 | 1.356 (4) |
N3B—O3B | 1.204 (7) | C8—H8 | 0.9300 |
N3B—O1B | 1.225 (6) | C9—C10 | 1.399 (3) |
N1—C1 | 1.324 (2) | C9—H9 | 0.9300 |
N1—C5 | 1.358 (2) | C10—C11 | 1.405 (2) |
C1—C2 | 1.388 (3) | C10—C12 | 1.431 (3) |
C1—H1 | 0.9300 | C11—C11i | 1.441 (4) |
N2—C7 | 1.321 (2) | C12—C12i | 1.338 (5) |
N2—C11 | 1.355 (2) | C12—H12 | 0.9300 |
C2—C3 | 1.357 (3) | O1A—N3A | 1.233 (7) |
C2—H2 | 0.9300 | N3A—O3A | 1.216 (7) |
C3—C4 | 1.402 (3) | N3A—O2A | 1.227 (7) |
N1—Mn1—N1i | 74.08 (7) | C7—N2—Mn1 | 126.68 (14) |
N1—Mn1—N2 | 163.74 (5) | C11—N2—Mn1 | 115.38 (12) |
N1i—Mn1—N2 | 108.71 (5) | C3—C2—C1 | 118.91 (19) |
N1—Mn1—N2i | 108.71 (5) | C3—C2—H2 | 120.5 |
N1i—Mn1—N2i | 163.74 (5) | C1—C2—H2 | 120.5 |
N2—Mn1—N2i | 73.31 (8) | C2—C3—C4 | 119.66 (18) |
N1—Mn1—O1A | 79.6 (3) | C2—C3—H3 | 120.2 |
N1i—Mn1—O1A | 119.80 (18) | C4—C3—H3 | 120.2 |
N2—Mn1—O1A | 85.4 (3) | C5—C4—C3 | 117.76 (17) |
N2i—Mn1—O1A | 76.24 (18) | C5—C4—C6 | 119.20 (19) |
N1—Mn1—O1Ai | 119.80 (18) | C3—C4—C6 | 123.00 (18) |
N1i—Mn1—O1Ai | 79.6 (3) | N1—C5—C4 | 122.18 (16) |
N2—Mn1—O1Ai | 76.24 (18) | N1—C5—C5i | 118.26 (9) |
N2i—Mn1—O1Ai | 85.4 (3) | C4—C5—C5i | 119.56 (11) |
O1A—Mn1—O1Ai | 157.2 (4) | C6i—C6—C4 | 121.23 (12) |
N1—Mn1—O2Bi | 75.28 (17) | C6i—C6—H6 | 119.4 |
N1i—Mn1—O2Bi | 83.30 (16) | C4—C6—H6 | 119.4 |
N2—Mn1—O2Bi | 120.73 (17) | N2—C7—C8 | 123.4 (2) |
N2i—Mn1—O2Bi | 82.05 (17) | N2—C7—H7 | 118.3 |
O1A—Mn1—O2Bi | 139.2 (3) | C8—C7—H7 | 118.3 |
O1Ai—Mn1—O2Bi | 48.3 (3) | C9—C8—C7 | 119.1 (2) |
N1—Mn1—O2B | 83.30 (16) | C9—C8—H8 | 120.4 |
N1i—Mn1—O2B | 75.28 (17) | C7—C8—H8 | 120.4 |
N2—Mn1—O2B | 82.04 (17) | C8—C9—C10 | 119.7 (2) |
N2i—Mn1—O2B | 120.73 (17) | C8—C9—H9 | 120.1 |
O1A—Mn1—O2B | 48.3 (3) | C10—C9—H9 | 120.1 |
O1Ai—Mn1—O2B | 139.2 (3) | C9—C10—C11 | 117.4 (2) |
O2Bi—Mn1—O2B | 153.1 (3) | C9—C10—C12 | 123.7 (2) |
N3B—O2B—Mn1 | 102.0 (5) | C11—C10—C12 | 118.9 (2) |
O3B—N3B—O1B | 126.1 (7) | N2—C11—C10 | 122.41 (18) |
O3B—N3B—O2B | 117.3 (7) | N2—C11—C11i | 117.94 (10) |
O1B—N3B—O2B | 115.6 (6) | C10—C11—C11i | 119.64 (12) |
C1—N1—C5 | 117.77 (15) | C12i—C12—C10 | 121.45 (13) |
C1—N1—Mn1 | 127.53 (12) | C12i—C12—H12 | 119.3 |
C5—N1—Mn1 | 114.70 (11) | C10—C12—H12 | 119.3 |
N1—C1—C2 | 123.67 (18) | N3A—O1A—Mn1 | 108.9 (7) |
N1—C1—H1 | 118.2 | O3A—N3A—O2A | 122.9 (9) |
C2—C1—H1 | 118.2 | O3A—N3A—O1A | 119.0 (9) |
C7—N2—C11 | 117.87 (17) | O2A—N3A—O1A | 117.0 (9) |
N1—Mn1—O2B—N3B | 72.3 (5) | N1—C1—C2—C3 | −2.0 (3) |
N1i—Mn1—O2B—N3B | 147.6 (5) | C1—C2—C3—C4 | 1.0 (3) |
N2—Mn1—O2B—N3B | −100.6 (5) | C2—C3—C4—C5 | 0.9 (3) |
N2i—Mn1—O2B—N3B | −35.5 (5) | C2—C3—C4—C6 | 178.8 (2) |
O1A—Mn1—O2B—N3B | −9.7 (5) | C1—N1—C5—C4 | 1.2 (3) |
O1Ai—Mn1—O2B—N3B | −158.6 (5) | Mn1—N1—C5—C4 | −179.84 (14) |
O2Bi—Mn1—O2B—N3B | 109.4 (5) | C1—N1—C5—C5i | −179.05 (19) |
Mn1—O2B—N3B—O3B | 175.4 (8) | Mn1—N1—C5—C5i | −0.1 (3) |
Mn1—O2B—N3B—O1B | 5.9 (9) | C3—C4—C5—N1 | −2.1 (3) |
N1i—Mn1—N1—C1 | 178.83 (19) | C6—C4—C5—N1 | 179.9 (2) |
N2—Mn1—N1—C1 | −78.8 (3) | C3—C4—C5—C5i | 178.2 (2) |
N2i—Mn1—N1—C1 | 15.61 (17) | C6—C4—C5—C5i | 0.2 (3) |
O1A—Mn1—N1—C1 | −55.9 (2) | C5—C4—C6—C6i | 0.3 (5) |
O1Ai—Mn1—N1—C1 | 111.2 (3) | C3—C4—C6—C6i | −177.7 (3) |
O2Bi—Mn1—N1—C1 | 91.7 (2) | C11—N2—C7—C8 | 0.4 (3) |
O2B—Mn1—N1—C1 | −104.6 (2) | Mn1—N2—C7—C8 | −176.49 (16) |
N1i—Mn1—N1—C5 | 0.05 (9) | N2—C7—C8—C9 | −1.6 (4) |
N2—Mn1—N1—C5 | 102.4 (2) | C7—C8—C9—C10 | 0.8 (3) |
N2i—Mn1—N1—C5 | −163.17 (12) | C8—C9—C10—C11 | 1.0 (3) |
O1A—Mn1—N1—C5 | 125.4 (2) | C8—C9—C10—C12 | −179.9 (2) |
O1Ai—Mn1—N1—C5 | −67.6 (3) | C7—N2—C11—C10 | 1.6 (3) |
O2Bi—Mn1—N1—C5 | −87.1 (2) | Mn1—N2—C11—C10 | 178.82 (14) |
O2B—Mn1—N1—C5 | 76.6 (2) | C7—N2—C11—C11i | −178.8 (2) |
C5—N1—C1—C2 | 0.8 (3) | Mn1—N2—C11—C11i | −1.6 (3) |
Mn1—N1—C1—C2 | −177.93 (15) | C9—C10—C11—N2 | −2.3 (3) |
N1—Mn1—N2—C7 | −82.9 (3) | C12—C10—C11—N2 | 178.55 (19) |
N1i—Mn1—N2—C7 | 14.44 (18) | C9—C10—C11—C11i | 178.2 (2) |
N2i—Mn1—N2—C7 | 177.5 (2) | C12—C10—C11—C11i | −1.0 (3) |
O1A—Mn1—N2—C7 | −105.5 (2) | C9—C10—C12—C12i | −178.8 (3) |
O1Ai—Mn1—N2—C7 | 88.2 (3) | C11—C10—C12—C12i | 0.3 (4) |
O2Bi—Mn1—N2—C7 | 107.8 (2) | N1—Mn1—O1A—N3A | −82.7 (8) |
O2B—Mn1—N2—C7 | −57.0 (2) | N1i—Mn1—O1A—N3A | −17.9 (9) |
N1—Mn1—N2—C11 | 100.2 (2) | N2—Mn1—O1A—N3A | 91.0 (8) |
N1i—Mn1—N2—C11 | −162.48 (12) | N2i—Mn1—O1A—N3A | 164.9 (8) |
N2i—Mn1—N2—C11 | 0.58 (9) | O1Ai—Mn1—O1A—N3A | 127.4 (8) |
O1A—Mn1—N2—C11 | 77.6 (2) | O2Bi—Mn1—O1A—N3A | −135.2 (7) |
O1Ai—Mn1—N2—C11 | −88.7 (3) | O2B—Mn1—O1A—N3A | 7.6 (7) |
O2Bi—Mn1—N2—C11 | −69.2 (2) | Mn1—O1A—N3A—O3A | 175.0 (8) |
O2B—Mn1—N2—C11 | 126.1 (2) | Mn1—O1A—N3A—O2A | 6.7 (13) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1Aii | 0.93 | 2.40 | 3.232 (9) | 148 |
C3—H3···O1Bii | 0.93 | 2.40 | 3.214 (10) | 146 |
C7—H7···O2Aiii | 0.93 | 2.29 | 3.101 (8) | 146 |
Symmetry codes: (ii) −x+3/2, y−1/2, −z+1/2; (iii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Mn(NO3)2(C12H8N2)2] |
Mr | 539.37 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 298 |
a, b, c (Å) | 11.6191 (6), 15.1164 (8), 13.4526 (7) |
β (°) | 105.387 (1) |
V (Å3) | 2278.1 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.64 |
Crystal size (mm) | 0.33 × 0.15 × 0.07 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 1.000, 0.819 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13250, 2748, 2367 |
Rint | 0.028 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.101, 1.15 |
No. of reflections | 2748 |
No. of parameters | 204 |
No. of restraints | 60 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.19 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O1Ai | 0.93 | 2.40 | 3.232 (9) | 148.3 |
C3—H3···O1Bi | 0.93 | 2.40 | 3.214 (10) | 145.8 |
C7—H7···O2Aii | 0.93 | 2.29 | 3.101 (8) | 146.0 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
We thank the Thailand Research Fund for funding this work (project No. MRG5480189).
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, X., Zhu, G., Fang, Q., Wu, G., Tian, G., Wang, R., Zhang, D., Xue, M. & Qiu, S. (2004). Eur. J. Inorg. Chem. pp. 185–191. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The mononuclear metal complexes of the chelating bidentate 1,10-phenanthroline (phen) and 2,2'-bipyridine (bipy) ligands are well known in the literature, and have been used in many fields. In the realm of coordination polymers, these complexes have been employed as coordination acceptor nodes for the construction of low dimensional polymer-based magnets exhibiting long-range magnetic ordering and spin crossover transitions. This communication forms part of our study of the synthesis and magnetic properties of one dimensional tube-like cyanide-bridged bimetallic coordination polymers. The main strategy of the proposed tube motif is to combine two building blocks involving one coordination donor, the chelated tetracyanoferrate, [Fe(L)(CN)4]x- (x = 1 or 2), and a coordination acceptor, [M(L)S] (where M = an octahedral metal; L = bipy or phen, S = solvents or counter ions). Here, we describe the crystal structure of a building block trans-[Mn(phen)2(NO3)2] (I), which is a new member of the mononuclear metal complexes with chelating bidentate ligands.
Compound I is isostructural with the Cd analog (Shi et al., 2004). It crystallizes in a monoclinic system in the space group C2/c, and contains half of the complex molecule per asymmetric unit, Fig. 1. The MnII atom lies on a twofold rotation axis, and is six-coordinate in a distorted trans-MnN4O2 octahedral environment by two O atoms from two disordered [NO3]– anions and four N atoms from two phen ligands. The dihedral angle between the least-squares planes of the two phen ligands [maximum deviation = 0.036 (1) Å] is 25.01 (5)°.
In the crystal, molecules are assembled into one dimensional supramolecular chains parallel to the c axis through weak π–π stacking between adjacent aromatic rings of the phen ligands with a centroid-centroid distance of 4.088 (5) Å, Fig. 2. Weak C—H···O hydrogen bonds involving the phen ligands and the [NO3]– anions, Table 1, are further linked to neighboring chains into a three dimensional supramolecular network along the a axis, Fig. 3.