organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-Nitro-2-(2-nitro­prop-1-en­yl)benzene

aZhejiang University of Technology, Hangzhou 310014, People's Republic of China, bState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, cHangzhou Minsheng Pharmaceutical Group Co. Ltd, Hangzhou 310000, People's Republic of China, and dHangzhou Radio and Television University, Hangzhou 310000, People's Republic of China
*Correspondence e-mail: boyzb@163.com

(Received 30 June 2012; accepted 1 July 2012; online 7 July 2012)

The title compound, C9H8N2O4, adopts an E conformation about the C=C bond. The CHphen­yl—Cphen­yl—CH—C(—NO2) torsion angle is −57.7 (3)°. The crystal structure features weak inter­molecular C—H⋯O inter­actions.

Related literature

For background to nitro­alkenes, see: Ballini & Petrini (2004[Ballini, R. & Petrini, M. (2004). Tetrahedron, 60, 1017-1047.]); Berner et al. (2002[Berner, O. M., Tedeschi, L. & Enders, D. (2002). Eur. J. Org. Chem. 12, 1877-1894.]); Ono (2001[Ono, N. (2001). In The Nitro Group in Organic Synthesis. New York: Wiley-VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8N2O4

  • Mr = 208.17

  • Monoclinic, P 21 /n

  • a = 6.8274 (9) Å

  • b = 15.5666 (12) Å

  • c = 9.9045 (10) Å

  • β = 113.202 (3)°

  • V = 967.51 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 K

  • 0.58 × 0.46 × 0.32 mm

Data collection
  • Rigaku R-AXIS RAPID/ZJUG diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.932, Tmax = 0.964

  • 7450 measured reflections

  • 1736 independent reflections

  • 1193 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.135

  • S = 1.00

  • 1736 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O3i 0.93 2.60 3.163 (5) 119
C9—H9A⋯O2ii 0.96 2.70 3.403 (4) 131
Symmetry codes: (i) x-1, y, z-1; (ii) x+1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Nitroalkenes are important organic intermediates, since they can be converted to synthetically useful N– and O-containing organic molecules, such as amines, aldehydes, carboxylic acids, or denitrated compounds (Ono, 2001; Berner et al., 2002; Ballini & Petrini, 2004). As a contribution in this field, we have synthesized a series of nitroalkenes by employing benzaldehydes and nitroethane. We report here one of this nitroalkenes, i.e. the title compound. The C7C8 bond involves the E configuration with the C3—C2—C7—C8 torsion angle of -57.7 (3)° (Fig. 1). The conformation of (I) is stabilized by weak intermolecular C6—H6···O3'and C9—H9A···O2' interactions (Fig. 2 and Table 1).

Related literature top

For background to nitroalkenes, see: Ballini & Petrini (2004); Berner et al. (2002); Ono (2001).

Experimental top

To a solution of 2-nitrobenzaldehyde (50 mmol) in AcOH (25 mL), nitroethane (75 mmol) was added, followed by butylamine (100 mmol, 7.4 mL). The mixture was sonicated at 60 °C, until GC showed full conversion of the aldehyde. The mixture was poured into ice water, the precipitate was filtered off, washed with water and recrystallized from EtOH/EtOAc to give the product. Single crystals were obtained by slow evaporation of a EtOH solution of the compound.

Refinement top

All H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Structure description top

Nitroalkenes are important organic intermediates, since they can be converted to synthetically useful N– and O-containing organic molecules, such as amines, aldehydes, carboxylic acids, or denitrated compounds (Ono, 2001; Berner et al., 2002; Ballini & Petrini, 2004). As a contribution in this field, we have synthesized a series of nitroalkenes by employing benzaldehydes and nitroethane. We report here one of this nitroalkenes, i.e. the title compound. The C7C8 bond involves the E configuration with the C3—C2—C7—C8 torsion angle of -57.7 (3)° (Fig. 1). The conformation of (I) is stabilized by weak intermolecular C6—H6···O3'and C9—H9A···O2' interactions (Fig. 2 and Table 1).

For background to nitroalkenes, see: Ballini & Petrini (2004); Berner et al. (2002); Ono (2001).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atomic labeling scheme; displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The view of intermolecular interactions illustrated as dash lines.
(E)-1-Nitro-2-(2-nitroprop-1-enyl)benzene top
Crystal data top
C9H8N2O4F(000) = 432
Mr = 208.17Dx = 1.429 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5183 reflections
a = 6.8274 (9) Åθ = 3.2–27.5°
b = 15.5666 (12) ŵ = 0.12 mm1
c = 9.9045 (10) ÅT = 296 K
β = 113.202 (3)°Chunk, yellow
V = 967.51 (18) Å30.58 × 0.46 × 0.32 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
1736 independent reflections
Radiation source: rotating anode1193 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 10.00 pixels mm-1θmax = 25.2°, θmin = 3.4°
ω scansh = 78
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1818
Tmin = 0.932, Tmax = 0.964l = 1111
7450 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.019P)2 + 0.5218P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1736 reflectionsΔρmax = 0.26 e Å3
138 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.170 (12)
Crystal data top
C9H8N2O4V = 967.51 (18) Å3
Mr = 208.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.8274 (9) ŵ = 0.12 mm1
b = 15.5666 (12) ÅT = 296 K
c = 9.9045 (10) Å0.58 × 0.46 × 0.32 mm
β = 113.202 (3)°
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
1736 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1193 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.964Rint = 0.072
7450 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.00Δρmax = 0.26 e Å3
1736 reflectionsΔρmin = 0.21 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5466 (4)0.10207 (16)0.2728 (3)0.0619 (6)
C20.7192 (4)0.14601 (15)0.3747 (3)0.0601 (6)
C30.8689 (4)0.17747 (17)0.3231 (3)0.0709 (7)
H30.98760.20690.38730.085*
C40.8450 (5)0.16585 (18)0.1791 (3)0.0774 (8)
H40.94740.18730.14800.093*
C50.6713 (5)0.12290 (18)0.0817 (3)0.0782 (8)
H50.65480.11590.01540.094*
C60.5215 (4)0.09026 (17)0.1286 (3)0.0713 (7)
H60.40420.06040.06370.086*
C70.7489 (4)0.16389 (15)0.5287 (3)0.0633 (7)
H70.63990.19250.54400.076*
C80.9185 (4)0.14215 (15)0.6453 (3)0.0597 (6)
C91.1075 (4)0.09071 (19)0.6571 (3)0.0789 (8)
H9A1.09430.07360.56080.118*
H9B1.11640.04050.71560.118*
H9C1.23390.12470.70260.118*
N10.3819 (4)0.06343 (17)0.3147 (3)0.0799 (7)
N20.9179 (4)0.16809 (14)0.7890 (2)0.0702 (6)
O10.2593 (4)0.01245 (18)0.2313 (3)0.1285 (10)
O20.3754 (4)0.08268 (17)0.4315 (3)0.1097 (8)
O31.0659 (3)0.14555 (14)0.8995 (2)0.0925 (7)
O40.7722 (4)0.21184 (15)0.7936 (2)0.1023 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0613 (14)0.0631 (15)0.0609 (15)0.0036 (12)0.0238 (12)0.0103 (11)
C20.0654 (14)0.0611 (14)0.0548 (13)0.0078 (12)0.0248 (12)0.0053 (11)
C30.0736 (16)0.0778 (17)0.0626 (16)0.0069 (14)0.0282 (13)0.0023 (13)
C40.0854 (18)0.089 (2)0.0661 (16)0.0078 (15)0.0387 (15)0.0021 (14)
C50.093 (2)0.0868 (19)0.0555 (15)0.0000 (16)0.0296 (15)0.0035 (13)
C60.0718 (16)0.0734 (17)0.0591 (16)0.0003 (13)0.0155 (13)0.0031 (13)
C70.0715 (15)0.0649 (15)0.0604 (15)0.0069 (12)0.0335 (13)0.0019 (12)
C80.0699 (15)0.0588 (14)0.0530 (14)0.0005 (12)0.0271 (12)0.0022 (11)
C90.0728 (17)0.089 (2)0.0725 (17)0.0113 (14)0.0258 (14)0.0033 (14)
N10.0720 (15)0.0871 (17)0.0793 (17)0.0004 (13)0.0284 (13)0.0154 (13)
N20.0839 (15)0.0681 (14)0.0606 (13)0.0013 (12)0.0305 (12)0.0016 (10)
O10.1249 (18)0.146 (2)0.1092 (19)0.0697 (18)0.0400 (15)0.0081 (16)
O20.1001 (16)0.144 (2)0.1069 (18)0.0120 (14)0.0642 (14)0.0012 (15)
O30.0962 (14)0.1094 (16)0.0554 (11)0.0055 (12)0.0120 (10)0.0029 (10)
O40.1208 (17)0.1218 (18)0.0747 (13)0.0400 (15)0.0497 (13)0.0037 (12)
Geometric parameters (Å, º) top
C1—C61.382 (3)C7—C81.318 (3)
C1—C21.392 (3)C7—H70.9300
C1—N11.472 (3)C8—C91.483 (3)
C2—C31.400 (3)C8—N21.481 (3)
C2—C71.483 (3)C9—H9A0.9600
C3—C41.381 (3)C9—H9B0.9600
C3—H30.9300C9—H9C0.9600
C4—C51.372 (4)N1—O11.212 (3)
C4—H40.9300N1—O21.212 (3)
C5—C61.376 (4)N2—O31.212 (3)
C5—H50.9300N2—O41.221 (3)
C6—H60.9300
C6—C1—C2122.6 (2)C8—C7—C2124.8 (2)
C6—C1—N1116.1 (2)C8—C7—H7117.6
C2—C1—N1121.3 (2)C2—C7—H7117.6
C3—C2—C1116.0 (2)C7—C8—C9130.1 (2)
C3—C2—C7119.1 (2)C7—C8—N2116.0 (2)
C1—C2—C7124.8 (2)C9—C8—N2113.8 (2)
C4—C3—C2121.7 (2)C8—C9—H9A109.5
C4—C3—H3119.2C8—C9—H9B109.5
C2—C3—H3119.2H9A—C9—H9B109.5
C5—C4—C3120.5 (3)C8—C9—H9C109.5
C5—C4—H4119.8H9A—C9—H9C109.5
C3—C4—H4119.8H9B—C9—H9C109.5
C6—C5—C4119.6 (2)O1—N1—O2122.5 (3)
C6—C5—H5120.2O1—N1—C1118.3 (3)
C4—C5—H5120.2O2—N1—C1119.1 (3)
C5—C6—C1119.6 (2)O3—N2—O4122.0 (2)
C5—C6—H6120.2O3—N2—C8118.1 (2)
C1—C6—H6120.2O4—N2—C8119.9 (2)
C6—C1—C2—C30.5 (4)C1—C2—C7—C8124.7 (3)
N1—C1—C2—C3178.0 (2)C2—C7—C8—C95.5 (4)
C6—C1—C2—C7177.1 (2)C2—C7—C8—N2178.6 (2)
N1—C1—C2—C74.4 (4)C6—C1—N1—O112.6 (4)
C1—C2—C3—C40.4 (4)C2—C1—N1—O1166.0 (3)
C7—C2—C3—C4177.3 (2)C6—C1—N1—O2168.4 (2)
C2—C3—C4—C50.2 (4)C2—C1—N1—O213.1 (4)
C3—C4—C5—C60.9 (4)C7—C8—N2—O3176.3 (2)
C4—C5—C6—C10.8 (4)C9—C8—N2—O30.3 (3)
C2—C1—C6—C50.1 (4)C7—C8—N2—O44.6 (3)
N1—C1—C6—C5178.6 (2)C9—C8—N2—O4178.8 (2)
C3—C2—C7—C857.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.932.603.163 (5)119
C9—H9A···O2ii0.962.703.403 (4)131
Symmetry codes: (i) x1, y, z1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC9H8N2O4
Mr208.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)6.8274 (9), 15.5666 (12), 9.9045 (10)
β (°) 113.202 (3)
V3)967.51 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.58 × 0.46 × 0.32
Data collection
DiffractometerRigaku R-AXIS RAPID/ZJUG
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.932, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
7450, 1736, 1193
Rint0.072
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.135, 1.00
No. of reflections1736
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.21

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.932.6033.163 (5)119
C9—H9A···O2ii0.962.6983.403 (4)131
Symmetry codes: (i) x1, y, z1; (ii) x+1, y, z.
 

Acknowledgements

The authors are grateful to Mr Jianming Gu for the crystal analysis. They are also grateful for financial support from the State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology of Zhejiang University of Technology (grant No. GCTKF2012010).

References

First citationBallini, R. & Petrini, M. (2004). Tetrahedron, 60, 1017–1047.  Web of Science CrossRef CAS Google Scholar
First citationBerner, O. M., Tedeschi, L. & Enders, D. (2002). Eur. J. Org. Chem. 12, 1877–1894.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationOno, N. (2001). In The Nitro Group in Organic Synthesis. New York: Wiley-VCH.  Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds