organic compounds
(E)-1-Nitro-2-(2-nitroprop-1-enyl)benzene
aZhejiang University of Technology, Hangzhou 310014, People's Republic of China, bState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, cHangzhou Minsheng Pharmaceutical Group Co. Ltd, Hangzhou 310000, People's Republic of China, and dHangzhou Radio and Television University, Hangzhou 310000, People's Republic of China
*Correspondence e-mail: boyzb@163.com
The title compound, C9H8N2O4, adopts an E conformation about the C=C bond. The CHphenyl—Cphenyl—CH—C(—NO2) torsion angle is −57.7 (3)°. The features weak intermolecular C—H⋯O interactions.
Related literature
For background to nitroalkenes, see: Ballini & Petrini (2004); Berner et al. (2002); Ono (2001).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 2006); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536812029947/ng5280sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812029947/ng5280Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812029947/ng5280Isup3.cml
To a solution of 2-nitrobenzaldehyde (50 mmol) in AcOH (25 mL), nitroethane (75 mmol) was added, followed by butylamine (100 mmol, 7.4 mL). The mixture was sonicated at 60 °C, until GC showed full conversion of the aldehyde. The mixture was poured into ice water, the precipitate was filtered off, washed with water and recrystallized from EtOH/EtOAc to give the product. Single crystals were obtained by slow evaporation of a EtOH solution of the compound.
All H atoms were placed in calculated positions and refined using a riding model, with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.
Nitroalkenes are important organic intermediates, since they can be converted to synthetically useful N– and O-containing organic molecules, such as ═C8 bond involves the E configuration with the C3—C2—C7—C8 torsion angle of -57.7 (3)° (Fig. 1). The conformation of (I) is stabilized by weak intermolecular C6—H6···O3'and C9—H9A···O2' interactions (Fig. 2 and Table 1).
or denitrated compounds (Ono, 2001; Berner et al., 2002; Ballini & Petrini, 2004). As a contribution in this field, we have synthesized a series of nitroalkenes by employing benzaldehydes and nitroethane. We report here one of this nitroalkenes, i.e. the title compound. The C7For background to nitroalkenes, see: Ballini & Petrini (2004); Berner et al. (2002); Ono (2001).
Data collection: PROCESS-AUTO (Rigaku, 2006); cell
PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C9H8N2O4 | F(000) = 432 |
Mr = 208.17 | Dx = 1.429 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 5183 reflections |
a = 6.8274 (9) Å | θ = 3.2–27.5° |
b = 15.5666 (12) Å | µ = 0.12 mm−1 |
c = 9.9045 (10) Å | T = 296 K |
β = 113.202 (3)° | Chunk, yellow |
V = 967.51 (18) Å3 | 0.58 × 0.46 × 0.32 mm |
Z = 4 |
Rigaku R-AXIS RAPID/ZJUG diffractometer | 1736 independent reflections |
Radiation source: rotating anode | 1193 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.072 |
Detector resolution: 10.00 pixels mm-1 | θmax = 25.2°, θmin = 3.4° |
ω scans | h = −7→8 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −18→18 |
Tmin = 0.932, Tmax = 0.964 | l = −11→11 |
7450 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.059 | H-atom parameters constrained |
wR(F2) = 0.135 | w = 1/[σ2(Fo2) + (0.019P)2 + 0.5218P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
1736 reflections | Δρmax = 0.26 e Å−3 |
138 parameters | Δρmin = −0.21 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.170 (12) |
C9H8N2O4 | V = 967.51 (18) Å3 |
Mr = 208.17 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.8274 (9) Å | µ = 0.12 mm−1 |
b = 15.5666 (12) Å | T = 296 K |
c = 9.9045 (10) Å | 0.58 × 0.46 × 0.32 mm |
β = 113.202 (3)° |
Rigaku R-AXIS RAPID/ZJUG diffractometer | 1736 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1193 reflections with I > 2σ(I) |
Tmin = 0.932, Tmax = 0.964 | Rint = 0.072 |
7450 measured reflections |
R[F2 > 2σ(F2)] = 0.059 | 0 restraints |
wR(F2) = 0.135 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.26 e Å−3 |
1736 reflections | Δρmin = −0.21 e Å−3 |
138 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5466 (4) | 0.10207 (16) | 0.2728 (3) | 0.0619 (6) | |
C2 | 0.7192 (4) | 0.14601 (15) | 0.3747 (3) | 0.0601 (6) | |
C3 | 0.8689 (4) | 0.17747 (17) | 0.3231 (3) | 0.0709 (7) | |
H3 | 0.9876 | 0.2069 | 0.3873 | 0.085* | |
C4 | 0.8450 (5) | 0.16585 (18) | 0.1791 (3) | 0.0774 (8) | |
H4 | 0.9474 | 0.1873 | 0.1480 | 0.093* | |
C5 | 0.6713 (5) | 0.12290 (18) | 0.0817 (3) | 0.0782 (8) | |
H5 | 0.6548 | 0.1159 | −0.0154 | 0.094* | |
C6 | 0.5215 (4) | 0.09026 (17) | 0.1286 (3) | 0.0713 (7) | |
H6 | 0.4042 | 0.0604 | 0.0637 | 0.086* | |
C7 | 0.7489 (4) | 0.16389 (15) | 0.5287 (3) | 0.0633 (7) | |
H7 | 0.6399 | 0.1925 | 0.5440 | 0.076* | |
C8 | 0.9185 (4) | 0.14215 (15) | 0.6453 (3) | 0.0597 (6) | |
C9 | 1.1075 (4) | 0.09071 (19) | 0.6571 (3) | 0.0789 (8) | |
H9A | 1.0943 | 0.0736 | 0.5608 | 0.118* | |
H9B | 1.1164 | 0.0405 | 0.7156 | 0.118* | |
H9C | 1.2339 | 0.1247 | 0.7026 | 0.118* | |
N1 | 0.3819 (4) | 0.06343 (17) | 0.3147 (3) | 0.0799 (7) | |
N2 | 0.9179 (4) | 0.16809 (14) | 0.7890 (2) | 0.0702 (6) | |
O1 | 0.2593 (4) | 0.01245 (18) | 0.2313 (3) | 0.1285 (10) | |
O2 | 0.3754 (4) | 0.08268 (17) | 0.4315 (3) | 0.1097 (8) | |
O3 | 1.0659 (3) | 0.14555 (14) | 0.8995 (2) | 0.0925 (7) | |
O4 | 0.7722 (4) | 0.21184 (15) | 0.7936 (2) | 0.1023 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0613 (14) | 0.0631 (15) | 0.0609 (15) | 0.0036 (12) | 0.0238 (12) | 0.0103 (11) |
C2 | 0.0654 (14) | 0.0611 (14) | 0.0548 (13) | 0.0078 (12) | 0.0248 (12) | 0.0053 (11) |
C3 | 0.0736 (16) | 0.0778 (17) | 0.0626 (16) | −0.0069 (14) | 0.0282 (13) | −0.0023 (13) |
C4 | 0.0854 (18) | 0.089 (2) | 0.0661 (16) | −0.0078 (15) | 0.0387 (15) | 0.0021 (14) |
C5 | 0.093 (2) | 0.0868 (19) | 0.0555 (15) | 0.0000 (16) | 0.0296 (15) | 0.0035 (13) |
C6 | 0.0718 (16) | 0.0734 (17) | 0.0591 (16) | 0.0003 (13) | 0.0155 (13) | 0.0031 (13) |
C7 | 0.0715 (15) | 0.0649 (15) | 0.0604 (15) | 0.0069 (12) | 0.0335 (13) | 0.0019 (12) |
C8 | 0.0699 (15) | 0.0588 (14) | 0.0530 (14) | −0.0005 (12) | 0.0271 (12) | −0.0022 (11) |
C9 | 0.0728 (17) | 0.089 (2) | 0.0725 (17) | 0.0113 (14) | 0.0258 (14) | −0.0033 (14) |
N1 | 0.0720 (15) | 0.0871 (17) | 0.0793 (17) | −0.0004 (13) | 0.0284 (13) | 0.0154 (13) |
N2 | 0.0839 (15) | 0.0681 (14) | 0.0606 (13) | 0.0013 (12) | 0.0305 (12) | −0.0016 (10) |
O1 | 0.1249 (18) | 0.146 (2) | 0.1092 (19) | −0.0697 (18) | 0.0400 (15) | −0.0081 (16) |
O2 | 0.1001 (16) | 0.144 (2) | 0.1069 (18) | −0.0120 (14) | 0.0642 (14) | −0.0012 (15) |
O3 | 0.0962 (14) | 0.1094 (16) | 0.0554 (11) | 0.0055 (12) | 0.0120 (10) | −0.0029 (10) |
O4 | 0.1208 (17) | 0.1218 (18) | 0.0747 (13) | 0.0400 (15) | 0.0497 (13) | 0.0037 (12) |
C1—C6 | 1.382 (3) | C7—C8 | 1.318 (3) |
C1—C2 | 1.392 (3) | C7—H7 | 0.9300 |
C1—N1 | 1.472 (3) | C8—C9 | 1.483 (3) |
C2—C3 | 1.400 (3) | C8—N2 | 1.481 (3) |
C2—C7 | 1.483 (3) | C9—H9A | 0.9600 |
C3—C4 | 1.381 (3) | C9—H9B | 0.9600 |
C3—H3 | 0.9300 | C9—H9C | 0.9600 |
C4—C5 | 1.372 (4) | N1—O1 | 1.212 (3) |
C4—H4 | 0.9300 | N1—O2 | 1.212 (3) |
C5—C6 | 1.376 (4) | N2—O3 | 1.212 (3) |
C5—H5 | 0.9300 | N2—O4 | 1.221 (3) |
C6—H6 | 0.9300 | ||
C6—C1—C2 | 122.6 (2) | C8—C7—C2 | 124.8 (2) |
C6—C1—N1 | 116.1 (2) | C8—C7—H7 | 117.6 |
C2—C1—N1 | 121.3 (2) | C2—C7—H7 | 117.6 |
C3—C2—C1 | 116.0 (2) | C7—C8—C9 | 130.1 (2) |
C3—C2—C7 | 119.1 (2) | C7—C8—N2 | 116.0 (2) |
C1—C2—C7 | 124.8 (2) | C9—C8—N2 | 113.8 (2) |
C4—C3—C2 | 121.7 (2) | C8—C9—H9A | 109.5 |
C4—C3—H3 | 119.2 | C8—C9—H9B | 109.5 |
C2—C3—H3 | 119.2 | H9A—C9—H9B | 109.5 |
C5—C4—C3 | 120.5 (3) | C8—C9—H9C | 109.5 |
C5—C4—H4 | 119.8 | H9A—C9—H9C | 109.5 |
C3—C4—H4 | 119.8 | H9B—C9—H9C | 109.5 |
C6—C5—C4 | 119.6 (2) | O1—N1—O2 | 122.5 (3) |
C6—C5—H5 | 120.2 | O1—N1—C1 | 118.3 (3) |
C4—C5—H5 | 120.2 | O2—N1—C1 | 119.1 (3) |
C5—C6—C1 | 119.6 (2) | O3—N2—O4 | 122.0 (2) |
C5—C6—H6 | 120.2 | O3—N2—C8 | 118.1 (2) |
C1—C6—H6 | 120.2 | O4—N2—C8 | 119.9 (2) |
C6—C1—C2—C3 | −0.5 (4) | C1—C2—C7—C8 | 124.7 (3) |
N1—C1—C2—C3 | 178.0 (2) | C2—C7—C8—C9 | −5.5 (4) |
C6—C1—C2—C7 | 177.1 (2) | C2—C7—C8—N2 | 178.6 (2) |
N1—C1—C2—C7 | −4.4 (4) | C6—C1—N1—O1 | 12.6 (4) |
C1—C2—C3—C4 | 0.4 (4) | C2—C1—N1—O1 | −166.0 (3) |
C7—C2—C3—C4 | −177.3 (2) | C6—C1—N1—O2 | −168.4 (2) |
C2—C3—C4—C5 | 0.2 (4) | C2—C1—N1—O2 | 13.1 (4) |
C3—C4—C5—C6 | −0.9 (4) | C7—C8—N2—O3 | 176.3 (2) |
C4—C5—C6—C1 | 0.8 (4) | C9—C8—N2—O3 | −0.3 (3) |
C2—C1—C6—C5 | −0.1 (4) | C7—C8—N2—O4 | −4.6 (3) |
N1—C1—C6—C5 | −178.6 (2) | C9—C8—N2—O4 | 178.8 (2) |
C3—C2—C7—C8 | −57.7 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O3i | 0.93 | 2.60 | 3.163 (5) | 119 |
C9—H9A···O2ii | 0.96 | 2.70 | 3.403 (4) | 131 |
Symmetry codes: (i) x−1, y, z−1; (ii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C9H8N2O4 |
Mr | 208.17 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 6.8274 (9), 15.5666 (12), 9.9045 (10) |
β (°) | 113.202 (3) |
V (Å3) | 967.51 (18) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.58 × 0.46 × 0.32 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID/ZJUG |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.932, 0.964 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7450, 1736, 1193 |
Rint | 0.072 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.135, 1.00 |
No. of reflections | 1736 |
No. of parameters | 138 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.21 |
Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O3i | 0.93 | 2.603 | 3.163 (5) | 119 |
C9—H9A···O2ii | 0.96 | 2.698 | 3.403 (4) | 131 |
Symmetry codes: (i) x−1, y, z−1; (ii) x+1, y, z. |
Acknowledgements
The authors are grateful to Mr Jianming Gu for the crystal analysis. They are also grateful for financial support from the State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology of Zhejiang University of Technology (grant No. GCTKF2012010).
References
Ballini, R. & Petrini, M. (2004). Tetrahedron, 60, 1017–1047. Web of Science CrossRef CAS Google Scholar
Berner, O. M., Tedeschi, L. & Enders, D. (2002). Eur. J. Org. Chem. 12, 1877–1894. CrossRef Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Ono, N. (2001). In The Nitro Group in Organic Synthesis. New York: Wiley-VCH. Google Scholar
Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Nitroalkenes are important organic intermediates, since they can be converted to synthetically useful N– and O-containing organic molecules, such as amines, aldehydes, carboxylic acids, or denitrated compounds (Ono, 2001; Berner et al., 2002; Ballini & Petrini, 2004). As a contribution in this field, we have synthesized a series of nitroalkenes by employing benzaldehydes and nitroethane. We report here one of this nitroalkenes, i.e. the title compound. The C7═C8 bond involves the E configuration with the C3—C2—C7—C8 torsion angle of -57.7 (3)° (Fig. 1). The conformation of (I) is stabilized by weak intermolecular C6—H6···O3'and C9—H9A···O2' interactions (Fig. 2 and Table 1).