organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-2-(2-nitro­benzene­sulfon­amido)­penta­noic acid

aThe Center of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, bDepartment of Chemistry, University of Gujrat, Gujrat 50700, Pakistan, cDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and dDepartment of Chemistry, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia
*Correspondence e-mail: drdanish62@gmail.com

(Received 10 July 2012; accepted 23 July 2012; online 28 July 2012)

In the title compound, C12H16N2O6S, the S atom adopts a distorted tetra­hedral geometry with an O—S—O angle of 119.76 (13)°. The nitro group is twisted by 35.34 (2)° with respect to the aromatic ring; it accepts an N—H⋯O hydrogen bond, resulting in a S(7) motif. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds connect the mol­ecules into an infinite chain along the a axis. The methyl C atoms of the isopropyl group are disordered in a 1:1 ratio.

Related literature

For a related structure, see: Arshad et al. (2010[Arshad, M. N., Mubashar-ur-Rehman, H., Khan, I. U., Shafiq, M. & Lo, K. M. (2010). Acta Cryst. E66, o541.]), For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16N2O6S

  • Mr = 316.33

  • Orthorhombic, P 21 21 21

  • a = 6.9593 (5) Å

  • b = 10.7560 (8) Å

  • c = 20.8431 (14) Å

  • V = 1560.19 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.45 × 0.38 × 0.29 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.902, Tmax = 0.935

  • 11203 measured reflections

  • 2730 independent reflections

  • 2029 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.090

  • S = 0.99

  • 2730 reflections

  • 212 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1117 Friedel pairs

  • Flack parameter: 0.07 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O2 0.85 (1) 2.34 (4) 2.937 (3) 128 (4)
O6—H6O⋯O5i 0.85 (1) 1.87 (2) 2.702 (3) 166 (5)
N2—H2N⋯O5ii 0.85 (1) 2.38 (2) 3.169 (3) 155 (4)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In order to explore the structural behaviour of sulfonamide derived from amino acids (Arshad et al., 2010), here we report the crystal structure of title compound.

The nitro group attached to aromatic ring is twisted at dihedral angle of 35.34 (2)°, with the maximum deviation from the two oxygen atoms being -0.532 (6) Å for O1 and 0.703 (5) Å for O2. An intramolecular N—H···O leads to the formation of a seven membered ring motif, S11(7) (Bernstein et al., 1995). The nitro group is oriented at an angle of 29.84 (6)° with respect to aromatic ring. Adjacent molecules are linked to form an infinite chain along a axis through O—H···O and N—H···O interactions (Table. 1, Fig. 2).

Related literature top

For a related structure, see: Arshad et al. (2010), For graph-set notation, see: Bernstein et al. (1995).

Experimental top

L-lucine (0.20 g, 0.089 mmole) dissolved in 5–10 mL distilled water was treated with sodium carbonate (1M) to a pH of 8–9. 2-Nitrobenzenesulphonyl chloride (0.117 g, 0.089 mmole) added within 3–5 min. The pH was adjusted by sodium carbonate (1M). Then, dilute HCl was added dropwise to result in a pH 2–3. The precipitate was filtered, washed with plenty of water and dried. Suitable crystals was obtained upon recrystalization in methanol.

Refinement top

All the C—H and H-atoms were positioned with idealized geometry with C—H = 0.93 Å for aromatic, C—H = 0.96 Å for methyl group and C—H = 0.97 Å for methylene, and were refined using a riding model with Uiso(H) = 1.2 Ueq(C) for aromatic and methylene and Uiso(H) = 1.5 Ueq(C) for methyl carbon atoms.

The N—H = 0.85 (1) and O—H = 0.85 (1) Å hydrogen atoms were located with difference map and were refined with Uiso(H) = 1.2 Ueq(N) and Uiso(H) = 1.5 Ueq(O).

Reaction does not affect the chirality of product, and the chirality is that of the reactant (L-Lucine).

The atoms C7—C11 were disordered over two positions with the occupancies of 0.50 for C7A—C11A and 0.50 for C7B—C11B. , The temperature factors of pairs of atoms were restrained to be identical. The C7a/C7b pair of atoms had the same site.

Structure description top

In order to explore the structural behaviour of sulfonamide derived from amino acids (Arshad et al., 2010), here we report the crystal structure of title compound.

The nitro group attached to aromatic ring is twisted at dihedral angle of 35.34 (2)°, with the maximum deviation from the two oxygen atoms being -0.532 (6) Å for O1 and 0.703 (5) Å for O2. An intramolecular N—H···O leads to the formation of a seven membered ring motif, S11(7) (Bernstein et al., 1995). The nitro group is oriented at an angle of 29.84 (6)° with respect to aromatic ring. Adjacent molecules are linked to form an infinite chain along a axis through O—H···O and N—H···O interactions (Table. 1, Fig. 2).

For a related structure, see: Arshad et al. (2010), For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The labelled molecular structure of (I) with 50% displacement ellipsoids.
[Figure 2] Fig. 2. Unit cell packing showing hydrogen bonds, drawn using dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted.
4-Methyl-2-(2-nitrobenzenesulfonamido)pentanoic acid top
Crystal data top
C12H16N2O6SF(000) = 664
Mr = 316.33Dx = 1.347 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1789 reflections
a = 6.9593 (5) Åθ = 2.7–19.5°
b = 10.7560 (8) ŵ = 0.23 mm1
c = 20.8431 (14) ÅT = 296 K
V = 1560.19 (19) Å3Prismatic, colorless
Z = 40.45 × 0.38 × 0.29 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2730 independent reflections
Radiation source: fine-focus sealed tube2029 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 88
Tmin = 0.902, Tmax = 0.935k = 1212
11203 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.041P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
2730 reflectionsΔρmax = 0.15 e Å3
212 parametersΔρmin = 0.20 e Å3
10 restraintsAbsolute structure: Flack (1983), 1117 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (10)
Crystal data top
C12H16N2O6SV = 1560.19 (19) Å3
Mr = 316.33Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.9593 (5) ŵ = 0.23 mm1
b = 10.7560 (8) ÅT = 296 K
c = 20.8431 (14) Å0.45 × 0.38 × 0.29 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2730 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2029 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.935Rint = 0.045
11203 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090Δρmax = 0.15 e Å3
S = 0.99Δρmin = 0.20 e Å3
2730 reflectionsAbsolute structure: Flack (1983), 1117 Friedel pairs
212 parametersAbsolute structure parameter: 0.07 (10)
10 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.85210 (10)0.49317 (7)0.11950 (3)0.0477 (2)
O10.6834 (3)0.8270 (3)0.21732 (13)0.0947 (9)
N10.7618 (4)0.7669 (3)0.17531 (14)0.0577 (7)
C11.0039 (4)0.5944 (3)0.16432 (12)0.0445 (7)
O20.6943 (3)0.7525 (2)0.12226 (12)0.0783 (7)
N20.8391 (4)0.5420 (2)0.04664 (11)0.0433 (6)
C20.9481 (4)0.7099 (3)0.18997 (13)0.0460 (8)
O30.6652 (3)0.5002 (2)0.14685 (10)0.0691 (6)
C31.0679 (5)0.7759 (3)0.22962 (15)0.0663 (10)
H31.02690.85090.24710.080*
O40.9507 (3)0.37724 (17)0.11794 (10)0.0633 (6)
C41.2476 (5)0.7316 (4)0.24342 (17)0.0794 (12)
H41.32940.77700.26980.095*
O51.1024 (3)0.73707 (19)0.01558 (9)0.0505 (6)
C51.3060 (5)0.6211 (4)0.21847 (17)0.0757 (11)
H51.42830.59130.22780.091*
O61.3184 (3)0.5923 (2)0.00802 (12)0.0610 (6)
C61.1854 (5)0.5525 (3)0.17923 (14)0.0569 (9)
H61.22760.47690.16270.068*
C121.1431 (4)0.6294 (3)0.00506 (12)0.0429 (7)
C7A1.0001 (4)0.5234 (2)0.00245 (13)0.0401 (7)0.50
H7A1.06760.44800.01610.048*0.50
C8A0.938 (3)0.504 (2)0.0676 (7)0.046 (3)0.50
H810.87730.57930.08300.056*0.50
H821.05100.48900.09360.056*0.50
C9A0.798 (5)0.395 (3)0.0769 (14)0.0651 (12)0.50
H9A0.71040.39450.04000.078*0.50
C10A0.676 (4)0.413 (4)0.1372 (12)0.104 (7)0.50
H10A0.58860.48150.13080.156*0.50
H10B0.60400.33900.14570.156*0.50
H10C0.75800.43120.17300.156*0.50
C11A0.903 (9)0.272 (3)0.077 (3)0.116 (7)0.50
H11A0.99240.27100.11260.174*0.50
H11B0.81240.20580.08240.174*0.50
H11C0.97160.26220.03780.174*0.50
C7B1.0001 (4)0.5234 (2)0.00245 (13)0.0401 (7)0.50
H7B1.06450.44440.01170.048*0.50
C8B0.910 (4)0.520 (2)0.0647 (7)0.046 (3)0.50
H830.82430.59070.06930.056*0.50
H841.01090.52850.09640.056*0.50
C9B0.797 (5)0.401 (3)0.0783 (13)0.0651 (12)0.50
H9B0.67920.40340.05270.078*0.50
C10B0.739 (4)0.398 (4)0.1495 (12)0.104 (7)0.50
H10D0.67140.47260.16010.156*0.50
H10E0.65680.32730.15700.156*0.50
H10F0.85180.39070.17560.156*0.50
C11B0.905 (9)0.283 (3)0.061 (3)0.116 (7)0.50
H11D1.02780.28320.08120.174*0.50
H11E0.83210.21230.07430.174*0.50
H11F0.92170.28030.01490.174*0.50
H2N0.780 (5)0.611 (2)0.042 (2)0.139*
H6O1.393 (6)0.655 (3)0.013 (3)0.174*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0575 (4)0.0422 (4)0.0435 (4)0.0031 (4)0.0088 (4)0.0032 (4)
O10.0808 (18)0.107 (2)0.096 (2)0.0244 (16)0.0092 (15)0.0496 (17)
N10.0688 (18)0.0496 (18)0.0548 (19)0.0067 (14)0.0099 (16)0.0070 (15)
C10.0542 (19)0.0466 (19)0.0328 (16)0.0021 (16)0.0081 (14)0.0022 (14)
O20.0921 (16)0.0889 (18)0.0541 (14)0.0387 (14)0.0074 (14)0.0009 (14)
N20.0490 (14)0.0458 (15)0.0351 (13)0.0012 (11)0.0038 (12)0.0004 (11)
C20.0512 (17)0.052 (2)0.0349 (16)0.0026 (16)0.0075 (14)0.0006 (15)
O30.0682 (14)0.0802 (16)0.0589 (13)0.0165 (15)0.0231 (11)0.0023 (12)
C30.075 (2)0.068 (2)0.055 (2)0.004 (2)0.0129 (18)0.019 (2)
O40.0946 (16)0.0380 (13)0.0574 (13)0.0074 (10)0.0061 (13)0.0052 (11)
C40.062 (2)0.106 (3)0.070 (3)0.012 (2)0.005 (2)0.034 (2)
O50.0464 (11)0.0390 (13)0.0661 (15)0.0011 (9)0.0019 (10)0.0059 (11)
C50.058 (2)0.108 (3)0.061 (2)0.012 (2)0.0014 (18)0.014 (2)
O60.0413 (13)0.0466 (13)0.0952 (17)0.0033 (10)0.0060 (12)0.0068 (13)
C60.058 (2)0.071 (2)0.0417 (18)0.0103 (17)0.0038 (16)0.0035 (16)
C120.0466 (16)0.0431 (19)0.0391 (17)0.0025 (14)0.0021 (15)0.0025 (14)
C7A0.0409 (15)0.0398 (17)0.0396 (15)0.0010 (13)0.0078 (12)0.0005 (14)
C8A0.053 (5)0.042 (5)0.044 (2)0.005 (4)0.008 (3)0.009 (2)
C9A0.085 (2)0.058 (3)0.052 (2)0.029 (2)0.0011 (19)0.007 (2)
C10A0.143 (16)0.115 (10)0.055 (9)0.066 (13)0.013 (10)0.011 (6)
C11A0.146 (4)0.049 (5)0.15 (2)0.017 (5)0.031 (13)0.046 (7)
C7B0.0409 (15)0.0398 (17)0.0396 (15)0.0010 (13)0.0078 (12)0.0005 (14)
C8B0.053 (5)0.042 (5)0.044 (2)0.005 (4)0.008 (3)0.009 (2)
C9B0.085 (2)0.058 (3)0.052 (2)0.029 (2)0.0011 (19)0.007 (2)
C10B0.143 (16)0.115 (10)0.055 (9)0.066 (13)0.013 (10)0.011 (6)
C11B0.146 (4)0.049 (5)0.15 (2)0.017 (5)0.031 (13)0.046 (7)
Geometric parameters (Å, º) top
S1—O31.422 (2)C8A—C9A1.532 (12)
S1—O41.424 (2)C8A—H810.9700
S1—N21.609 (2)C8A—H820.9700
S1—C11.781 (3)C9A—C11A1.511 (13)
O1—N11.217 (3)C9A—C10A1.531 (13)
N1—O21.211 (3)C9A—H9A0.9800
N1—C21.466 (4)C10A—H10A0.9600
C1—C61.376 (4)C10A—H10B0.9600
C1—C21.408 (4)C10A—H10C0.9600
N2—C7A1.464 (3)C11A—H11A0.9600
N2—H2N0.850 (10)C11A—H11B0.9600
C2—C31.372 (4)C11A—H11C0.9600
C3—C41.369 (5)C8B—C9B1.530 (11)
C3—H30.9300C8B—H830.9700
C4—C51.360 (5)C8B—H840.9700
C4—H40.9300C9B—C11B1.513 (12)
O5—C121.212 (3)C9B—C10B1.538 (14)
C5—C61.385 (4)C9B—H9B0.9800
C5—H50.9300C10B—H10D0.9600
O6—C121.312 (3)C10B—H10E0.9600
O6—H6O0.852 (10)C10B—H10F0.9600
C6—H60.9300C11B—H11D0.9600
C12—C7A1.514 (4)C11B—H11E0.9600
C7A—C8A1.538 (11)C11B—H11F0.9600
C7A—H7A0.9800
O3—S1—O4119.76 (13)N2—C7A—H7A107.3
O3—S1—N2108.02 (13)C12—C7A—H7A107.3
O4—S1—N2106.94 (13)C8A—C7A—H7A107.3
O3—S1—C1107.46 (13)C9A—C8A—C7A113.8 (14)
O4—S1—C1105.15 (14)C9A—C8A—H81108.8
N2—S1—C1109.20 (13)C7A—C8A—H81108.8
O2—N1—O1123.4 (3)C9A—C8A—H82108.8
O2—N1—C2118.7 (3)C7A—C8A—H82108.8
O1—N1—C2118.0 (3)H81—C8A—H82107.7
C6—C1—C2117.2 (3)C11A—C9A—C10A112.0 (15)
C6—C1—S1117.6 (2)C11A—C9A—C8A111.0 (17)
C2—C1—S1125.1 (2)C10A—C9A—C8A111.0 (15)
C7A—N2—S1120.39 (19)C11A—C9A—H9A107.5
C7A—N2—H2N115 (3)C10A—C9A—H9A107.5
S1—N2—H2N114 (3)C8A—C9A—H9A107.5
C3—C2—C1121.2 (3)C9B—C8B—H83108.9
C3—C2—N1116.5 (3)C9B—C8B—H84108.9
C1—C2—N1122.3 (3)H83—C8B—H84107.7
C4—C3—C2120.1 (3)C11B—C9B—C8B113.7 (15)
C4—C3—H3120.0C11B—C9B—C10B110.3 (16)
C2—C3—H3120.0C8B—C9B—C10B109.5 (16)
C5—C4—C3119.8 (4)C11B—C9B—H9B107.7
C5—C4—H4120.1C8B—C9B—H9B107.7
C3—C4—H4120.1C10B—C9B—H9B107.7
C4—C5—C6120.7 (3)C9B—C10B—H10D109.5
C4—C5—H5119.7C9B—C10B—H10E109.5
C6—C5—H5119.7H10D—C10B—H10E109.5
C12—O6—H6O111 (4)C9B—C10B—H10F109.5
C1—C6—C5121.0 (3)H10D—C10B—H10F109.5
C1—C6—H6119.5H10E—C10B—H10F109.5
C5—C6—H6119.5C9B—C11B—H11D109.5
O5—C12—O6123.0 (3)C9B—C11B—H11E109.5
O5—C12—C7A124.9 (3)H11D—C11B—H11E109.5
O6—C12—C7A112.0 (2)C9B—C11B—H11F109.5
N2—C7A—C12112.2 (2)H11D—C11B—H11F109.5
N2—C7A—C8A113.6 (10)H11E—C11B—H11F109.5
C12—C7A—C8A108.9 (9)
O3—S1—C1—C6137.9 (2)C1—C2—C3—C41.9 (5)
O4—S1—C1—C69.3 (3)N1—C2—C3—C4177.2 (3)
N2—S1—C1—C6105.2 (2)C2—C3—C4—C50.9 (5)
O3—S1—C1—C236.9 (3)C3—C4—C5—C60.1 (5)
O4—S1—C1—C2165.5 (2)C2—C1—C6—C50.7 (4)
N2—S1—C1—C280.0 (3)S1—C1—C6—C5174.5 (2)
O3—S1—N2—C7A168.2 (2)C4—C5—C6—C10.2 (5)
O4—S1—N2—C7A38.0 (2)S1—N2—C7A—C1288.8 (2)
C1—S1—N2—C7A75.3 (2)S1—N2—C7A—C8A147.2 (10)
C6—C1—C2—C31.8 (4)O5—C12—C7A—N232.7 (4)
S1—C1—C2—C3173.0 (2)O6—C12—C7A—N2149.8 (2)
C6—C1—C2—N1177.3 (3)O5—C12—C7A—C8A93.8 (11)
S1—C1—C2—N17.9 (4)O6—C12—C7A—C8A83.6 (11)
O2—N1—C2—C3144.3 (3)N2—C7A—C8A—C9A56 (2)
O1—N1—C2—C335.4 (4)C12—C7A—C8A—C9A177.8 (18)
O2—N1—C2—C134.8 (4)C7A—C8A—C9A—C11A80 (3)
O1—N1—C2—C1145.5 (3)C7A—C8A—C9A—C10A155 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O20.85 (1)2.34 (4)2.937 (3)128 (4)
O6—H6O···O5i0.85 (1)1.87 (2)2.702 (3)166 (5)
N2—H2N···O5ii0.85 (1)2.38 (2)3.169 (3)155 (4)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC12H16N2O6S
Mr316.33
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)6.9593 (5), 10.7560 (8), 20.8431 (14)
V3)1560.19 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.45 × 0.38 × 0.29
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.902, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
11203, 2730, 2029
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.090, 0.99
No. of reflections2730
No. of parameters212
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.20
Absolute structureFlack (1983), 1117 Friedel pairs
Absolute structure parameter0.07 (10)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O20.850 (10)2.34 (4)2.937 (3)128 (4)
O6—H6O···O5i0.852 (10)1.868 (17)2.702 (3)166 (5)
N2—H2N···O5ii0.850 (10)2.38 (2)3.169 (3)155 (4)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1/2, y+3/2, z.
 

Acknowledgements

The authors acknowledge the University of Sargodha for providing diffraction facilities at its Department of Physics.

References

First citationArshad, M. N., Mubashar-ur-Rehman, H., Khan, I. U., Shafiq, M. & Lo, K. M. (2010). Acta Cryst. E66, o541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds