organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(2Z,4Z)-4-Benzyl­­idene-6-chloro-1,4-di­hydro­pyrido[2,3-d][1,3]thia­zin-2-yl­­idene]benzamide

aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, PO Wits 2050, South Africa
*Correspondence e-mail: demetrius.levendis@wits.ac.za

(Received 13 April 2012; accepted 29 June 2012; online 7 July 2012)

In the crystal structure of the title compound, C21H14ClN3OS, mol­ecules assemble into inversion dimers via pairs of N—H⋯N hydrogen bonds involving the N—H hydrogen of the thia­zine ring and the N atom of the pyridine ring. There is a close intra­molecular contact [2.570 (2) Å] between the carbonyl O atom of the benzamide and the S atom of the puckered thia­zine ring. The title compound can exist in two tautomeric forms, viz. amino or imino. The observed structure is compatible with the imino form on the basis of observed residual electron density and the two C—N bond lengths of 1.308 (2) and 1.353 (2) Å.

Related literature

For the synthesis of related heterocycles, see: Fernandes & Reid (2003[Fernandes, M. A. & Reid, D. H. (2003). Synlett, pp. 2231-2233.]); Schmittel et al. (2004[Schmittel, M., Mahajan, A. & Steffen, J.-P. (2004). Synthesis, pp. 415-418.]); Sonogashira et al. (1975[Sonogashira, K., Tohda, Y. & Hagihara, N. (1975). Tetrahedron Lett. 16, 4467-4470.]). For related thia­zine structures, see: Cohen-Addad et al. (1981[Cohen-Addad, C., Savariault, J.-M. & Lehmann, M. S. (1981). Acta Cryst. B37, 1703-1706.]); Bernalte-Garcia et al. (2004[Bernalte-Garcia, A., Garcia-Barros, F. J., Higes-Rolando, F. J., Luna-Giles, F. & Pedrero-Marin, R. (2004). Inorg. Biochem. 98, 15-23.]); Kalman et al. (1987[Kalman, A., Argay, G., Fulop, F. & Bernath, G. (1987). J. Mol. Struct. 161, 125-138.]); Peng & Wu (2009[Peng, Y. & Wu, L. (2009). Acta Cryst. E65, o784.]); Palsuledesai et al. (2009[Palsuledesai, C. C., Murru, S., Sahoo, S. K. & Patel, B. K. (2009). Org. Lett. 11, 3381-3385.]).

[Scheme 1]

Experimental

Crystal data
  • C21H14ClN3OS

  • Mr = 391.86

  • Triclinic, [P \overline 1]

  • a = 7.2372 (2) Å

  • b = 8.3977 (3) Å

  • c = 15.7467 (6) Å

  • α = 101.227 (2)°

  • β = 98.427 (2)°

  • γ = 103.768 (1)°

  • V = 892.85 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 173 K

  • 0.37 × 0.28 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • 18107 measured reflections

  • 3894 independent reflections

  • 3538 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.077

  • S = 1.05

  • 3894 reflections

  • 248 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N3i 0.847 (16) 2.131 (17) 2.9733 (14) 173.1 (15)
Symmetry code: (i) -x, -y, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2005[Bruker (2005). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and SCHAKAL99 (Keller, 1999[Keller, E. (1999). SCHAKAL99. University of Freiberg, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The potential biological activity of 1,2-, 1,4-, 2,1- and 3,1 benzothiazines has stimulated the development of new syntheses of compounds based on these systems. Thus we (Fernandes & Reid, 2003) and other workers (Schmittel et al., 2004) have invented new syntheses of (4Z)-4-methylene-4H-3,1-benzothiazines. In furtherance of our studies we have applied the principle of our synthesis to the preparation of pyridine analogues of 4-methylene-4H-3,1-benzothiazines, namely 4-methylene-1,4-dihydropyrido[2,3-d] thiazines. Thus 2-amino-5-chloro-3-phenylethynylpyridine (2, Fig. 1), obtained by the Sonogashira reaction (Sonogashira et al., 1975) of 2-amino-5-chloro-3-iodopyridine with phenylacetylene, reacted with benzoylisothiocyanate to give the thiourea (3, Fig. 1), which was cyclized with DBU to give the title compound. The structure of 1a has not been reported previously and is reported here (Fig. 2) as a part of an ongoing study of this class of 1,3-thiazines.

The title compound can possibly exist in two tautomeric forms, 1a and 1 b (Fig. 1). In the structure investigated in this work, residual electron density was observed about 0.85 Å from N(2), with no significant residual electron density near N(1), indicating that we have crystallized the imino form (1a). The C—N bond distances are also compatible with the imino form in which the C(8)—N(1) and C(8)—N(2) distances are 1.308 (2) and 1.353 (2) Å respectively. This is in agreement with a neutron diffraction study of the related 2-(2-chlorobenzoylimino)-1,3-thiazolidine (Cohen-Addad et al., 1981). The intramolecular contact of 2.57 (2) Å between the carbonyl oxygen O(1) and S(1) is typical for imino thiazolidines (see for example Palsuledesai et al., 2009). The molecules assemble via weak N—H···N hydrogen bonds into inversion dimers using the N—H hydrogen atom of the thiazine ring and the N of the pyridine group, with an N···N distance of 2.973 (1) Å. The packing of the hydrogen bonded dimers is shown in Fig. 3. Significant ππ interactions occur between the pyridine ring (N(3), C(2)—C(4)) at (x,y,z)) and the benzoyl ring (C10)-(15)) at either (x - 1, y - 1, z) or (x, y - 1, z)) with Cg···Cg distances of 3.651 (1) and 3.646 (1) Å respectively. This results in a stack of alternating pyridine and benzoyl rings interacting through ππ interactions along the a axis (Fig. 4).

Related literature top

For the synthesis of related heterocycles, see: Fernandes & Reid (2003); Schmittel et al. (2004); Sonogashira et al. (1975). For related thiazine structures, see: Cohen-Addad et al. (1981); Bernalte-Garcia et al. (2004); Kalman et al. (1987); Peng & Wu (2009); Palsuledesai et al. (2009).

Experimental top

The title compound (1a) was obtained by the reaction sequence:

2-amino-5-chloro-3-iodopyridine (2) (3) (1).

For the preparation of 2-amino-5-chloro-3-phenylethynylpyridine, (2), phenylacetylene (6.0 ml, 54.6 mmol) was added to a stirred mixture of 2-amino-5-chloro-3-iodopyridine (12.72 g, 50 mmol), CuI (190 mg, 1 mmol) and (Ph3P)2PdCl2 (702 mg, 1 mmol) in Et3N (300 ml) under N2. After 24 h, the mixture was diluted with ether (300 ml) and filtered. Ether and Et3N were removed from the filtrate and the residual solid was dissolved in ether. The resulting solution was washed with water, dried, and solvent was removed. The residual solid was purified by chromatography on silica (CH2Cl2) to give (2) (9.72 g, 85%) as pale yellow crystals (m.p. 383-388 K).

For the preparation of N-nenzoyl-N'-(5-chloro-3-phenylethynylpyridyl-2)thiourea, (3), benzoylisothioisocyanate (0.74 ml, 5.5 mmol) was added to a solution of (2) (1.14 g, 5 mmol) in CH2Cl2 (10 ml) and the solution was kept at ambient temperature for 24 h. Hexane was added to complete the crystallisation that had partially taken place. The resulting solid was collected and purified by chromatography on silica (CH2Cl2), giving (3) (1.56 g, 79.6%) as lemon yellow crystals (m.p. 430-433 K).

For the preparation of N-[(2Z,4Z)-4-benzylidene-6-chloro-1,4-dihydropyrido[2,3-\ d][1,3]thiazin-2-ylidene]benzamide, (1), DBU (0.75 ml, 5 mmol) was added to a solution of (3) (784 mg, 2 mmol) in THF (10 ml). After 24 h the solid was chromatographed on silica (CH2Cl2 then 2% (V/V) EtOH in CH2Cl2). Solvent was removed from the eluates and the residual solid was recrystallized (DMF/MeCN) to give (1a) (631 mg, 80.5%; m.p. 502-504 K).

Refinement top

One N-bound H atom on the thiazine ring was placed according to the observed electron density and allowed to refine freely. The remaining H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H bond lengths of 1.00 (methine) and 0.99 Å (methylene CH2) and with Uiso(H) = 1.2 times Ueq(C). Phenyl atoms C21 and C22 were reported by PLATON to have slightly distorted atomic displacement (ADP) parameters. As a consequence, DELU and SIMU were used in the final refinements on the two atoms to restrain their ADPs to more reasonable values.

Structure description top

The potential biological activity of 1,2-, 1,4-, 2,1- and 3,1 benzothiazines has stimulated the development of new syntheses of compounds based on these systems. Thus we (Fernandes & Reid, 2003) and other workers (Schmittel et al., 2004) have invented new syntheses of (4Z)-4-methylene-4H-3,1-benzothiazines. In furtherance of our studies we have applied the principle of our synthesis to the preparation of pyridine analogues of 4-methylene-4H-3,1-benzothiazines, namely 4-methylene-1,4-dihydropyrido[2,3-d] thiazines. Thus 2-amino-5-chloro-3-phenylethynylpyridine (2, Fig. 1), obtained by the Sonogashira reaction (Sonogashira et al., 1975) of 2-amino-5-chloro-3-iodopyridine with phenylacetylene, reacted with benzoylisothiocyanate to give the thiourea (3, Fig. 1), which was cyclized with DBU to give the title compound. The structure of 1a has not been reported previously and is reported here (Fig. 2) as a part of an ongoing study of this class of 1,3-thiazines.

The title compound can possibly exist in two tautomeric forms, 1a and 1 b (Fig. 1). In the structure investigated in this work, residual electron density was observed about 0.85 Å from N(2), with no significant residual electron density near N(1), indicating that we have crystallized the imino form (1a). The C—N bond distances are also compatible with the imino form in which the C(8)—N(1) and C(8)—N(2) distances are 1.308 (2) and 1.353 (2) Å respectively. This is in agreement with a neutron diffraction study of the related 2-(2-chlorobenzoylimino)-1,3-thiazolidine (Cohen-Addad et al., 1981). The intramolecular contact of 2.57 (2) Å between the carbonyl oxygen O(1) and S(1) is typical for imino thiazolidines (see for example Palsuledesai et al., 2009). The molecules assemble via weak N—H···N hydrogen bonds into inversion dimers using the N—H hydrogen atom of the thiazine ring and the N of the pyridine group, with an N···N distance of 2.973 (1) Å. The packing of the hydrogen bonded dimers is shown in Fig. 3. Significant ππ interactions occur between the pyridine ring (N(3), C(2)—C(4)) at (x,y,z)) and the benzoyl ring (C10)-(15)) at either (x - 1, y - 1, z) or (x, y - 1, z)) with Cg···Cg distances of 3.651 (1) and 3.646 (1) Å respectively. This results in a stack of alternating pyridine and benzoyl rings interacting through ππ interactions along the a axis (Fig. 4).

For the synthesis of related heterocycles, see: Fernandes & Reid (2003); Schmittel et al. (2004); Sonogashira et al. (1975). For related thiazine structures, see: Cohen-Addad et al. (1981); Bernalte-Garcia et al. (2004); Kalman et al. (1987); Peng & Wu (2009); Palsuledesai et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus and XPREP (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and SCHAKAL99 (Keller, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Two tautomeric forms of the title compound, the imino (1a) and amino (1 b) forms and reaction intermediates 2 and 3.
[Figure 2] Fig. 2. The molecular structure of the title compound, 1. Displacement ellipsoids are shown at the 50% probability level.
[Figure 3] Fig. 3. A view down the a axis of the unit cell showing the hydrogen-bonded dimers of the title molecule.
[Figure 4] Fig. 4. ππ interactions between the central pyridine ring and the benzoyl rings stacked along the a axis.
N-[(2Z,4Z)-4-Benzylidene-6-chloro-1,4- dihydropyrido[2,3-d][1,3]thiazin-2-ylidene]benzamide top
Crystal data top
C21H14ClN3OSZ = 2
Mr = 391.86F(000) = 404
Triclinic, P1Dx = 1.458 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2372 (2) ÅCell parameters from 6485 reflections
b = 8.3977 (3) Åθ = 3.8–27°
c = 15.7467 (6) ŵ = 0.35 mm1
α = 101.227 (2)°T = 173 K
β = 98.427 (2)°Block, colourless
γ = 103.768 (1)°0.37 × 0.28 × 0.19 mm
V = 892.85 (5) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
Rint = 0.029
ω scansθmax = 27°, θmin = 1.4°
18107 measured reflectionsh = 89
3894 independent reflectionsk = 1010
3538 reflections with I > 2σ(I)l = 2020
Refinement top
Refinement on F27 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.2776P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.27 e Å3
3894 reflectionsΔρmin = 0.21 e Å3
248 parameters
Crystal data top
C21H14ClN3OSγ = 103.768 (1)°
Mr = 391.86V = 892.85 (5) Å3
Triclinic, P1Z = 2
a = 7.2372 (2) ÅMo Kα radiation
b = 8.3977 (3) ŵ = 0.35 mm1
c = 15.7467 (6) ÅT = 173 K
α = 101.227 (2)°0.37 × 0.28 × 0.19 mm
β = 98.427 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3538 reflections with I > 2σ(I)
18107 measured reflectionsRint = 0.029
3894 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0287 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.27 e Å3
3894 reflectionsΔρmin = 0.21 e Å3
248 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.06525 (16)0.02208 (14)0.13025 (7)0.0204 (2)
C40.22472 (17)0.29516 (15)0.05686 (8)0.0240 (2)
H40.2720.38010.00330.029*
C50.25381 (17)0.33684 (15)0.13550 (8)0.0231 (2)
C60.18282 (17)0.21689 (15)0.21447 (8)0.0231 (2)
H60.20280.24430.26880.028*
C70.08154 (16)0.05529 (14)0.21279 (7)0.0207 (2)
C80.06508 (16)0.28693 (14)0.18128 (7)0.0208 (2)
C90.16648 (17)0.57853 (15)0.21226 (8)0.0230 (2)
C100.27176 (17)0.72581 (15)0.18204 (8)0.0250 (3)
C110.37511 (19)0.87229 (16)0.24628 (10)0.0327 (3)
H110.38270.87370.30720.039*
C120.4664 (2)1.01543 (18)0.22140 (12)0.0429 (4)
H120.53751.11470.26510.051*
C130.4540 (2)1.01364 (18)0.13303 (13)0.0468 (4)
H130.51561.11230.11610.056*
C140.3525 (2)0.86926 (19)0.06890 (11)0.0412 (4)
H140.34460.86920.00810.049*
C150.2619 (2)0.72417 (17)0.09306 (9)0.0301 (3)
H150.19370.62450.0490.036*
C160.01362 (18)0.07578 (14)0.29392 (8)0.0229 (2)
C170.0849 (2)0.04176 (16)0.36959 (8)0.0285 (3)
H170.06770.07360.37060.034*
C180.1887 (2)0.17028 (16)0.45202 (8)0.0320 (3)
C190.3837 (3)0.1862 (2)0.48353 (10)0.0463 (4)
H190.44570.11110.45360.056*
C200.4890 (3)0.3102 (2)0.55806 (11)0.0557 (5)
H200.6230.32170.57790.067*
C210.3987 (3)0.4163 (2)0.60314 (10)0.0548 (5)
H210.47020.5010.65430.066*
C220.2053 (3)0.3997 (2)0.57427 (10)0.0545 (5)
H220.14290.47180.60630.065*
C230.0990 (3)0.27748 (19)0.49810 (10)0.0427 (4)
H230.03440.2680.4780.051*
N10.12656 (14)0.42335 (12)0.15357 (6)0.0230 (2)
N20.02664 (15)0.13768 (12)0.12157 (7)0.0225 (2)
H20.052 (2)0.144 (2)0.0713 (11)0.032 (4)*
N30.13207 (14)0.13887 (12)0.05389 (6)0.0224 (2)
Cl10.37769 (5)0.54060 (4)0.13535 (2)0.03250 (10)
S10.03383 (5)0.28939 (4)0.290500 (18)0.02461 (9)
O10.11843 (14)0.60154 (11)0.28445 (6)0.0292 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0209 (5)0.0187 (5)0.0225 (5)0.0056 (4)0.0058 (4)0.0062 (4)
C40.0236 (6)0.0208 (6)0.0242 (6)0.0031 (4)0.0016 (4)0.0038 (5)
C50.0208 (5)0.0179 (5)0.0299 (6)0.0026 (4)0.0041 (4)0.0082 (5)
C60.0252 (6)0.0217 (6)0.0250 (6)0.0068 (5)0.0068 (5)0.0097 (5)
C70.0230 (5)0.0189 (5)0.0222 (5)0.0072 (4)0.0059 (4)0.0067 (4)
C80.0217 (5)0.0204 (5)0.0214 (5)0.0060 (4)0.0054 (4)0.0065 (4)
C90.0232 (6)0.0203 (6)0.0267 (6)0.0066 (4)0.0041 (4)0.0083 (5)
C100.0237 (6)0.0192 (6)0.0358 (7)0.0080 (5)0.0104 (5)0.0096 (5)
C110.0303 (7)0.0219 (6)0.0445 (8)0.0052 (5)0.0103 (6)0.0056 (5)
C120.0358 (8)0.0208 (6)0.0703 (11)0.0031 (6)0.0198 (7)0.0058 (7)
C130.0487 (9)0.0244 (7)0.0817 (12)0.0115 (6)0.0383 (9)0.0255 (8)
C140.0520 (9)0.0335 (8)0.0541 (9)0.0186 (7)0.0295 (7)0.0255 (7)
C150.0343 (7)0.0246 (6)0.0386 (7)0.0114 (5)0.0153 (6)0.0142 (5)
C160.0294 (6)0.0184 (5)0.0225 (5)0.0064 (5)0.0085 (5)0.0066 (4)
C170.0411 (7)0.0215 (6)0.0241 (6)0.0085 (5)0.0069 (5)0.0078 (5)
C180.0530 (8)0.0248 (6)0.0194 (6)0.0100 (6)0.0064 (5)0.0095 (5)
C190.0594 (10)0.0467 (9)0.0287 (7)0.0188 (8)0.0033 (7)0.0032 (6)
C200.0656 (11)0.0570 (11)0.0324 (8)0.0097 (9)0.0085 (8)0.0047 (8)
C210.0885 (14)0.0394 (9)0.0233 (7)0.0007 (9)0.0015 (8)0.0049 (6)
C220.0980 (15)0.0359 (8)0.0330 (8)0.0197 (9)0.0264 (9)0.0047 (7)
C230.0629 (10)0.0373 (8)0.0313 (7)0.0159 (7)0.0163 (7)0.0086 (6)
N10.0261 (5)0.0188 (5)0.0246 (5)0.0043 (4)0.0069 (4)0.0074 (4)
N20.0304 (5)0.0184 (5)0.0191 (5)0.0043 (4)0.0083 (4)0.0062 (4)
N30.0246 (5)0.0202 (5)0.0214 (5)0.0042 (4)0.0041 (4)0.0054 (4)
Cl10.03448 (18)0.02067 (15)0.03662 (18)0.00357 (12)0.00425 (13)0.00945 (13)
S10.03781 (18)0.01751 (15)0.02036 (15)0.00759 (12)0.00947 (12)0.00618 (11)
O10.0408 (5)0.0218 (4)0.0268 (4)0.0083 (4)0.0106 (4)0.0074 (4)
Geometric parameters (Å, º) top
C2—N31.3365 (15)C12—H120.95
C2—N21.3908 (15)C13—C141.383 (2)
C2—C71.3968 (16)C13—H130.95
C4—N31.3374 (15)C14—C151.3901 (18)
C4—C51.3822 (17)C14—H140.95
C4—H40.95C15—H150.95
C5—C61.3797 (17)C16—C171.3379 (17)
C5—Cl11.7319 (12)C16—S11.7768 (12)
C6—C71.3877 (16)C17—C181.4821 (18)
C6—H60.95C17—H170.95
C7—C161.4669 (16)C18—C231.386 (2)
C8—N11.3075 (15)C18—C191.391 (2)
C8—N21.3531 (15)C19—C201.388 (2)
C8—S11.7641 (12)C19—H190.95
C9—O11.2300 (15)C20—C211.375 (3)
C9—N11.3818 (15)C20—H200.95
C9—C101.4912 (16)C21—C221.371 (3)
C10—C151.3896 (18)C21—H210.95
C10—C111.3970 (18)C22—C231.399 (2)
C11—C121.384 (2)C22—H220.95
C11—H110.95C23—H230.95
C12—C131.378 (3)N2—H20.847 (16)
N3—C2—N2114.40 (10)C15—C14—H14119.9
N3—C2—C7123.77 (10)C10—C15—C14119.61 (13)
N2—C2—C7121.83 (10)C10—C15—H15120.2
N3—C4—C5122.00 (11)C14—C15—H15120.2
N3—C4—H4119C17—C16—C7123.17 (11)
C5—C4—H4119C17—C16—S1118.99 (9)
C6—C5—C4120.21 (11)C7—C16—S1117.84 (8)
C6—C5—Cl1119.72 (9)C16—C17—C18124.98 (11)
C4—C5—Cl1120.07 (9)C16—C17—H17117.5
C5—C6—C7118.52 (11)C18—C17—H17117.5
C5—C6—H6120.7C23—C18—C19118.71 (14)
C7—C6—H6120.7C23—C18—C17122.21 (14)
C6—C7—C2117.58 (10)C19—C18—C17119.07 (13)
C6—C7—C16122.17 (10)C20—C19—C18120.99 (16)
C2—C7—C16120.20 (10)C20—C19—H19119.5
N1—C8—N2116.67 (10)C18—C19—H19119.5
N1—C8—S1123.60 (9)C21—C20—C19119.80 (18)
N2—C8—S1119.73 (9)C21—C20—H20120.1
O1—C9—N1124.89 (11)C19—C20—H20120.1
O1—C9—C10119.63 (11)C22—C21—C20120.00 (15)
N1—C9—C10115.47 (10)C22—C21—H21120
C15—C10—C11119.70 (12)C20—C21—H21120
C15—C10—C9122.27 (11)C21—C22—C23120.59 (16)
C11—C10—C9117.95 (11)C21—C22—H22119.7
C12—C11—C10120.15 (14)C23—C22—H22119.7
C12—C11—H11119.9C18—C23—C22119.87 (17)
C10—C11—H11119.9C18—C23—H23120.1
C13—C12—C11119.86 (14)C22—C23—H23120.1
C13—C12—H12120.1C8—N1—C9118.58 (10)
C11—C12—H12120.1C8—N2—C2127.76 (10)
C12—C13—C14120.48 (13)C8—N2—H2115.3 (11)
C12—C13—H13119.8C2—N2—H2116.6 (11)
C14—C13—H13119.8C2—N3—C4117.83 (10)
C13—C14—C15120.19 (14)C8—S1—C16101.63 (5)
C13—C14—H14119.9
N3—C4—C5—C61.49 (19)S1—C16—C17—C182.56 (19)
N3—C4—C5—Cl1179.12 (9)C16—C17—C18—C2364.2 (2)
C4—C5—C6—C70.37 (18)C16—C17—C18—C19114.62 (16)
Cl1—C5—C6—C7179.02 (9)C23—C18—C19—C202.0 (2)
C5—C6—C7—C22.81 (17)C17—C18—C19—C20176.88 (15)
C5—C6—C7—C16174.49 (11)C18—C19—C20—C211.8 (3)
N3—C2—C7—C63.79 (17)C19—C20—C21—C220.2 (3)
N2—C2—C7—C6177.37 (11)C20—C21—C22—C231.2 (3)
N3—C2—C7—C16173.57 (11)C19—C18—C23—C220.6 (2)
N2—C2—C7—C165.27 (17)C17—C18—C23—C22178.26 (13)
O1—C9—C10—C15153.18 (12)C21—C22—C23—C181.0 (2)
N1—C9—C10—C1525.39 (17)N2—C8—N1—C9179.63 (10)
O1—C9—C10—C1123.54 (17)S1—C8—N1—C91.12 (16)
N1—C9—C10—C11157.89 (11)O1—C9—N1—C813.03 (18)
C15—C10—C11—C120.3 (2)C10—C9—N1—C8168.49 (10)
C9—C10—C11—C12176.46 (12)N1—C8—N2—C2170.01 (11)
C10—C11—C12—C130.5 (2)S1—C8—N2—C210.70 (17)
C11—C12—C13—C140.6 (2)N3—C2—N2—C8162.12 (11)
C12—C13—C14—C150.0 (2)C7—C2—N2—C818.93 (19)
C11—C10—C15—C141.03 (19)N2—C2—N3—C4179.06 (10)
C9—C10—C15—C14175.64 (12)C7—C2—N3—C42.02 (17)
C13—C14—C15—C100.9 (2)C5—C4—N3—C20.68 (17)
C6—C7—C16—C1729.87 (19)N1—C8—S1—C16165.12 (10)
C2—C7—C16—C17147.36 (13)N2—C8—S1—C1614.12 (11)
C6—C7—C16—S1150.07 (10)C17—C16—S1—C8146.10 (11)
C2—C7—C16—S132.70 (15)C7—C16—S1—C833.96 (10)
C7—C16—C17—C18177.51 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N3i0.847 (16)2.131 (17)2.9733 (14)173.1 (15)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC21H14ClN3OS
Mr391.86
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.2372 (2), 8.3977 (3), 15.7467 (6)
α, β, γ (°)101.227 (2), 98.427 (2), 103.768 (1)
V3)892.85 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.37 × 0.28 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18107, 3894, 3538
Rint0.029
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.077, 1.05
No. of reflections3894
No. of parameters248
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.21

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2005), SAINT-Plus and XPREP (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and SCHAKAL99 (Keller, 1999), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N3i0.847 (16)2.131 (17)2.9733 (14)173.1 (15)
Symmetry code: (i) x, y, z.
 

Acknowledgements

The University of the Witwatersrand and the Mol­ecular Sciences Institute are acknowledged for providing the infrastructure required for this work.

References

First citationBernalte-Garcia, A., Garcia-Barros, F. J., Higes-Rolando, F. J., Luna-Giles, F. & Pedrero-Marin, R. (2004). Inorg. Biochem. 98, 15–23.  CAS Google Scholar
First citationBruker (2005). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCohen-Addad, C., Savariault, J.-M. & Lehmann, M. S. (1981). Acta Cryst. B37, 1703–1706.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFernandes, M. A. & Reid, D. H. (2003). Synlett, pp. 2231–2233.  Google Scholar
First citationKalman, A., Argay, G., Fulop, F. & Bernath, G. (1987). J. Mol. Struct. 161, 125–138.  CAS Google Scholar
First citationKeller, E. (1999). SCHAKAL99. University of Freiberg, Germany.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPalsuledesai, C. C., Murru, S., Sahoo, S. K. & Patel, B. K. (2009). Org. Lett. 11, 3381–3385.  Web of Science CSD CrossRef Google Scholar
First citationPeng, Y. & Wu, L. (2009). Acta Cryst. E65, o784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchmittel, M., Mahajan, A. & Steffen, J.-P. (2004). Synthesis, pp. 415–418.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSonogashira, K., Tohda, Y. & Hagihara, N. (1975). Tetrahedron Lett. 16, 4467–4470.  CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds