metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Bi­pyridine-κ2N,N′)bis­­(4-formyl­benzoato-κO1)copper(II)

aCenter of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: xuwei@nbu.edu.cn

(Received 16 May 2012; accepted 7 July 2012; online 14 July 2012)

The title mononuclear CuII complex, [Cu(C8H5O3)2(C10H8N2)], is comprised of a CuII cation, two 4-formyl­benzoate (L) ligands and a 2,2′-bipyridine (bipy) ligand. The CuII ion and bipy ligand lie on a crystallographic twofold rotation axis; the CuII ion is coordinated by two N atoms from one bipy ligand and two O atoms from two different carboxyl­ate groups of two L ligands, exhibiting effectively a distorted square-planar geometry. The complex mol­ecules are inter­linked to generate two-dimensional supra­molecular layers in the ab plane, formed by C—H⋯O hydrogen bonds, where the O acceptor is the O atom from the carboxyl­ate group not involved in coordination to the CuII ion. The two-dimensional layers are stacked in a sequence via C—H⋯O hydrogen-bonding inter­actions where the formyl O atom acts as acceptor.

Related literature

For general background on the use of transition metal complexes containing carboxyl­ate ligands and secondary building units, see: Sun et al. (2002[Sun, J., Lin, J. L., Zheng, Y. Q. & Wang, J. Y. (2002). J. Synth. Cryst. pp. 365-369.]); Liu et al. (2006[Liu, F. Q., Wang, Q. X., Jiao, K., Jian, F. F., Guang, Y. L. & Li, R. X. (2006). Inorg. Chim. Acta, 359, 1524-1530.]); Xu et al. (2011[Xu, W., Liu, W., Yao, F. Y. & Zheng, Y. Q. (2011). Inorg. Chim. Acta, 365, 297-301.]). For related structures using the same metal, similar ligands and with a similar coordination environment, see: Li et al. (2007[Li, C. H., He, X. M., Yang, Y. Q. & Li, W. (2007). Chin. J. Inorg. Chem. 23, 1449-1452.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C8H5O3)2(C10H8N2)]

  • Mr = 517.96

  • Monoclinic, C 2/c

  • a = 11.923 (2) Å

  • b = 10.992 (2) Å

  • c = 18.275 (4) Å

  • β = 100.11 (3)°

  • V = 2357.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 295 K

  • 0.23 × 0.17 × 0.08 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: empirical (using intensity measurements) (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.820, Tmax = 0.925

  • 11333 measured reflections

  • 2700 independent reflections

  • 1672 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.146

  • S = 1.23

  • 2698 reflections

  • 159 parameters

  • H-atom parameters constrained

  • Δρmax = 1.16 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected bond lengths (Å)

Cu—O1 1.935 (3)
Cu—N 1.984 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O2ii 0.93 2.58 3.460 (5) 159
C13—H13A⋯O3iii 0.93 2.58 3.284 (6) 133
Symmetry codes: (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Transition metal complexes with carboxylic acids using various secondary building units (SBUs) frequently show interesting physical, chemical and/or biological properties (Sun et al., 2002, Li et al., 2007, Liu et al., 2006). Herein, we are interested in selfassemblies of Cu2+ ions and 2,2'-bipydine (bipy) with 4-formylbenzoate, which led to the preparation of [Cu(C10H8N2)(C8H5O3)2].

The asymmetric unit contains a half CuII cation, a half bipy ligand and one 4-formylbenzoate (L- = p-CHO-C6H4COO-) ligand. Both the CuII ion and bipy ligand lie on a crystallographic twofold rotation axis. In the complex, two crystallographically equivalent L- anions function as monodentate ligands, while one bipy molecular functions as a terminal ligand adopting an expected chelating mode to coordinate with one CuII ion, forming a mononuclear unit. The CuII ion is coordinated by two nitrogen atoms (N and N#1, #1 = 1 - x, y, 1.5 - z) of one bipy ligand and two oxygen atoms (O1, O1#1) from two different carboxylic groups of two L- ligands exhibiting essentially distorted square planar geometry (Fig.1). The Cu–N/O bonds in the quadrilateral plane are 1.984 (3) and 1.934 (3) Å, respectively. The cisoid bond angles fall in the region 80.9 (1)–93.8 (1) °, and transoid ones are both equal to 170.2 (1) °, exhibiting substantial deviations from 90 and 180 ° for a quadrate. In comparison with literatures, the above bonding values are normal (Li et al., 2007).

The complex molecules are linked via weak C4–H4···O2#2 (#2 = -0.5 + x, -0.5 + y, z) hydrogen bonds to generate two-dimensional supramolecular layers in the ab plane. Along [001] direction the two-dimensional layers are stacked in a sequence ···ABABA··· and further connected via C13–H13···O3#3 (#3 = 0.5 + x, 0.5 - y, -0.5 + z) hydrogen bonds form three-dimensional supramolecular structure.

Related literature top

For general background on the use of transition metal complexes containing carboxylate ligands and secondary building units, see: Sun et al. (2002); Liu et al. (2006); Xu et al. (2011). For related structures using the same metal, similar ligands and with a similar coordination environment, see: Li et al. (2007).

Experimental top

1 mL (1M) NaOH was added to an aqueous solution of CuCl2.2H2O (0.0852 g, 0.5 mmol) and Cl- anions were removed by repeated centrifugation with NaOH, then 5.0 ml H2O and 5.0 ml EtOH were subsequently added. The blue suspension above was added to an aqueous ethanol solution (5.0 ml and 5.0 ml) of 4-formylbenzoic acid (0.1501 g, 1.0 mmol), then another aqueous ethanol solution (5.0 ml and 5.0 ml) of 2,2'-bipyridine (0.0782 g, 0.5 mmol) was added and stirred continuously for 1 h to give another blue suspension. After filtration, the blue filtrate (pH = 4.8) was allowed to evaporate at room temperature for one week to give dark blue plate-shaped crystals.

Refinement top

H atoms bonded to C atoms were placed in geometrically calculated position and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). After refinement there still remains one large residual peak 1.16 e.Å-3 high and located 2.36 Å from H10A. This was initially postulated as partly occupied water. However, the TG-DTA curve of the title complex shows no removal of a water molecula in the weight loss progress. We believe that the residual peak may be an artifact of poor crystal quality.

Structure description top

Transition metal complexes with carboxylic acids using various secondary building units (SBUs) frequently show interesting physical, chemical and/or biological properties (Sun et al., 2002, Li et al., 2007, Liu et al., 2006). Herein, we are interested in selfassemblies of Cu2+ ions and 2,2'-bipydine (bipy) with 4-formylbenzoate, which led to the preparation of [Cu(C10H8N2)(C8H5O3)2].

The asymmetric unit contains a half CuII cation, a half bipy ligand and one 4-formylbenzoate (L- = p-CHO-C6H4COO-) ligand. Both the CuII ion and bipy ligand lie on a crystallographic twofold rotation axis. In the complex, two crystallographically equivalent L- anions function as monodentate ligands, while one bipy molecular functions as a terminal ligand adopting an expected chelating mode to coordinate with one CuII ion, forming a mononuclear unit. The CuII ion is coordinated by two nitrogen atoms (N and N#1, #1 = 1 - x, y, 1.5 - z) of one bipy ligand and two oxygen atoms (O1, O1#1) from two different carboxylic groups of two L- ligands exhibiting essentially distorted square planar geometry (Fig.1). The Cu–N/O bonds in the quadrilateral plane are 1.984 (3) and 1.934 (3) Å, respectively. The cisoid bond angles fall in the region 80.9 (1)–93.8 (1) °, and transoid ones are both equal to 170.2 (1) °, exhibiting substantial deviations from 90 and 180 ° for a quadrate. In comparison with literatures, the above bonding values are normal (Li et al., 2007).

The complex molecules are linked via weak C4–H4···O2#2 (#2 = -0.5 + x, -0.5 + y, z) hydrogen bonds to generate two-dimensional supramolecular layers in the ab plane. Along [001] direction the two-dimensional layers are stacked in a sequence ···ABABA··· and further connected via C13–H13···O3#3 (#3 = 0.5 + x, 0.5 - y, -0.5 + z) hydrogen bonds form three-dimensional supramolecular structure.

For general background on the use of transition metal complexes containing carboxylate ligands and secondary building units, see: Sun et al. (2002); Liu et al. (2006); Xu et al. (2011). For related structures using the same metal, similar ligands and with a similar coordination environment, see: Li et al. (2007).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound, The dispalcement ellipsoids are drawn at 30% probability dispalcement ellipsoids. [Symmetry codes: (#1)-x + 1, y, -z + 1.5.]
[Figure 2] Fig. 2. the two-dimensional lay structure parallel to (001).
(2,2'-Bipyridine-κ2N,N')bis(4-formylbenzoato- κO1)copper(II) top
Crystal data top
[Cu(C8H5O3)2(C10H8N2)]F(000) = 1060
Mr = 517.96Dx = 1.459 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 11333 reflections
a = 11.923 (2) Åθ = 3.2–27.4°
b = 10.992 (2) ŵ = 0.97 mm1
c = 18.275 (4) ÅT = 295 K
β = 100.11 (3)°Block, blue
V = 2357.9 (8) Å30.23 × 0.17 × 0.08 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2700 independent reflections
Radiation source: fine-focus sealed tube1672 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ω scansθmax = 27.4°, θmin = 3.2°
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
h = 1515
Tmin = 0.820, Tmax = 0.925k = 1414
11333 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.050P)2 + 1.7765P]
where P = (Fo2 + 2Fc2)/3
2698 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 1.16 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Cu(C8H5O3)2(C10H8N2)]V = 2357.9 (8) Å3
Mr = 517.96Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.923 (2) ŵ = 0.97 mm1
b = 10.992 (2) ÅT = 295 K
c = 18.275 (4) Å0.23 × 0.17 × 0.08 mm
β = 100.11 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2700 independent reflections
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
1672 reflections with I > 2σ(I)
Tmin = 0.820, Tmax = 0.925Rint = 0.067
11333 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.23Δρmax = 1.16 e Å3
2698 reflectionsΔρmin = 0.50 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.50000.53295 (6)0.75000.0500 (3)
O10.4216 (2)0.4112 (2)0.79856 (15)0.0620 (7)
O20.5705 (2)0.4465 (3)0.88645 (15)0.0660 (8)
O30.3550 (4)0.0045 (4)1.1014 (2)0.1132 (14)
C10.4812 (3)0.3924 (3)0.8630 (2)0.0505 (9)
C20.4358 (3)0.2966 (3)0.9090 (2)0.0496 (9)
C30.3319 (3)0.2404 (3)0.8846 (2)0.0571 (10)
H3A0.28880.26230.83910.069*
C40.2918 (4)0.1529 (3)0.9271 (2)0.0606 (11)
H4A0.22210.11580.90990.073*
C50.3537 (4)0.1197 (4)0.9947 (2)0.0597 (10)
C60.4576 (4)0.1749 (5)1.0194 (3)0.0834 (15)
H6A0.50060.15221.06480.100*
C70.4980 (4)0.2632 (4)0.9774 (2)0.0752 (13)
H7A0.56740.30070.99500.090*
C80.3097 (5)0.0272 (4)1.0403 (3)0.0819 (14)
H8A0.24110.00991.02030.098*
N0.5875 (3)0.6702 (3)0.71745 (17)0.0516 (8)
C90.5513 (3)0.7822 (3)0.73221 (19)0.0499 (9)
C100.6077 (3)0.8850 (4)0.7152 (2)0.0607 (11)
H10A0.58240.96180.72610.073*
C110.7018 (4)0.8726 (4)0.6819 (2)0.0677 (12)
H11A0.74110.94110.67040.081*
C120.7375 (4)0.7592 (5)0.6655 (2)0.0700 (12)
H12A0.80030.74930.64220.084*
C130.6783 (3)0.6600 (4)0.6844 (2)0.0619 (11)
H13A0.70250.58270.67370.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0473 (4)0.0495 (4)0.0548 (4)0.0000.0132 (3)0.000
O10.0622 (17)0.0604 (16)0.0625 (17)0.0078 (14)0.0083 (15)0.0070 (14)
O20.0510 (16)0.077 (2)0.0706 (18)0.0208 (15)0.0118 (14)0.0027 (15)
O30.122 (3)0.123 (3)0.102 (3)0.006 (3)0.040 (3)0.049 (2)
C10.052 (2)0.049 (2)0.054 (2)0.0002 (19)0.0201 (19)0.0042 (18)
C20.050 (2)0.050 (2)0.051 (2)0.0035 (18)0.0131 (18)0.0029 (17)
C30.059 (2)0.058 (2)0.053 (2)0.010 (2)0.0038 (19)0.0009 (19)
C40.063 (3)0.057 (2)0.064 (3)0.020 (2)0.015 (2)0.009 (2)
C50.066 (3)0.054 (2)0.063 (2)0.003 (2)0.023 (2)0.002 (2)
C60.076 (3)0.107 (4)0.065 (3)0.012 (3)0.005 (2)0.027 (3)
C70.060 (3)0.095 (3)0.066 (3)0.023 (3)0.001 (2)0.011 (3)
C80.093 (4)0.078 (3)0.083 (3)0.010 (3)0.037 (3)0.009 (3)
N0.0466 (18)0.0563 (18)0.0545 (18)0.0012 (15)0.0155 (15)0.0035 (15)
C90.048 (2)0.054 (2)0.047 (2)0.0013 (18)0.0053 (17)0.0018 (17)
C100.060 (3)0.053 (2)0.068 (3)0.007 (2)0.007 (2)0.007 (2)
C110.063 (3)0.073 (3)0.066 (3)0.021 (2)0.010 (2)0.016 (2)
C120.056 (3)0.092 (3)0.066 (3)0.015 (3)0.021 (2)0.001 (3)
C130.056 (2)0.070 (3)0.063 (2)0.004 (2)0.022 (2)0.007 (2)
Geometric parameters (Å, º) top
Cu—O1i1.935 (3)C6—C71.376 (6)
Cu—O11.935 (3)C6—H6A0.9300
Cu—N1.984 (3)C7—H7A0.9300
Cu—Ni1.984 (3)C8—H8A0.9300
O1—C11.282 (4)N—C131.334 (5)
O2—C11.229 (4)N—C91.347 (4)
O3—C81.203 (6)C9—C101.378 (5)
C1—C21.505 (5)C9—C9i1.482 (7)
C2—C31.386 (5)C10—C111.374 (6)
C2—C71.386 (5)C10—H10A0.9300
C3—C41.374 (5)C11—C121.367 (6)
C3—H3A0.9300C11—H11A0.9300
C4—C51.373 (5)C12—C131.375 (6)
C4—H4A0.9300C12—H12A0.9300
C5—C61.382 (6)C13—H13A0.9300
C5—C81.469 (6)
O1i—Cu—O192.48 (17)C6—C7—C2120.4 (4)
O1i—Cu—N93.83 (12)C6—C7—H7A119.8
O1—Cu—N170.15 (12)C2—C7—H7A119.8
O1i—Cu—Ni170.15 (12)O3—C8—C5125.5 (5)
O1—Cu—Ni93.83 (12)O3—C8—H8A117.3
N—Cu—Ni80.96 (18)C5—C8—H8A117.3
C1—O1—Cu107.4 (2)C13—N—C9118.8 (3)
O2—C1—O1123.3 (4)C13—N—Cu125.7 (3)
O2—C1—C2121.3 (4)C9—N—Cu115.5 (3)
O1—C1—C2115.5 (3)N—C9—C10121.2 (4)
C3—C2—C7118.6 (4)N—C9—C9i113.9 (2)
C3—C2—C1121.4 (3)C10—C9—C9i124.9 (2)
C7—C2—C1120.0 (3)C11—C10—C9119.2 (4)
C4—C3—C2120.7 (4)C11—C10—H10A120.4
C4—C3—H3A119.6C9—C10—H10A120.4
C2—C3—H3A119.6C12—C11—C10119.8 (4)
C5—C4—C3120.6 (4)C12—C11—H11A120.1
C5—C4—H4A119.7C10—C11—H11A120.1
C3—C4—H4A119.7C11—C12—C13118.3 (4)
C4—C5—C6119.1 (4)C11—C12—H12A120.8
C4—C5—C8120.4 (4)C13—C12—H12A120.8
C6—C5—C8120.5 (4)N—C13—C12122.7 (4)
C7—C6—C5120.6 (4)N—C13—H13A118.6
C7—C6—H6A119.7C12—C13—H13A118.6
C5—C6—H6A119.7
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O2ii0.932.583.460 (5)159
C13—H13A···O3iii0.932.583.284 (6)133
Symmetry codes: (ii) x1/2, y1/2, z; (iii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C8H5O3)2(C10H8N2)]
Mr517.96
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)11.923 (2), 10.992 (2), 18.275 (4)
β (°) 100.11 (3)
V3)2357.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.23 × 0.17 × 0.08
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionEmpirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.820, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
11333, 2700, 1672
Rint0.067
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.146, 1.23
No. of reflections2698
No. of parameters159
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.16, 0.50

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006).

Selected bond lengths (Å) top
Cu—O1i1.935 (3)Cu—N1.984 (3)
Cu—O11.935 (3)Cu—Ni1.984 (3)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O2ii0.932.583.460 (5)159
C13—H13A···O3iii0.932.583.284 (6)133
Symmetry codes: (ii) x1/2, y1/2, z; (iii) x+1/2, y+1/2, z1/2.
 

Acknowledgements

This project was supported by the Scientific Research Fund of Ningbo University (grant No. XKL069). Thanks are also extended to the K. C. Wong Magna Fund of Ningbo University.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLi, C. H., He, X. M., Yang, Y. Q. & Li, W. (2007). Chin. J. Inorg. Chem. 23, 1449–1452.  CAS Google Scholar
First citationLiu, F. Q., Wang, Q. X., Jiao, K., Jian, F. F., Guang, Y. L. & Li, R. X. (2006). Inorg. Chim. Acta, 359, 1524–1530.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, J., Lin, J. L., Zheng, Y. Q. & Wang, J. Y. (2002). J. Synth. Cryst. pp. 365–369.  Google Scholar
First citationXu, W., Liu, W., Yao, F. Y. & Zheng, Y. Q. (2011). Inorg. Chim. Acta, 365, 297–301.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds