organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis(pyridin-4-yl)diazene–3,4,5-trihy­dr­oxy­benzoic acid–methanol (3/2/2)

aInstitute of Macromolecular Chemistry `Petru Poni', Polymer Chemistry and Physics Department, 41A Grigore Ghica Voda Alley, Iasi-700487, Romania, bInstitute of Applied Physics of the Academy of Science of Moldova, 5 Academiei Street, Chisinau MD-2028, Moldova, and cInstitute of Macromolecular Chemistry `Petru Poni', Inorganic Polymers Department, 41A Grigore Ghica Voda Alley, Iasi-700487, Romania
*Correspondence e-mail: shova@usm.md

(Received 14 June 2012; accepted 7 July 2012; online 14 July 2012)

The title compound, 3C10H8N4·2C7H6O5·2CH4O, has a mol­ecular crystal structure which results from the cocrystallization of gallic acid (GA), 4,4′-azodipyridine (AzPy) and methanol in a 2:3:2 molar ratio. The asymmetric unit comprises one molecule each of GA, AzPy and methanol in general positions and half a molecule of AzPy as this is located about a centre of inversion. In the crystal, all the components of the structure are associated via the extended system of hydrogen bonds (O—H⋯O and O—H⋯N) and ππ stacking inter­actions [centroid–centroid distance = 3.637 (3) Å] into two-dimensional supra­molecular layers which are packed parallel to the [101] plane. The shortest perpendicular distance and the slippage between aromatic groups are 3.395 (3) and 2.152 (3) Å, respectively. The AzPy mol­ecules display a trans conformation with respect to the azo groups.

Related literature

For the photosensitive properties of azo compounds, see: Qiu et al. (2011[Qiu, F., Ge, C., Gu, X. & Yang, D. (2011). Int. J. Polym. Anal. Charact. 16, 36-48.]). For potential applications of gallic acid, see: Fazary et al. (2009[Fazary, A. E., Taha, M. & Ju, Y. H. (2009). J. Chem. Eng. Data, 54, 35-42.]). For the synthesis and cocrystallization ability of 4,4′-azodipyridine, see: Launay et al. (1991[Launay, J.-P., Tourrel-Pagis, M., Lipskier, J.-F., Marvaud, V. & Joachim, C. (1991). Inorg. Chem. 30, 1033-1038.]); Zhuang et al. (2006[Zhuang, Z., Cheng, J., Wang, X., Yin, Y., Chen, G., Zhao, B., Zhang, H. & Zhang, G. (2006). J. Mol. Struct. 79, 477-482.]); Kanoo et al. (2012[Kanoo, P., Ghosh, A. C., Cyriac, S. T. & Maji, T. K. (2012). Chem. Eur. J. 18, 237-244.]).

[Scheme 1]

Experimental

Crystal data
  • 3C10H8N4·2C7H6O5·2CH4O

  • Mr = 956.93

  • Monoclinic, P 21 /n

  • a = 13.555 (5) Å

  • b = 11.711 (5) Å

  • c = 14.213 (5) Å

  • β = 93.427 (5)°

  • V = 2252.2 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 200 K

  • 0.2 × 0.2 × 0.1 mm

Data collection
  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.982, Tmax = 1.000

  • 9591 measured reflections

  • 4431 independent reflections

  • 3050 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.124

  • S = 1.03

  • 4431 reflections

  • 339 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.84 (3) 1.91 (3) 2.750 (2) 175 (2)
O2—H2⋯O6ii 0.86 (3) 1.83 (3) 2.650 (2) 158 (2)
O3—H3⋯N2 0.88 (3) 1.90 (3) 2.730 (2) 157 (3)
O5—H5⋯N3i 0.99 (3) 1.64 (3) 2.623 (2) 174 (2)
O6—H6A⋯N6iii 0.82 1.94 2.755 (2) 173
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our research interest in the photosensitive compounds, we report analysis of the crystal structure of the title compound that comprises 1:1.5:1 gallic acid, 4,4'-azodipyridine and methanol molecules. The asymmetric unit of the title compound along with the atom numbering scheme is depicted in Figure 1. Gallic acid has a great potential for structure extension by the three hydroxyl groups and carboxyl function (Fazary et al., 2009). 4,4'-Azodipyridine has been widely used for its bidentate type ligand ability (Zhuang et al.,2006; Kanoo, et al., 2012) and photoswitchable properties (Qiu, et al., 2011). In the crystal all components of the structure are interacting via an extended system of O-H_ _ _O and O-H_ _ _N hydrogen bonds, the formation of which is completely realised. The geometry of the hydrogen bonds is listed in the Table 1. The crystal structure essentially results from the packing of two-dimensional supramolecular layers in parallel orientation to the [101] plane (Figure 2). In addition, each layer is consolidated by π-π stacking interaction, which is evidenced by centroid-to-centroid distance of 3.637 Å between adjacent centrosymmetrically related AzPy rings denoted by C18 C19 C20 C21 C22 and N6 atoms.

Related literature top

For the photosensitive properties of azo compounds, see: Qiu et al. (2011). For potential applications of gallic acid, see: Fazary et al. (2009). For the synthesis and cocrystallization ability of 4,4'-azodipyridine, see: Launay et al. (1991); Zhuang et al. (2006); Kanoo et al. (2012).

Experimental top

AzPy were synthesized in our laboratory (Launay et al., 1991). Gallic acid (0.085 g, 0.5 mmol) was dissolved in 5.0 ml MeOH and the solution was poured slowly into a methanol solution (5.0 ml) of the synthesized azodipyridine (0.092 g, 0.5 mmol). The resulting mixture was stirred for 30 min and was allowed to stand at room temperature. Slow evaporation for several weeks afforded red block-like crystals.

Refinement top

C-bound H-atoms were positioned geometrically and refined using a riding model approximation with C—H = 0.93 Å and Uiso(H) = 1.2 times Ueq(C). The hydroxy H-atoms were located in a difference Fourier map and refined freely. The N1 atom of the centrosymmetric AzPy presented large thermal ellipsoids, so that disordered models, in the combination with the available tools (PART and SADI) of SHELXL97 were applied in order to better fit the electron density. It was found to be disorderd over two sites in the 0.833:0.167 (8) ratio.

Structure description top

As a part of our research interest in the photosensitive compounds, we report analysis of the crystal structure of the title compound that comprises 1:1.5:1 gallic acid, 4,4'-azodipyridine and methanol molecules. The asymmetric unit of the title compound along with the atom numbering scheme is depicted in Figure 1. Gallic acid has a great potential for structure extension by the three hydroxyl groups and carboxyl function (Fazary et al., 2009). 4,4'-Azodipyridine has been widely used for its bidentate type ligand ability (Zhuang et al.,2006; Kanoo, et al., 2012) and photoswitchable properties (Qiu, et al., 2011). In the crystal all components of the structure are interacting via an extended system of O-H_ _ _O and O-H_ _ _N hydrogen bonds, the formation of which is completely realised. The geometry of the hydrogen bonds is listed in the Table 1. The crystal structure essentially results from the packing of two-dimensional supramolecular layers in parallel orientation to the [101] plane (Figure 2). In addition, each layer is consolidated by π-π stacking interaction, which is evidenced by centroid-to-centroid distance of 3.637 Å between adjacent centrosymmetrically related AzPy rings denoted by C18 C19 C20 C21 C22 and N6 atoms.

For the photosensitive properties of azo compounds, see: Qiu et al. (2011). For potential applications of gallic acid, see: Fazary et al. (2009). For the synthesis and cocrystallization ability of 4,4'-azodipyridine, see: Launay et al. (1991); Zhuang et al. (2006); Kanoo et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the asymmetric unit for title compound with displacement ellipsoids shown at the 50% probability level.
[Figure 2] Fig. 2. View of two-dimensional supramolecular layer. Only H atoms involved in hydrogen bonding are shown. Hydrogen bonds are shown with dashed lines. Symmetry codes: (i) 3/2 - x,1/2 + y,1/2 - z, (ii) 1 - x,1 - y,1 - z, (iii) -x,1 - y,1 - z.
1,2-Bis(pyridin-4-yl)diazene–3,4,5-trihydroxybenzoic acid–methanol (3/2/2) top
Crystal data top
3C10H8N4·2C7H6O5·2CH4OF(000) = 1000
Mr = 956.93Dx = 1.411 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
a = 13.555 (5) ÅCell parameters from 2093 reflections
b = 11.711 (5) Åθ = 2.7–29.4°
c = 14.213 (5) ŵ = 0.11 mm1
β = 93.427 (5)°T = 200 K
V = 2252.2 (15) Å3Plate, light red
Z = 20.2 × 0.2 × 0.1 mm
Data collection top
Agilent Xcalibur Eos
diffractometer
4431 independent reflections
Radiation source: Enhance (Mo) X-ray Source3050 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 16.1593 pixels mm-1θmax = 26.0°, θmin = 2.7°
ω scansh = 1615
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1414
Tmin = 0.982, Tmax = 1.000l = 1712
9591 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0513P)2]
where P = (Fo2 + 2Fc2)/3
4431 reflections(Δ/σ)max < 0.001
339 parametersΔρmax = 0.22 e Å3
2 restraintsΔρmin = 0.26 e Å3
Crystal data top
3C10H8N4·2C7H6O5·2CH4OV = 2252.2 (15) Å3
Mr = 956.93Z = 2
Monoclinic, P21/nMo Kα radiation
a = 13.555 (5) ŵ = 0.11 mm1
b = 11.711 (5) ÅT = 200 K
c = 14.213 (5) Å0.2 × 0.2 × 0.1 mm
β = 93.427 (5)°
Data collection top
Agilent Xcalibur Eos
diffractometer
4431 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3050 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 1.000Rint = 0.038
9591 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0552 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.22 e Å3
4431 reflectionsΔρmin = 0.26 e Å3
339 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.52177 (11)0.94158 (12)0.30966 (11)0.0315 (4)
H10.5624 (19)0.993 (2)0.2971 (18)0.062 (9)*
O20.41107 (10)0.75077 (13)0.34448 (11)0.0324 (4)
H20.390 (2)0.819 (2)0.3522 (18)0.061 (9)*
O30.49212 (11)0.53785 (11)0.33081 (12)0.0367 (4)
H30.433 (2)0.554 (2)0.349 (2)0.089 (11)*
O40.83875 (11)0.59942 (12)0.23623 (12)0.0440 (5)
O50.84265 (11)0.78510 (11)0.20145 (11)0.0349 (4)
H50.909 (2)0.769 (2)0.1798 (19)0.067 (8)*
O60.68514 (11)0.06508 (12)0.60317 (11)0.0395 (4)
H6A0.74100.08660.59430.065 (9)*
N10.03690 (16)0.5003 (2)0.52750 (17)0.0405 (10)0.833 (8)
N1X0.0184 (6)0.4849 (11)0.4631 (5)0.039 (5)*0.167 (8)
N20.31064 (13)0.52709 (15)0.40387 (15)0.0383 (5)
N30.47633 (13)0.25366 (14)0.34904 (14)0.0329 (5)
N40.18017 (12)0.21047 (14)0.41139 (13)0.0325 (5)
N50.16762 (13)0.18525 (15)0.49493 (14)0.0341 (5)
N60.12425 (13)0.12055 (16)0.56342 (14)0.0378 (5)
C10.56417 (14)0.83667 (15)0.29803 (14)0.0229 (5)
C20.50510 (14)0.74231 (16)0.31668 (14)0.0236 (5)
C30.54455 (14)0.63231 (16)0.30990 (14)0.0256 (5)
C40.63951 (14)0.61786 (17)0.28240 (14)0.0266 (5)
H40.66510.54460.27710.032*
C50.69760 (14)0.71213 (16)0.26244 (14)0.0237 (5)
C60.65943 (14)0.82173 (16)0.27075 (14)0.0238 (5)
H60.69800.88490.25800.029*
C70.79932 (15)0.69343 (17)0.23271 (15)0.0273 (5)
C80.29820 (17)0.5386 (2)0.49523 (19)0.0443 (6)
H80.35340.55490.53500.053*
C90.23096 (18)0.50213 (18)0.34829 (18)0.0411 (6)
H90.23880.49150.28430.049*
C100.13696 (17)0.49117 (18)0.38069 (18)0.0423 (6)
H100.08290.47430.33960.051*
C110.12626 (16)0.50610 (18)0.47611 (19)0.0399 (6)
C120.20885 (19)0.5279 (2)0.53435 (19)0.0484 (7)
H120.20400.53530.59910.058*
C130.40522 (17)0.22890 (17)0.28328 (17)0.0355 (6)
H130.42290.21780.22170.043*
C140.30687 (16)0.21897 (17)0.30187 (16)0.0331 (5)
H140.25870.20600.25360.040*
C150.28212 (15)0.22895 (16)0.39459 (16)0.0282 (5)
C160.35448 (16)0.25523 (17)0.46419 (16)0.0324 (5)
H160.33910.26400.52670.039*
C170.45017 (16)0.26794 (17)0.43762 (17)0.0339 (5)
H170.49900.28740.48360.041*
C180.06578 (15)0.16613 (17)0.51343 (15)0.0289 (5)
C190.01382 (16)0.20737 (18)0.45826 (17)0.0345 (5)
H190.00490.24990.40420.041*
C200.10726 (16)0.18273 (19)0.48684 (16)0.0367 (6)
H200.16140.21090.45090.044*
C210.04618 (17)0.08113 (19)0.61452 (16)0.0376 (6)
H210.05690.03630.66690.045*
C220.05013 (16)0.10366 (18)0.59334 (15)0.0347 (5)
H220.10300.07730.63210.042*
C230.64365 (18)0.0384 (2)0.5119 (2)0.0531 (7)
H23A0.63240.10760.47670.080*
H23B0.58200.00080.51720.080*
H23C0.68840.00960.48010.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0246 (8)0.0227 (8)0.0484 (11)0.0012 (6)0.0116 (7)0.0021 (7)
O20.0200 (8)0.0320 (9)0.0462 (11)0.0011 (6)0.0106 (7)0.0002 (8)
O30.0309 (9)0.0264 (8)0.0544 (11)0.0063 (7)0.0152 (8)0.0023 (7)
O40.0367 (9)0.0286 (8)0.0691 (13)0.0075 (7)0.0231 (9)0.0008 (8)
O50.0245 (8)0.0313 (8)0.0505 (11)0.0008 (7)0.0163 (8)0.0045 (7)
O60.0238 (9)0.0459 (9)0.0497 (11)0.0007 (7)0.0099 (8)0.0033 (8)
N10.0297 (16)0.0532 (16)0.0384 (19)0.0021 (12)0.0018 (11)0.0007 (13)
N20.0312 (11)0.0305 (10)0.0549 (14)0.0016 (8)0.0157 (11)0.0038 (10)
N30.0270 (10)0.0294 (10)0.0432 (12)0.0012 (8)0.0098 (9)0.0027 (9)
N40.0252 (10)0.0367 (10)0.0360 (12)0.0015 (8)0.0056 (9)0.0010 (9)
N50.0282 (10)0.0387 (10)0.0360 (12)0.0020 (8)0.0056 (9)0.0026 (9)
N60.0315 (11)0.0436 (11)0.0392 (12)0.0022 (9)0.0102 (10)0.0029 (10)
C10.0211 (10)0.0229 (10)0.0247 (12)0.0007 (8)0.0020 (9)0.0013 (9)
C20.0175 (10)0.0303 (11)0.0233 (11)0.0013 (8)0.0049 (9)0.0006 (9)
C30.0248 (11)0.0259 (11)0.0264 (12)0.0071 (9)0.0043 (9)0.0008 (9)
C40.0260 (11)0.0251 (11)0.0290 (12)0.0017 (9)0.0037 (10)0.0036 (9)
C50.0214 (10)0.0277 (10)0.0224 (11)0.0004 (9)0.0040 (9)0.0009 (9)
C60.0214 (11)0.0246 (10)0.0256 (12)0.0028 (8)0.0042 (9)0.0027 (9)
C70.0262 (11)0.0285 (11)0.0277 (12)0.0007 (9)0.0068 (10)0.0018 (10)
C80.0334 (14)0.0476 (15)0.0518 (18)0.0066 (11)0.0013 (13)0.0032 (13)
C90.0535 (16)0.0340 (13)0.0365 (15)0.0042 (11)0.0079 (13)0.0055 (11)
C100.0348 (14)0.0366 (13)0.0541 (18)0.0029 (10)0.0087 (13)0.0043 (12)
C110.0286 (13)0.0331 (12)0.0596 (18)0.0022 (10)0.0152 (13)0.0077 (12)
C120.0465 (16)0.0569 (16)0.0432 (16)0.0024 (12)0.0133 (13)0.0028 (13)
C130.0370 (13)0.0336 (12)0.0372 (14)0.0034 (10)0.0139 (11)0.0009 (11)
C140.0325 (13)0.0341 (12)0.0327 (14)0.0016 (10)0.0015 (11)0.0001 (10)
C150.0244 (11)0.0245 (10)0.0360 (13)0.0001 (9)0.0049 (10)0.0016 (10)
C160.0292 (12)0.0375 (12)0.0313 (13)0.0018 (10)0.0076 (10)0.0010 (10)
C170.0266 (12)0.0371 (12)0.0379 (14)0.0028 (9)0.0014 (11)0.0026 (11)
C180.0237 (11)0.0295 (11)0.0339 (13)0.0010 (9)0.0051 (10)0.0044 (10)
C190.0315 (13)0.0365 (12)0.0361 (14)0.0006 (10)0.0076 (11)0.0026 (11)
C200.0257 (12)0.0434 (13)0.0410 (15)0.0040 (10)0.0017 (11)0.0029 (12)
C210.0387 (14)0.0421 (13)0.0330 (14)0.0031 (11)0.0107 (11)0.0010 (11)
C220.0319 (12)0.0402 (13)0.0318 (13)0.0020 (10)0.0011 (10)0.0012 (11)
C230.0410 (15)0.0501 (15)0.068 (2)0.0060 (12)0.0027 (14)0.0099 (14)
Geometric parameters (Å, º) top
O1—H10.84 (3)C5—C61.392 (3)
O1—C11.371 (2)C5—C71.482 (3)
O2—H20.86 (3)C6—H60.9300
O2—C21.360 (2)C8—H80.9300
O3—H30.88 (3)C8—C121.368 (3)
O3—C31.357 (2)C9—H90.9300
O4—C71.224 (2)C9—C101.386 (3)
O5—H50.99 (3)C10—H100.9300
O5—C71.314 (2)C10—C111.384 (3)
O6—H6A0.8154C11—C121.376 (3)
O6—C231.417 (3)C12—H120.9300
N1—N1i1.232 (4)C13—H130.9300
N1—C111.453 (3)C13—C141.379 (3)
N1X—N1Xi1.239 (10)C14—H140.9300
N1X—C111.483 (9)C14—C151.384 (3)
N2—C81.326 (3)C15—C161.385 (3)
N2—C91.332 (3)C16—H160.9300
N3—C131.334 (3)C16—C171.380 (3)
N3—C171.339 (3)C17—H170.9300
N4—N51.245 (2)C18—C191.383 (3)
N4—C151.433 (3)C18—C221.378 (3)
N5—C181.438 (3)C19—H190.9300
N6—C201.341 (3)C19—C201.383 (3)
N6—C211.330 (3)C20—H200.9300
C1—C21.399 (3)C21—H210.9300
C1—C61.381 (3)C21—C221.383 (3)
C2—C31.400 (3)C22—H220.9300
C3—C41.378 (3)C23—H23A0.9600
C4—H40.9300C23—H23B0.9600
C4—C51.395 (3)C23—H23C0.9600
C1—O1—H1109.4 (17)C10—C11—N1X91.0 (3)
C2—O2—H2115.5 (17)C12—C11—N1112.3 (2)
C3—O3—H3112.6 (19)C12—C11—N1X150.0 (3)
C7—O5—H5112.8 (14)C12—C11—C10119.0 (2)
C23—O6—H6A104.3C8—C12—C11118.7 (2)
N1i—N1—C11110.5 (3)C8—C12—H12120.6
N1Xi—N1X—C11106.9 (10)C11—C12—H12120.6
C8—N2—C9117.2 (2)N3—C13—H13118.3
C13—N3—C17117.73 (19)N3—C13—C14123.4 (2)
N5—N4—C15112.51 (19)C14—C13—H13118.3
N4—N5—C18113.50 (19)C13—C14—H14121.1
C21—N6—C20117.52 (19)C13—C14—C15117.9 (2)
O1—C1—C2115.87 (17)C15—C14—H14121.1
O1—C1—C6123.58 (16)C14—C15—N4115.9 (2)
C6—C1—C2120.54 (17)C14—C15—C16119.80 (19)
O2—C2—C1123.65 (17)C16—C15—N4124.3 (2)
O2—C2—C3117.08 (16)C15—C16—H16121.1
C1—C2—C3119.23 (17)C17—C16—C15117.7 (2)
O3—C3—C2121.84 (17)C17—C16—H16121.1
O3—C3—C4118.18 (17)N3—C17—C16123.4 (2)
C4—C3—C2119.97 (17)N3—C17—H17118.3
C3—C4—H4119.7C16—C17—H17118.3
C3—C4—C5120.58 (18)C19—C18—N5124.54 (19)
C5—C4—H4119.7C22—C18—N5115.48 (19)
C4—C5—C7119.14 (17)C22—C18—C19119.97 (19)
C6—C5—C4119.70 (18)C18—C19—H19121.4
C6—C5—C7121.15 (17)C18—C19—C20117.2 (2)
C1—C6—C5119.95 (17)C20—C19—H19121.4
C1—C6—H6120.0N6—C20—C19123.8 (2)
C5—C6—H6120.0N6—C20—H20118.1
O4—C7—O5123.09 (19)C19—C20—H20118.1
O4—C7—C5122.20 (18)N6—C21—H21118.5
O5—C7—C5114.71 (17)N6—C21—C22123.1 (2)
N2—C8—H8118.1C22—C21—H21118.5
N2—C8—C12123.8 (2)C18—C22—C21118.3 (2)
C12—C8—H8118.1C18—C22—H22120.8
N2—C9—H9118.2C21—C22—H22120.8
N2—C9—C10123.5 (2)O6—C23—H23A109.5
C10—C9—H9118.2O6—C23—H23B109.5
C9—C10—H10121.1O6—C23—H23C109.5
C11—C10—C9117.8 (2)H23A—C23—H23B109.5
C11—C10—H10121.1H23A—C23—H23C109.5
N1—C11—N1X37.8 (3)H23B—C23—H23C109.5
C10—C11—N1128.8 (2)
O1—C1—C2—O20.2 (3)C3—C4—C5—C60.3 (3)
O1—C1—C2—C3177.56 (18)C3—C4—C5—C7179.79 (19)
O1—C1—C6—C5178.69 (18)C4—C5—C6—C10.5 (3)
O2—C2—C3—O30.6 (3)C4—C5—C7—O49.3 (3)
O2—C2—C3—C4179.80 (19)C4—C5—C7—O5169.88 (19)
O3—C3—C4—C5178.34 (19)C6—C1—C2—O2179.48 (19)
N1i—N1—C11—N1X12.9 (8)C6—C1—C2—C31.7 (3)
N1i—N1—C11—C1012.1 (4)C6—C5—C7—O4170.6 (2)
N1i—N1—C11—C12168.9 (3)C6—C5—C7—O510.2 (3)
N1—C11—C12—C8178.3 (2)C7—C5—C6—C1179.6 (2)
N1Xi—N1X—C11—N112.6 (8)C8—N2—C9—C101.9 (3)
N1Xi—N1X—C11—C10166.8 (14)C9—N2—C8—C120.9 (3)
N1Xi—N1X—C11—C1216 (2)C9—C10—C11—N1179.4 (2)
N1X—C11—C12—C8179.4 (10)C9—C10—C11—N1X179.9 (5)
N2—C8—C12—C111.3 (4)C9—C10—C11—C121.7 (3)
N2—C9—C10—C110.6 (3)C10—C11—C12—C82.6 (3)
N3—C13—C14—C153.8 (3)C13—N3—C17—C161.8 (3)
N4—N5—C18—C1921.4 (3)C13—C14—C15—N4175.97 (17)
N4—N5—C18—C22159.80 (19)C13—C14—C15—C164.0 (3)
N4—C15—C16—C17178.45 (18)C14—C15—C16—C171.5 (3)
N5—N4—C15—C14158.93 (18)C15—N4—N5—C18179.91 (16)
N5—N4—C15—C1621.0 (3)C15—C16—C17—N31.5 (3)
N5—C18—C19—C20179.0 (2)C17—N3—C13—C140.9 (3)
N5—C18—C22—C21179.25 (19)C18—C19—C20—N60.9 (3)
N6—C21—C22—C182.6 (3)C19—C18—C22—C211.9 (3)
C1—C2—C3—O3177.32 (19)C20—N6—C21—C221.6 (3)
C1—C2—C3—C41.9 (3)C21—N6—C20—C190.3 (3)
C2—C1—C6—C50.6 (3)C22—C18—C19—C200.2 (3)
C2—C3—C4—C50.9 (3)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4ii0.84 (3)1.91 (3)2.750 (2)175 (2)
O2—H2···O6iii0.86 (3)1.83 (3)2.650 (2)158 (2)
O3—H3···N20.88 (3)1.90 (3)2.730 (2)157 (3)
O5—H5···N3ii0.99 (3)1.64 (3)2.623 (2)174 (2)
O6—H6A···N6iv0.821.942.755 (2)173
Symmetry codes: (ii) x+3/2, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula3C10H8N4·2C7H6O5·2CH4O
Mr956.93
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)13.555 (5), 11.711 (5), 14.213 (5)
β (°) 93.427 (5)
V3)2252.2 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.2 × 0.2 × 0.1
Data collection
DiffractometerAgilent Xcalibur Eos
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.982, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9591, 4431, 3050
Rint0.038
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.124, 1.03
No. of reflections4431
No. of parameters339
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.26

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.84 (3)1.91 (3)2.750 (2)175 (2)
O2—H2···O6ii0.86 (3)1.83 (3)2.650 (2)158 (2)
O3—H3···N20.88 (3)1.90 (3)2.730 (2)157 (3)
O5—H5···N3i0.99 (3)1.64 (3)2.623 (2)174 (2)
O6—H6A···N6iii0.821.942.755 (2)172.8
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y, z.
 

Acknowledgements

This research was supported financially by the European Regional Development Fund, Sectoral Operational Programme `Increase of Economic Competitiveness', Priority Axis 2 (SOP IEC-A2-O2.1.2-2009-2, ID 570, COD SMIS-CSNR: 12473, Contract No. 129/2010-POLISILMET).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFazary, A. E., Taha, M. & Ju, Y. H. (2009). J. Chem. Eng. Data, 54, 35–42.  Web of Science CrossRef CAS Google Scholar
First citationKanoo, P., Ghosh, A. C., Cyriac, S. T. & Maji, T. K. (2012). Chem. Eur. J. 18, 237–244.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLaunay, J.-P., Tourrel-Pagis, M., Lipskier, J.-F., Marvaud, V. & Joachim, C. (1991). Inorg. Chem. 30, 1033–1038.  CrossRef CAS Web of Science Google Scholar
First citationQiu, F., Ge, C., Gu, X. & Yang, D. (2011). Int. J. Polym. Anal. Charact. 16, 36–48.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhuang, Z., Cheng, J., Wang, X., Yin, Y., Chen, G., Zhao, B., Zhang, H. & Zhang, G. (2006). J. Mol. Struct. 79, 477–482.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds