organic compounds
1,2-Bis(pyridin-4-yl)diazene–3,4,5-trihydroxybenzoic acid–methanol (3/2/2)
aInstitute of Macromolecular Chemistry `Petru Poni', Polymer Chemistry and Physics Department, 41A Grigore Ghica Voda Alley, Iasi-700487, Romania, bInstitute of Applied Physics of the Academy of Science of Moldova, 5 Academiei Street, Chisinau MD-2028, Moldova, and cInstitute of Macromolecular Chemistry `Petru Poni', Inorganic Polymers Department, 41A Grigore Ghica Voda Alley, Iasi-700487, Romania
*Correspondence e-mail: shova@usm.md
The title compound, 3C10H8N4·2C7H6O5·2CH4O, has a molecular which results from the cocrystallization of gallic acid (GA), 4,4′-azodipyridine (AzPy) and methanol in a 2:3:2 molar ratio. The comprises one molecule each of GA, AzPy and methanol in general positions and half a molecule of AzPy as this is located about a centre of inversion. In the crystal, all the components of the structure are associated via the extended system of hydrogen bonds (O—H⋯O and O—H⋯N) and π–π stacking interactions [centroid–centroid distance = 3.637 (3) Å] into two-dimensional supramolecular layers which are packed parallel to the [101] plane. The shortest perpendicular distance and the slippage between aromatic groups are 3.395 (3) and 2.152 (3) Å, respectively. The AzPy molecules display a trans conformation with respect to the azo groups.
Related literature
For the photosensitive properties of et al. (2011). For potential applications of gallic acid, see: Fazary et al. (2009). For the synthesis and cocrystallization ability of 4,4′-azodipyridine, see: Launay et al. (1991); Zhuang et al. (2006); Kanoo et al. (2012).
see: QiuExperimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536812031029/nk2169sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812031029/nk2169Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812031029/nk2169Isup3.cml
AzPy were synthesized in our laboratory (Launay et al., 1991). Gallic acid (0.085 g, 0.5 mmol) was dissolved in 5.0 ml MeOH and the solution was poured slowly into a methanol solution (5.0 ml) of the synthesized azodipyridine (0.092 g, 0.5 mmol). The resulting mixture was stirred for 30 min and was allowed to stand at room temperature. Slow evaporation for several weeks afforded red block-like crystals.
C-bound H-atoms were positioned geometrically and refined using a riding model approximation with C—H = 0.93 Å and Uiso(H) = 1.2 times Ueq(C). The hydroxy H-atoms were located in a difference Fourier map and refined freely. The N1 atom of the centrosymmetric AzPy presented large thermal ellipsoids, so that disordered models, in the combination with the available tools (PART and SADI) of SHELXL97 were applied in order to better fit the electron density. It was found to be disorderd over two sites in the 0.833:0.167 (8) ratio.
As a part of our research interest in the photosensitive compounds, we report analysis of the π-π stacking interaction, which is evidenced by centroid-to-centroid distance of 3.637 Å between adjacent centrosymmetrically related AzPy rings denoted by C18 C19 C20 C21 C22 and N6 atoms.
of the title compound that comprises 1:1.5:1 gallic acid, 4,4'-azodipyridine and methanol molecules. The of the title compound along with the atom numbering scheme is depicted in Figure 1. Gallic acid has a great potential for structure extension by the three hydroxyl groups and carboxyl function (Fazary et al., 2009). 4,4'-Azodipyridine has been widely used for its bidentate type ligand ability (Zhuang et al.,2006; Kanoo, et al., 2012) and photoswitchable properties (Qiu, et al., 2011). In the crystal all components of the structure are interacting via an extended system of O-H_ _ _O and O-H_ _ _N hydrogen bonds, the formation of which is completely realised. The geometry of the hydrogen bonds is listed in the Table 1. The essentially results from the packing of two-dimensional supramolecular layers in parallel orientation to the [101] plane (Figure 2). In addition, each layer is consolidated byFor the photosensitive properties of
see: Qiu et al. (2011). For potential applications of gallic acid, see: Fazary et al. (2009). For the synthesis and cocrystallization ability of 4,4'-azodipyridine, see: Launay et al. (1991); Zhuang et al. (2006); Kanoo et al. (2012).Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The structure of the asymmetric unit for title compound with displacement ellipsoids shown at the 50% probability level. | |
Fig. 2. View of two-dimensional supramolecular layer. Only H atoms involved in hydrogen bonding are shown. Hydrogen bonds are shown with dashed lines. Symmetry codes: (i) 3/2 - x,1/2 + y,1/2 - z, (ii) 1 - x,1 - y,1 - z, (iii) -x,1 - y,1 - z. |
3C10H8N4·2C7H6O5·2CH4O | F(000) = 1000 |
Mr = 956.93 | Dx = 1.411 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.7107 Å |
a = 13.555 (5) Å | Cell parameters from 2093 reflections |
b = 11.711 (5) Å | θ = 2.7–29.4° |
c = 14.213 (5) Å | µ = 0.11 mm−1 |
β = 93.427 (5)° | T = 200 K |
V = 2252.2 (15) Å3 | Plate, light red |
Z = 2 | 0.2 × 0.2 × 0.1 mm |
Agilent Xcalibur Eos diffractometer | 4431 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3050 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
Detector resolution: 16.1593 pixels mm-1 | θmax = 26.0°, θmin = 2.7° |
ω scans | h = −16→15 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −14→14 |
Tmin = 0.982, Tmax = 1.000 | l = −17→12 |
9591 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.124 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0513P)2] where P = (Fo2 + 2Fc2)/3 |
4431 reflections | (Δ/σ)max < 0.001 |
339 parameters | Δρmax = 0.22 e Å−3 |
2 restraints | Δρmin = −0.26 e Å−3 |
3C10H8N4·2C7H6O5·2CH4O | V = 2252.2 (15) Å3 |
Mr = 956.93 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 13.555 (5) Å | µ = 0.11 mm−1 |
b = 11.711 (5) Å | T = 200 K |
c = 14.213 (5) Å | 0.2 × 0.2 × 0.1 mm |
β = 93.427 (5)° |
Agilent Xcalibur Eos diffractometer | 4431 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 3050 reflections with I > 2σ(I) |
Tmin = 0.982, Tmax = 1.000 | Rint = 0.038 |
9591 measured reflections |
R[F2 > 2σ(F2)] = 0.055 | 2 restraints |
wR(F2) = 0.124 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.22 e Å−3 |
4431 reflections | Δρmin = −0.26 e Å−3 |
339 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.52177 (11) | 0.94158 (12) | 0.30966 (11) | 0.0315 (4) | |
H1 | 0.5624 (19) | 0.993 (2) | 0.2971 (18) | 0.062 (9)* | |
O2 | 0.41107 (10) | 0.75077 (13) | 0.34448 (11) | 0.0324 (4) | |
H2 | 0.390 (2) | 0.819 (2) | 0.3522 (18) | 0.061 (9)* | |
O3 | 0.49212 (11) | 0.53785 (11) | 0.33081 (12) | 0.0367 (4) | |
H3 | 0.433 (2) | 0.554 (2) | 0.349 (2) | 0.089 (11)* | |
O4 | 0.83875 (11) | 0.59942 (12) | 0.23623 (12) | 0.0440 (5) | |
O5 | 0.84265 (11) | 0.78510 (11) | 0.20145 (11) | 0.0349 (4) | |
H5 | 0.909 (2) | 0.769 (2) | 0.1798 (19) | 0.067 (8)* | |
O6 | 0.68514 (11) | 0.06508 (12) | 0.60317 (11) | 0.0395 (4) | |
H6A | 0.7410 | 0.0866 | 0.5943 | 0.065 (9)* | |
N1 | 0.03690 (16) | 0.5003 (2) | 0.52750 (17) | 0.0405 (10) | 0.833 (8) |
N1X | 0.0184 (6) | 0.4849 (11) | 0.4631 (5) | 0.039 (5)* | 0.167 (8) |
N2 | 0.31064 (13) | 0.52709 (15) | 0.40387 (15) | 0.0383 (5) | |
N3 | 0.47633 (13) | 0.25366 (14) | 0.34904 (14) | 0.0329 (5) | |
N4 | 0.18017 (12) | 0.21047 (14) | 0.41139 (13) | 0.0325 (5) | |
N5 | 0.16762 (13) | 0.18525 (15) | 0.49493 (14) | 0.0341 (5) | |
N6 | −0.12425 (13) | 0.12055 (16) | 0.56342 (14) | 0.0378 (5) | |
C1 | 0.56417 (14) | 0.83667 (15) | 0.29803 (14) | 0.0229 (5) | |
C2 | 0.50510 (14) | 0.74231 (16) | 0.31668 (14) | 0.0236 (5) | |
C3 | 0.54455 (14) | 0.63231 (16) | 0.30990 (14) | 0.0256 (5) | |
C4 | 0.63951 (14) | 0.61786 (17) | 0.28240 (14) | 0.0266 (5) | |
H4 | 0.6651 | 0.5446 | 0.2771 | 0.032* | |
C5 | 0.69760 (14) | 0.71213 (16) | 0.26244 (14) | 0.0237 (5) | |
C6 | 0.65943 (14) | 0.82173 (16) | 0.27075 (14) | 0.0238 (5) | |
H6 | 0.6980 | 0.8849 | 0.2580 | 0.029* | |
C7 | 0.79932 (15) | 0.69343 (17) | 0.23271 (15) | 0.0273 (5) | |
C8 | 0.29820 (17) | 0.5386 (2) | 0.49523 (19) | 0.0443 (6) | |
H8 | 0.3534 | 0.5549 | 0.5350 | 0.053* | |
C9 | 0.23096 (18) | 0.50213 (18) | 0.34829 (18) | 0.0411 (6) | |
H9 | 0.2388 | 0.4915 | 0.2843 | 0.049* | |
C10 | 0.13696 (17) | 0.49117 (18) | 0.38069 (18) | 0.0423 (6) | |
H10 | 0.0829 | 0.4743 | 0.3396 | 0.051* | |
C11 | 0.12626 (16) | 0.50610 (18) | 0.47611 (19) | 0.0399 (6) | |
C12 | 0.20885 (19) | 0.5279 (2) | 0.53435 (19) | 0.0484 (7) | |
H12 | 0.2040 | 0.5353 | 0.5991 | 0.058* | |
C13 | 0.40522 (17) | 0.22890 (17) | 0.28328 (17) | 0.0355 (6) | |
H13 | 0.4229 | 0.2178 | 0.2217 | 0.043* | |
C14 | 0.30687 (16) | 0.21897 (17) | 0.30187 (16) | 0.0331 (5) | |
H14 | 0.2587 | 0.2060 | 0.2536 | 0.040* | |
C15 | 0.28212 (15) | 0.22895 (16) | 0.39459 (16) | 0.0282 (5) | |
C16 | 0.35448 (16) | 0.25523 (17) | 0.46419 (16) | 0.0324 (5) | |
H16 | 0.3391 | 0.2640 | 0.5267 | 0.039* | |
C17 | 0.45017 (16) | 0.26794 (17) | 0.43762 (17) | 0.0339 (5) | |
H17 | 0.4990 | 0.2874 | 0.4836 | 0.041* | |
C18 | 0.06578 (15) | 0.16613 (17) | 0.51343 (15) | 0.0289 (5) | |
C19 | −0.01382 (16) | 0.20737 (18) | 0.45826 (17) | 0.0345 (5) | |
H19 | −0.0049 | 0.2499 | 0.4042 | 0.041* | |
C20 | −0.10726 (16) | 0.18273 (19) | 0.48684 (16) | 0.0367 (6) | |
H20 | −0.1614 | 0.2109 | 0.4509 | 0.044* | |
C21 | −0.04618 (17) | 0.08113 (19) | 0.61452 (16) | 0.0376 (6) | |
H21 | −0.0569 | 0.0363 | 0.6669 | 0.045* | |
C22 | 0.05013 (16) | 0.10366 (18) | 0.59334 (15) | 0.0347 (5) | |
H22 | 0.1030 | 0.0773 | 0.6321 | 0.042* | |
C23 | 0.64365 (18) | 0.0384 (2) | 0.5119 (2) | 0.0531 (7) | |
H23A | 0.6324 | 0.1076 | 0.4767 | 0.080* | |
H23B | 0.5820 | −0.0008 | 0.5172 | 0.080* | |
H23C | 0.6884 | −0.0096 | 0.4801 | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0246 (8) | 0.0227 (8) | 0.0484 (11) | 0.0012 (6) | 0.0116 (7) | 0.0021 (7) |
O2 | 0.0200 (8) | 0.0320 (9) | 0.0462 (11) | −0.0011 (6) | 0.0106 (7) | 0.0002 (8) |
O3 | 0.0309 (9) | 0.0264 (8) | 0.0544 (11) | −0.0063 (7) | 0.0152 (8) | −0.0023 (7) |
O4 | 0.0367 (9) | 0.0286 (8) | 0.0691 (13) | 0.0075 (7) | 0.0231 (9) | 0.0008 (8) |
O5 | 0.0245 (8) | 0.0313 (8) | 0.0505 (11) | 0.0008 (7) | 0.0163 (8) | 0.0045 (7) |
O6 | 0.0238 (9) | 0.0459 (9) | 0.0497 (11) | −0.0007 (7) | 0.0099 (8) | 0.0033 (8) |
N1 | 0.0297 (16) | 0.0532 (16) | 0.0384 (19) | −0.0021 (12) | 0.0018 (11) | 0.0007 (13) |
N2 | 0.0312 (11) | 0.0305 (10) | 0.0549 (14) | −0.0016 (8) | 0.0157 (11) | 0.0038 (10) |
N3 | 0.0270 (10) | 0.0294 (10) | 0.0432 (12) | −0.0012 (8) | 0.0098 (9) | 0.0027 (9) |
N4 | 0.0252 (10) | 0.0367 (10) | 0.0360 (12) | −0.0015 (8) | 0.0056 (9) | −0.0010 (9) |
N5 | 0.0282 (10) | 0.0387 (10) | 0.0360 (12) | −0.0020 (8) | 0.0056 (9) | 0.0026 (9) |
N6 | 0.0315 (11) | 0.0436 (11) | 0.0392 (12) | −0.0022 (9) | 0.0102 (10) | −0.0029 (10) |
C1 | 0.0211 (10) | 0.0229 (10) | 0.0247 (12) | 0.0007 (8) | 0.0020 (9) | 0.0013 (9) |
C2 | 0.0175 (10) | 0.0303 (11) | 0.0233 (11) | −0.0013 (8) | 0.0049 (9) | −0.0006 (9) |
C3 | 0.0248 (11) | 0.0259 (11) | 0.0264 (12) | −0.0071 (9) | 0.0043 (9) | −0.0008 (9) |
C4 | 0.0260 (11) | 0.0251 (11) | 0.0290 (12) | 0.0017 (9) | 0.0037 (10) | −0.0036 (9) |
C5 | 0.0214 (10) | 0.0277 (10) | 0.0224 (11) | 0.0004 (9) | 0.0040 (9) | −0.0009 (9) |
C6 | 0.0214 (11) | 0.0246 (10) | 0.0256 (12) | −0.0028 (8) | 0.0042 (9) | 0.0027 (9) |
C7 | 0.0262 (11) | 0.0285 (11) | 0.0277 (12) | 0.0007 (9) | 0.0068 (10) | −0.0018 (10) |
C8 | 0.0334 (14) | 0.0476 (15) | 0.0518 (18) | −0.0066 (11) | 0.0013 (13) | −0.0032 (13) |
C9 | 0.0535 (16) | 0.0340 (13) | 0.0365 (15) | 0.0042 (11) | 0.0079 (13) | 0.0055 (11) |
C10 | 0.0348 (14) | 0.0366 (13) | 0.0541 (18) | −0.0029 (10) | −0.0087 (13) | 0.0043 (12) |
C11 | 0.0286 (13) | 0.0331 (12) | 0.0596 (18) | 0.0022 (10) | 0.0152 (13) | 0.0077 (12) |
C12 | 0.0465 (16) | 0.0569 (16) | 0.0432 (16) | 0.0024 (12) | 0.0133 (13) | −0.0028 (13) |
C13 | 0.0370 (13) | 0.0336 (12) | 0.0372 (14) | −0.0034 (10) | 0.0139 (11) | −0.0009 (11) |
C14 | 0.0325 (13) | 0.0341 (12) | 0.0327 (14) | −0.0016 (10) | 0.0015 (11) | −0.0001 (10) |
C15 | 0.0244 (11) | 0.0245 (10) | 0.0360 (13) | −0.0001 (9) | 0.0049 (10) | 0.0016 (10) |
C16 | 0.0292 (12) | 0.0375 (12) | 0.0313 (13) | −0.0018 (10) | 0.0076 (10) | 0.0010 (10) |
C17 | 0.0266 (12) | 0.0371 (12) | 0.0379 (14) | −0.0028 (9) | 0.0014 (11) | 0.0026 (11) |
C18 | 0.0237 (11) | 0.0295 (11) | 0.0339 (13) | 0.0010 (9) | 0.0051 (10) | −0.0044 (10) |
C19 | 0.0315 (13) | 0.0365 (12) | 0.0361 (14) | 0.0006 (10) | 0.0076 (11) | 0.0026 (11) |
C20 | 0.0257 (12) | 0.0434 (13) | 0.0410 (15) | 0.0040 (10) | 0.0017 (11) | −0.0029 (12) |
C21 | 0.0387 (14) | 0.0421 (13) | 0.0330 (14) | −0.0031 (11) | 0.0107 (11) | 0.0010 (11) |
C22 | 0.0319 (12) | 0.0402 (13) | 0.0318 (13) | 0.0020 (10) | 0.0011 (10) | 0.0012 (11) |
C23 | 0.0410 (15) | 0.0501 (15) | 0.068 (2) | 0.0060 (12) | −0.0027 (14) | −0.0099 (14) |
O1—H1 | 0.84 (3) | C5—C6 | 1.392 (3) |
O1—C1 | 1.371 (2) | C5—C7 | 1.482 (3) |
O2—H2 | 0.86 (3) | C6—H6 | 0.9300 |
O2—C2 | 1.360 (2) | C8—H8 | 0.9300 |
O3—H3 | 0.88 (3) | C8—C12 | 1.368 (3) |
O3—C3 | 1.357 (2) | C9—H9 | 0.9300 |
O4—C7 | 1.224 (2) | C9—C10 | 1.386 (3) |
O5—H5 | 0.99 (3) | C10—H10 | 0.9300 |
O5—C7 | 1.314 (2) | C10—C11 | 1.384 (3) |
O6—H6A | 0.8154 | C11—C12 | 1.376 (3) |
O6—C23 | 1.417 (3) | C12—H12 | 0.9300 |
N1—N1i | 1.232 (4) | C13—H13 | 0.9300 |
N1—C11 | 1.453 (3) | C13—C14 | 1.379 (3) |
N1X—N1Xi | 1.239 (10) | C14—H14 | 0.9300 |
N1X—C11 | 1.483 (9) | C14—C15 | 1.384 (3) |
N2—C8 | 1.326 (3) | C15—C16 | 1.385 (3) |
N2—C9 | 1.332 (3) | C16—H16 | 0.9300 |
N3—C13 | 1.334 (3) | C16—C17 | 1.380 (3) |
N3—C17 | 1.339 (3) | C17—H17 | 0.9300 |
N4—N5 | 1.245 (2) | C18—C19 | 1.383 (3) |
N4—C15 | 1.433 (3) | C18—C22 | 1.378 (3) |
N5—C18 | 1.438 (3) | C19—H19 | 0.9300 |
N6—C20 | 1.341 (3) | C19—C20 | 1.383 (3) |
N6—C21 | 1.330 (3) | C20—H20 | 0.9300 |
C1—C2 | 1.399 (3) | C21—H21 | 0.9300 |
C1—C6 | 1.381 (3) | C21—C22 | 1.383 (3) |
C2—C3 | 1.400 (3) | C22—H22 | 0.9300 |
C3—C4 | 1.378 (3) | C23—H23A | 0.9600 |
C4—H4 | 0.9300 | C23—H23B | 0.9600 |
C4—C5 | 1.395 (3) | C23—H23C | 0.9600 |
C1—O1—H1 | 109.4 (17) | C10—C11—N1X | 91.0 (3) |
C2—O2—H2 | 115.5 (17) | C12—C11—N1 | 112.3 (2) |
C3—O3—H3 | 112.6 (19) | C12—C11—N1X | 150.0 (3) |
C7—O5—H5 | 112.8 (14) | C12—C11—C10 | 119.0 (2) |
C23—O6—H6A | 104.3 | C8—C12—C11 | 118.7 (2) |
N1i—N1—C11 | 110.5 (3) | C8—C12—H12 | 120.6 |
N1Xi—N1X—C11 | 106.9 (10) | C11—C12—H12 | 120.6 |
C8—N2—C9 | 117.2 (2) | N3—C13—H13 | 118.3 |
C13—N3—C17 | 117.73 (19) | N3—C13—C14 | 123.4 (2) |
N5—N4—C15 | 112.51 (19) | C14—C13—H13 | 118.3 |
N4—N5—C18 | 113.50 (19) | C13—C14—H14 | 121.1 |
C21—N6—C20 | 117.52 (19) | C13—C14—C15 | 117.9 (2) |
O1—C1—C2 | 115.87 (17) | C15—C14—H14 | 121.1 |
O1—C1—C6 | 123.58 (16) | C14—C15—N4 | 115.9 (2) |
C6—C1—C2 | 120.54 (17) | C14—C15—C16 | 119.80 (19) |
O2—C2—C1 | 123.65 (17) | C16—C15—N4 | 124.3 (2) |
O2—C2—C3 | 117.08 (16) | C15—C16—H16 | 121.1 |
C1—C2—C3 | 119.23 (17) | C17—C16—C15 | 117.7 (2) |
O3—C3—C2 | 121.84 (17) | C17—C16—H16 | 121.1 |
O3—C3—C4 | 118.18 (17) | N3—C17—C16 | 123.4 (2) |
C4—C3—C2 | 119.97 (17) | N3—C17—H17 | 118.3 |
C3—C4—H4 | 119.7 | C16—C17—H17 | 118.3 |
C3—C4—C5 | 120.58 (18) | C19—C18—N5 | 124.54 (19) |
C5—C4—H4 | 119.7 | C22—C18—N5 | 115.48 (19) |
C4—C5—C7 | 119.14 (17) | C22—C18—C19 | 119.97 (19) |
C6—C5—C4 | 119.70 (18) | C18—C19—H19 | 121.4 |
C6—C5—C7 | 121.15 (17) | C18—C19—C20 | 117.2 (2) |
C1—C6—C5 | 119.95 (17) | C20—C19—H19 | 121.4 |
C1—C6—H6 | 120.0 | N6—C20—C19 | 123.8 (2) |
C5—C6—H6 | 120.0 | N6—C20—H20 | 118.1 |
O4—C7—O5 | 123.09 (19) | C19—C20—H20 | 118.1 |
O4—C7—C5 | 122.20 (18) | N6—C21—H21 | 118.5 |
O5—C7—C5 | 114.71 (17) | N6—C21—C22 | 123.1 (2) |
N2—C8—H8 | 118.1 | C22—C21—H21 | 118.5 |
N2—C8—C12 | 123.8 (2) | C18—C22—C21 | 118.3 (2) |
C12—C8—H8 | 118.1 | C18—C22—H22 | 120.8 |
N2—C9—H9 | 118.2 | C21—C22—H22 | 120.8 |
N2—C9—C10 | 123.5 (2) | O6—C23—H23A | 109.5 |
C10—C9—H9 | 118.2 | O6—C23—H23B | 109.5 |
C9—C10—H10 | 121.1 | O6—C23—H23C | 109.5 |
C11—C10—C9 | 117.8 (2) | H23A—C23—H23B | 109.5 |
C11—C10—H10 | 121.1 | H23A—C23—H23C | 109.5 |
N1—C11—N1X | 37.8 (3) | H23B—C23—H23C | 109.5 |
C10—C11—N1 | 128.8 (2) | ||
O1—C1—C2—O2 | 0.2 (3) | C3—C4—C5—C6 | 0.3 (3) |
O1—C1—C2—C3 | −177.56 (18) | C3—C4—C5—C7 | −179.79 (19) |
O1—C1—C6—C5 | 178.69 (18) | C4—C5—C6—C1 | −0.5 (3) |
O2—C2—C3—O3 | −0.6 (3) | C4—C5—C7—O4 | −9.3 (3) |
O2—C2—C3—C4 | −179.80 (19) | C4—C5—C7—O5 | 169.88 (19) |
O3—C3—C4—C5 | −178.34 (19) | C6—C1—C2—O2 | 179.48 (19) |
N1i—N1—C11—N1X | −12.9 (8) | C6—C1—C2—C3 | 1.7 (3) |
N1i—N1—C11—C10 | −12.1 (4) | C6—C5—C7—O4 | 170.6 (2) |
N1i—N1—C11—C12 | 168.9 (3) | C6—C5—C7—O5 | −10.2 (3) |
N1—C11—C12—C8 | −178.3 (2) | C7—C5—C6—C1 | 179.6 (2) |
N1Xi—N1X—C11—N1 | 12.6 (8) | C8—N2—C9—C10 | 1.9 (3) |
N1Xi—N1X—C11—C10 | −166.8 (14) | C9—N2—C8—C12 | −0.9 (3) |
N1Xi—N1X—C11—C12 | 16 (2) | C9—C10—C11—N1 | 179.4 (2) |
N1X—C11—C12—C8 | 179.4 (10) | C9—C10—C11—N1X | 179.9 (5) |
N2—C8—C12—C11 | −1.3 (4) | C9—C10—C11—C12 | −1.7 (3) |
N2—C9—C10—C11 | −0.6 (3) | C10—C11—C12—C8 | 2.6 (3) |
N3—C13—C14—C15 | −3.8 (3) | C13—N3—C17—C16 | 1.8 (3) |
N4—N5—C18—C19 | −21.4 (3) | C13—C14—C15—N4 | −175.97 (17) |
N4—N5—C18—C22 | 159.80 (19) | C13—C14—C15—C16 | 4.0 (3) |
N4—C15—C16—C17 | 178.45 (18) | C14—C15—C16—C17 | −1.5 (3) |
N5—N4—C15—C14 | 158.93 (18) | C15—N4—N5—C18 | −179.91 (16) |
N5—N4—C15—C16 | −21.0 (3) | C15—C16—C17—N3 | −1.5 (3) |
N5—C18—C19—C20 | −179.0 (2) | C17—N3—C13—C14 | 0.9 (3) |
N5—C18—C22—C21 | −179.25 (19) | C18—C19—C20—N6 | −0.9 (3) |
N6—C21—C22—C18 | −2.6 (3) | C19—C18—C22—C21 | 1.9 (3) |
C1—C2—C3—O3 | 177.32 (19) | C20—N6—C21—C22 | 1.6 (3) |
C1—C2—C3—C4 | −1.9 (3) | C21—N6—C20—C19 | 0.3 (3) |
C2—C1—C6—C5 | −0.6 (3) | C22—C18—C19—C20 | −0.2 (3) |
C2—C3—C4—C5 | 0.9 (3) |
Symmetry code: (i) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4ii | 0.84 (3) | 1.91 (3) | 2.750 (2) | 175 (2) |
O2—H2···O6iii | 0.86 (3) | 1.83 (3) | 2.650 (2) | 158 (2) |
O3—H3···N2 | 0.88 (3) | 1.90 (3) | 2.730 (2) | 157 (3) |
O5—H5···N3ii | 0.99 (3) | 1.64 (3) | 2.623 (2) | 174 (2) |
O6—H6A···N6iv | 0.82 | 1.94 | 2.755 (2) | 173 |
Symmetry codes: (ii) −x+3/2, y+1/2, −z+1/2; (iii) −x+1, −y+1, −z+1; (iv) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | 3C10H8N4·2C7H6O5·2CH4O |
Mr | 956.93 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 200 |
a, b, c (Å) | 13.555 (5), 11.711 (5), 14.213 (5) |
β (°) | 93.427 (5) |
V (Å3) | 2252.2 (15) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.2 × 0.2 × 0.1 |
Data collection | |
Diffractometer | Agilent Xcalibur Eos |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2012) |
Tmin, Tmax | 0.982, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9591, 4431, 3050 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.124, 1.03 |
No. of reflections | 4431 |
No. of parameters | 339 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.22, −0.26 |
Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4i | 0.84 (3) | 1.91 (3) | 2.750 (2) | 175 (2) |
O2—H2···O6ii | 0.86 (3) | 1.83 (3) | 2.650 (2) | 158 (2) |
O3—H3···N2 | 0.88 (3) | 1.90 (3) | 2.730 (2) | 157 (3) |
O5—H5···N3i | 0.99 (3) | 1.64 (3) | 2.623 (2) | 174 (2) |
O6—H6A···N6iii | 0.82 | 1.94 | 2.755 (2) | 172.8 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x+1, y, z. |
Acknowledgements
This research was supported financially by the European Regional Development Fund, Sectoral Operational Programme `Increase of Economic Competitiveness', Priority Axis 2 (SOP IEC-A2-O2.1.2-2009-2, ID 570, COD SMIS-CSNR: 12473, Contract No. 129/2010-POLISILMET).
References
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fazary, A. E., Taha, M. & Ju, Y. H. (2009). J. Chem. Eng. Data, 54, 35–42. Web of Science CrossRef CAS Google Scholar
Kanoo, P., Ghosh, A. C., Cyriac, S. T. & Maji, T. K. (2012). Chem. Eur. J. 18, 237–244. Web of Science CSD CrossRef CAS PubMed Google Scholar
Launay, J.-P., Tourrel-Pagis, M., Lipskier, J.-F., Marvaud, V. & Joachim, C. (1991). Inorg. Chem. 30, 1033–1038. CrossRef CAS Web of Science Google Scholar
Qiu, F., Ge, C., Gu, X. & Yang, D. (2011). Int. J. Polym. Anal. Charact. 16, 36–48. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhuang, Z., Cheng, J., Wang, X., Yin, Y., Chen, G., Zhao, B., Zhang, H. & Zhang, G. (2006). J. Mol. Struct. 79, 477–482. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As a part of our research interest in the photosensitive compounds, we report analysis of the crystal structure of the title compound that comprises 1:1.5:1 gallic acid, 4,4'-azodipyridine and methanol molecules. The asymmetric unit of the title compound along with the atom numbering scheme is depicted in Figure 1. Gallic acid has a great potential for structure extension by the three hydroxyl groups and carboxyl function (Fazary et al., 2009). 4,4'-Azodipyridine has been widely used for its bidentate type ligand ability (Zhuang et al.,2006; Kanoo, et al., 2012) and photoswitchable properties (Qiu, et al., 2011). In the crystal all components of the structure are interacting via an extended system of O-H_ _ _O and O-H_ _ _N hydrogen bonds, the formation of which is completely realised. The geometry of the hydrogen bonds is listed in the Table 1. The crystal structure essentially results from the packing of two-dimensional supramolecular layers in parallel orientation to the [101] plane (Figure 2). In addition, each layer is consolidated by π-π stacking interaction, which is evidenced by centroid-to-centroid distance of 3.637 Å between adjacent centrosymmetrically related AzPy rings denoted by C18 C19 C20 C21 C22 and N6 atoms.