organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-3-(4-Methyl­phen­yl)-1-(pyridin-3-yl)prop-2-en-1-one

aDepartment of Chemistry, State University of Goias, Anapolis, Brazil, and bDepartment of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556-5670, USA
*Correspondence e-mail: aoliver2@nd.edu

(Received 17 July 2012; accepted 18 July 2012; online 28 July 2012)

The title compound, C15H13NO, has two crystallographically independent mol­ecules in the asymmetric unit which differ principally in the periplanar angle formed by the benzene and pyridine rings [41.41 (3) and 17.92 (5)°]. The mol­ecules exhibit an E conformation between the keto group with respect to the olefin double bond.

Related literature

For background to related compounds, see: Katsori & Hadjipavlou-Litina (2011[Katsori, A. M. & Hadjipavlou-Litina, D. (2011). Exp. Opin. Ther. Patents, 21, 1575-1596.]). For biological and medicinal applications of chalcones, see: Bandgar et al. (2010[Bandgar, B. P., Patil, S. A., Korbad, B. L., Nile, S. H. & Khobragade, C. N. (2010). Eur. J. Med. Chem. 45, 2629-2633.]); Juvale et al. (2012[Juvale, K., Pape, V. F. S. & Wiese, M. (2012). Bioorg. Med. Chem. 20, 346-355.]); Liu et al. (2003[Liu, M., Wilairat, P., Croft, S. L., Tand, A. L. C. & Goa, M. L. (2003). Bioorg. Med. Chem. 11, 2729-2738.]); Sivakumar et al. (2011[Sivakumar, P. M., Prabhakar, P. K. & Doble, M. (2011). Med. Chem. Res. 20, 482-492.]); Trivedi et al. (2007[Trivedi, J. C., Bariwal, J. B., Upadhyay, K. D., Naliapara, Y. T., Joshi, S. K., Pannecouque, C. C., Clercqd, E. D. & Shah, A. K. (2007). Tetrahedron Lett. 48, 8472-8474.]); Viana et al. (2003[Viana, G. S. B., Bandeira, M. A. M. & Matos, F. J. A. (2003). Phytomedicine, 10, 189-195.]). For the synthesis of chalcones, see: Patil et al. (2009[Patil, C. B., Mahajan, S. K. & Katti, S. A. (2009). J. Pharm. Sci. Res. 3, 11-22.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13NO

  • Mr = 223.26

  • Triclinic, [P \overline 1]

  • a = 5.9026 (7) Å

  • b = 14.2199 (16) Å

  • c = 14.6772 (17) Å

  • α = 69.654 (2)°

  • β = 84.231 (2)°

  • γ = 81.280 (2)°

  • V = 1140.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 120 K

  • 0.19 × 0.08 × 0.05 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker-Nonius AXS, Madison, Wisconsin, USA.]) Tmin = 0.988, Tmax = 0.997

  • 23125 measured reflections

  • 4692 independent reflections

  • 3684 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.105

  • S = 1.03

  • 4692 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker-Nonius AXS, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker-Nonius AXS, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: POV-RAY (Cason, 2003[Cason, C. J. (2003). POV-RAY. Persistence of Vision Raytracer Pty. Ltd, Victoria, Australia.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

1,3-Diphenyl-2-propene-1-ones are a class of organic compound that have two aromatic rings bridged by a prop-2-en-1-one group. These compounds belong to the open-chain flavonoid family and possess a wide variety of cytoprotective and modulatory functions, which may have therapeutic potential for multiple diseases. These compounds can be found naturally or can be synthesized by aldol Claisen-Schmidt condensation using alkaline (base) catalysis (Patil et al. 2009). Natural chalcones appear mainly as petal pigments and in the heartwood, leaf, fruit and root of different kinds of flora.

A large number of chalcones and their corresponding heterocyclic analogues are a medicinally important class of compounds. It has been shown that chalcones exhibit biological activity against many diseases vectors. Currently, activities of natural and synthetic chalcones include: anticancer (Juvale et al. 2012), antioxidant (Sivakumar et al. 2011), analgesic (Viana et al. 2003), antileishmanial and antimalarial (Liu et al. 2003), antimicrobial (Bandgar et al. 2010) and antiviral (Trivedi et al. 2007) properties.

The pharmacological properties of chalcones are intrinsically linked to the substitution pattern of the two aromatic rings. Their versatility is attributed to the α,β-unsaturated ketene moiety, the conjugated double bonds and the completely delocalized π-electron system on both aromatic rings (Katsori & Hadjipavlou-Litina, 2011).

The structural characterization of (2E)-3-(4-methylphenyl)-1-(pyridin-3-yl)prop-2-en-1-one (I) shows that there are two crystallographically independent yet chemically identical molecules in the asymmetric unit (Fig 1). The two molecules differ primarily in the periplanar angle formed by the pyridine and toluene rings: N1—C5(py)···C9—C14(tol) = 41.41 (3)°; N2—C20(py)···C24—C29(tol) = 17.92 (5)°. Differences between the independent molecules are highlighted in the overlay diagram (Fig 2). The different twists within the two molecules is reflected in the torsion angles across the ethylene bond (O1—C6—C7—C8 = 8.6 (2)° and O2—C21—C22—C23 = -14.8 (2)°). Steric interactions between the aromatic and ethylene H atoms are a likely cause for these twists.

Related literature top

For background to related compounds, see: Katsori & Hadjipavlou-Litina (2011). For biological and medicinal applications of chalcones, see: Bandgar et al. (2010); Juvale et al. (2012); Liu et al. (2003); Sivakumar et al. (2011); Trivedi et al. (2007); Viana et al. (2003). For the synthesis of chalcones, see: Patil et al. (2009).

Experimental top

(2E)-3-(4-Methylphenyl)-1-(pyridin-3-yl)prop-2-en-1-one was obtained using heterogeneous base catalysis. 3-acetyl pyridine 0.270 ml (2.47 mmol) was solubilized in 2 ml of methanol, to which was added 10 ml of 50% potassium hydroxide solution and 0.300 ml (2.47 mmol) of 3-methylbenzaldehyde, successively. The mixture was stirred at ambient conditions and the reaction progress monitored by TLC (Thin Layer Chromatography). Upon reaction completion the mixture was neutralized with a 10% HCl solution. The solid product was washed with water and filtered and subsequently recrystallized from ethanol. The reaction yield was 0.47 g (86%). Suitable crystals of (I) were grown by slow evaporation from a methanol solution..

The Infra-Red spectrum was recorded on a Perkin-Elmer model Spectrum Frontier, from 400 at 4000 cm-1 as a KBr pellet: 2916 cm-1 CH3; 1658 cm-1 C O; 1596 cm-1 CC (Ethylene); 1011 cm-1 C—N (py), 803 cm-1 C(Ar). The 1H NMR analyses was determined on a Bruker Avance III 500 MHz (11.75 T), spectrometer in DMSO using tetramethyl silane as internal standard. δ 9.23–7.46 (m, 8H Ar); 7.46 (dd, 2H ethylene (H); 2.48 (s, 3H Me).

Refinement top

The hydrogen atoms were initially located from a difference Fourier map and subsequently refined in geometrically calculated positions with methyl C–H distances constrained to 0.98 Å and ethylene and aromatic C–H distances constrained to 0.95 Å. Methyl H atoms were allowed to rotate to minimize the electron density contribution. Thermal parameters of hydrogen atoms were tied to that of the atom to which they are bonded (1.5 × Ueq for methyl, 1.2 × Ueq for all others). All non-hydrogen atoms were refined with anisotropic displacement parameters.

Structure description top

1,3-Diphenyl-2-propene-1-ones are a class of organic compound that have two aromatic rings bridged by a prop-2-en-1-one group. These compounds belong to the open-chain flavonoid family and possess a wide variety of cytoprotective and modulatory functions, which may have therapeutic potential for multiple diseases. These compounds can be found naturally or can be synthesized by aldol Claisen-Schmidt condensation using alkaline (base) catalysis (Patil et al. 2009). Natural chalcones appear mainly as petal pigments and in the heartwood, leaf, fruit and root of different kinds of flora.

A large number of chalcones and their corresponding heterocyclic analogues are a medicinally important class of compounds. It has been shown that chalcones exhibit biological activity against many diseases vectors. Currently, activities of natural and synthetic chalcones include: anticancer (Juvale et al. 2012), antioxidant (Sivakumar et al. 2011), analgesic (Viana et al. 2003), antileishmanial and antimalarial (Liu et al. 2003), antimicrobial (Bandgar et al. 2010) and antiviral (Trivedi et al. 2007) properties.

The pharmacological properties of chalcones are intrinsically linked to the substitution pattern of the two aromatic rings. Their versatility is attributed to the α,β-unsaturated ketene moiety, the conjugated double bonds and the completely delocalized π-electron system on both aromatic rings (Katsori & Hadjipavlou-Litina, 2011).

The structural characterization of (2E)-3-(4-methylphenyl)-1-(pyridin-3-yl)prop-2-en-1-one (I) shows that there are two crystallographically independent yet chemically identical molecules in the asymmetric unit (Fig 1). The two molecules differ primarily in the periplanar angle formed by the pyridine and toluene rings: N1—C5(py)···C9—C14(tol) = 41.41 (3)°; N2—C20(py)···C24—C29(tol) = 17.92 (5)°. Differences between the independent molecules are highlighted in the overlay diagram (Fig 2). The different twists within the two molecules is reflected in the torsion angles across the ethylene bond (O1—C6—C7—C8 = 8.6 (2)° and O2—C21—C22—C23 = -14.8 (2)°). Steric interactions between the aromatic and ethylene H atoms are a likely cause for these twists.

For background to related compounds, see: Katsori & Hadjipavlou-Litina (2011). For biological and medicinal applications of chalcones, see: Bandgar et al. (2010); Juvale et al. (2012); Liu et al. (2003); Sivakumar et al. (2011); Trivedi et al. (2007); Viana et al. (2003). For the synthesis of chalcones, see: Patil et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: POV-RAY (Cason, 2003) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I). Anisotropic displacement ellipsoids depicted at 50% probabilty. H atoms included as spheres of an arbitrary radius.
[Figure 2] Fig. 2. An overlay diagram of the two independent molecules in the asymmetric unit of (I).
(2E)-3-(4-Methylphenyl)-1-(pyridin-3-yl)prop-2-en-1-one top
Crystal data top
C15H13NOZ = 4
Mr = 223.26F(000) = 472
Triclinic, P1Dx = 1.301 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9026 (7) ÅCell parameters from 6635 reflections
b = 14.2199 (16) Åθ = 2.5–26.4°
c = 14.6772 (17) ŵ = 0.08 mm1
α = 69.654 (2)°T = 120 K
β = 84.231 (2)°Block, colourless
γ = 81.280 (2)°0.19 × 0.08 × 0.05 mm
V = 1140.2 (2) Å3
Data collection top
Bruker APEXII
diffractometer
4692 independent reflections
Radiation source: fine-focus sealed tube3684 reflections with I > 2σ(I)
Bruker TRIUMPH curved-graphite monochromatorRint = 0.027
Detector resolution: 8.33 pixels mm-1θmax = 26.5°, θmin = 1.5°
combination of ω and φ–scansh = 77
Absorption correction: numerical
(SADABS; Bruker, 2012
k = 1717
Tmin = 0.988, Tmax = 0.997l = 1818
23125 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.4373P]
where P = (Fo2 + 2Fc2)/3
4692 reflections(Δ/σ)max = 0.001
309 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C15H13NOγ = 81.280 (2)°
Mr = 223.26V = 1140.2 (2) Å3
Triclinic, P1Z = 4
a = 5.9026 (7) ÅMo Kα radiation
b = 14.2199 (16) ŵ = 0.08 mm1
c = 14.6772 (17) ÅT = 120 K
α = 69.654 (2)°0.19 × 0.08 × 0.05 mm
β = 84.231 (2)°
Data collection top
Bruker APEXII
diffractometer
4692 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2012
3684 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.997Rint = 0.027
23125 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.03Δρmax = 0.23 e Å3
4692 reflectionsΔρmin = 0.23 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.21189 (17)0.89124 (8)0.50027 (8)0.0260 (3)
N11.0864 (2)0.99097 (10)0.21022 (9)0.0252 (3)
C10.8702 (3)1.02931 (11)0.18543 (11)0.0231 (3)
H10.84251.06110.11830.028*
C20.6856 (2)1.02514 (11)0.25204 (11)0.0226 (3)
H20.53551.05310.23070.027*
C30.7227 (2)0.97950 (11)0.35032 (11)0.0209 (3)
H30.59860.97500.39760.025*
C40.9451 (2)0.94052 (10)0.37837 (10)0.0185 (3)
C51.1185 (2)0.94819 (11)0.30519 (11)0.0217 (3)
H51.27040.92100.32440.026*
C61.0128 (2)0.89387 (10)0.48122 (11)0.0199 (3)
C70.8380 (2)0.85094 (11)0.55766 (10)0.0207 (3)
H70.69110.84550.54020.025*
C80.8858 (2)0.81970 (10)0.65125 (11)0.0199 (3)
H81.03160.83090.66470.024*
C90.7396 (2)0.77026 (10)0.73542 (10)0.0188 (3)
C100.5392 (2)0.73304 (11)0.72701 (11)0.0211 (3)
H100.49360.74000.66450.025*
C110.4071 (2)0.68613 (11)0.80912 (11)0.0219 (3)
H110.27190.66120.80190.026*
C120.4676 (3)0.67463 (11)0.90202 (11)0.0224 (3)
C130.6673 (3)0.71086 (11)0.91037 (11)0.0238 (3)
H130.71270.70340.97300.029*
C140.8011 (2)0.75763 (11)0.82884 (11)0.0219 (3)
H140.93720.78160.83650.026*
C150.3179 (3)0.62614 (13)0.99064 (12)0.0319 (4)
H15A0.21290.58810.97390.048*
H15B0.22900.67871.01310.048*
H15C0.41460.58011.04250.048*
O21.03753 (17)0.70034 (8)0.34296 (8)0.0276 (3)
N20.9368 (2)0.84417 (10)0.05356 (9)0.0258 (3)
C160.7218 (3)0.87995 (11)0.02547 (11)0.0244 (3)
H160.70030.91680.04140.029*
C170.5298 (3)0.86595 (11)0.08880 (11)0.0241 (3)
H170.38070.89190.06540.029*
C180.5586 (2)0.81352 (11)0.18673 (10)0.0205 (3)
H180.42950.80280.23160.025*
C190.7788 (2)0.77691 (10)0.21845 (10)0.0179 (3)
C200.9597 (2)0.79400 (11)0.14810 (11)0.0225 (3)
H201.11050.76790.16930.027*
C210.8356 (2)0.72037 (10)0.32200 (10)0.0193 (3)
C220.6481 (2)0.68910 (11)0.39596 (10)0.0207 (3)
H220.49460.71850.38170.025*
C230.6925 (2)0.61986 (11)0.48271 (10)0.0195 (3)
H230.84870.59240.49280.023*
C240.5285 (2)0.58134 (10)0.56403 (10)0.0182 (3)
C250.2975 (2)0.62264 (11)0.56456 (10)0.0200 (3)
H250.24010.67590.50890.024*
C260.1526 (2)0.58659 (11)0.64536 (11)0.0213 (3)
H260.00320.61590.64440.026*
C270.2294 (3)0.50814 (11)0.72827 (10)0.0208 (3)
C280.4577 (3)0.46570 (11)0.72671 (10)0.0222 (3)
H280.51340.41120.78180.027*
C290.6049 (2)0.50143 (11)0.64645 (10)0.0208 (3)
H290.76000.47130.64730.025*
C300.0694 (3)0.47278 (12)0.81652 (11)0.0287 (4)
H30A0.04310.52970.82040.043*
H30B0.15780.44630.87520.043*
H30C0.01060.41940.81140.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0183 (5)0.0319 (6)0.0242 (6)0.0048 (4)0.0003 (4)0.0046 (5)
N10.0232 (6)0.0308 (7)0.0206 (7)0.0072 (5)0.0043 (5)0.0073 (6)
C10.0272 (8)0.0238 (7)0.0171 (7)0.0070 (6)0.0004 (6)0.0042 (6)
C20.0204 (7)0.0219 (7)0.0238 (8)0.0026 (6)0.0011 (6)0.0057 (6)
C30.0185 (7)0.0222 (7)0.0213 (8)0.0042 (6)0.0041 (6)0.0072 (6)
C40.0202 (7)0.0161 (7)0.0192 (7)0.0056 (5)0.0019 (6)0.0055 (6)
C50.0171 (7)0.0240 (7)0.0231 (8)0.0036 (6)0.0011 (6)0.0070 (6)
C60.0196 (7)0.0179 (7)0.0218 (8)0.0019 (5)0.0008 (6)0.0067 (6)
C70.0191 (7)0.0218 (7)0.0202 (8)0.0043 (6)0.0010 (6)0.0054 (6)
C80.0178 (7)0.0181 (7)0.0232 (8)0.0026 (5)0.0003 (6)0.0064 (6)
C90.0200 (7)0.0168 (7)0.0186 (7)0.0011 (5)0.0006 (6)0.0054 (6)
C100.0231 (7)0.0237 (7)0.0187 (7)0.0043 (6)0.0007 (6)0.0092 (6)
C110.0210 (7)0.0236 (7)0.0229 (8)0.0068 (6)0.0023 (6)0.0093 (6)
C120.0238 (7)0.0205 (7)0.0210 (8)0.0026 (6)0.0033 (6)0.0058 (6)
C130.0267 (8)0.0270 (8)0.0173 (8)0.0021 (6)0.0031 (6)0.0071 (6)
C140.0200 (7)0.0227 (7)0.0232 (8)0.0033 (6)0.0030 (6)0.0074 (6)
C150.0324 (9)0.0383 (9)0.0219 (9)0.0096 (7)0.0070 (7)0.0065 (7)
O20.0176 (5)0.0349 (6)0.0241 (6)0.0022 (4)0.0027 (4)0.0023 (5)
N20.0243 (7)0.0301 (7)0.0195 (7)0.0064 (5)0.0032 (5)0.0037 (6)
C160.0293 (8)0.0244 (8)0.0162 (8)0.0045 (6)0.0005 (6)0.0025 (6)
C170.0211 (7)0.0268 (8)0.0210 (8)0.0016 (6)0.0031 (6)0.0037 (6)
C180.0185 (7)0.0222 (7)0.0192 (8)0.0034 (6)0.0028 (6)0.0058 (6)
C190.0194 (7)0.0161 (7)0.0183 (7)0.0037 (5)0.0002 (5)0.0058 (6)
C200.0174 (7)0.0250 (8)0.0231 (8)0.0038 (6)0.0003 (6)0.0054 (6)
C210.0194 (7)0.0175 (7)0.0204 (8)0.0020 (6)0.0005 (6)0.0057 (6)
C220.0190 (7)0.0237 (7)0.0183 (8)0.0025 (6)0.0006 (6)0.0059 (6)
C230.0185 (7)0.0215 (7)0.0197 (7)0.0025 (6)0.0014 (6)0.0086 (6)
C240.0221 (7)0.0189 (7)0.0158 (7)0.0053 (6)0.0020 (5)0.0070 (6)
C250.0231 (7)0.0197 (7)0.0161 (7)0.0029 (6)0.0032 (6)0.0038 (6)
C260.0209 (7)0.0230 (7)0.0214 (8)0.0044 (6)0.0006 (6)0.0091 (6)
C270.0278 (8)0.0206 (7)0.0166 (7)0.0093 (6)0.0006 (6)0.0073 (6)
C280.0302 (8)0.0196 (7)0.0154 (7)0.0057 (6)0.0050 (6)0.0019 (6)
C290.0211 (7)0.0200 (7)0.0213 (8)0.0020 (6)0.0036 (6)0.0065 (6)
C300.0337 (9)0.0303 (8)0.0210 (8)0.0112 (7)0.0042 (7)0.0057 (7)
Geometric parameters (Å, º) top
O1—C61.2269 (17)C25—C261.381 (2)
N1—C51.3332 (19)C26—C271.395 (2)
N1—C11.3427 (19)C27—C281.392 (2)
C1—C21.383 (2)C27—C301.506 (2)
C2—C31.385 (2)C28—C291.383 (2)
C3—C41.389 (2)C1—H10.9500
C4—C51.395 (2)C2—H20.9500
C4—C61.491 (2)C3—H30.9500
C6—C71.4758 (19)C5—H50.9500
C7—C81.334 (2)C7—H70.9500
C8—C91.4596 (19)C8—H80.9500
C9—C141.397 (2)C10—H100.9500
C9—C101.400 (2)C11—H110.9500
C10—C111.384 (2)C13—H130.9500
C11—C121.392 (2)C14—H140.9500
C12—C131.388 (2)C15—H15A0.9800
C12—C151.509 (2)C15—H15B0.9800
C13—C141.383 (2)C15—H15C0.9800
O2—C211.2270 (17)C16—H160.9500
N2—C201.3315 (19)C17—H170.9500
N2—C161.342 (2)C18—H180.9500
C16—C171.384 (2)C20—H200.9500
C17—C181.384 (2)C22—H220.9500
C18—C191.387 (2)C23—H230.9500
C19—C201.395 (2)C25—H250.9500
C19—C211.497 (2)C26—H260.9500
C21—C221.4742 (19)C28—H280.9500
C22—C231.333 (2)C29—H290.9500
C23—C241.4614 (19)C30—H30A0.9800
C24—C291.399 (2)C30—H30B0.9800
C24—C251.401 (2)C30—H30C0.9800
C5—N1—C1116.27 (13)C3—C2—H2120.5
N1—C1—C2123.74 (14)C2—C3—H3120.7
C1—C2—C3118.99 (14)C4—C3—H3120.7
C2—C3—C4118.63 (13)N1—C5—H5117.7
C3—C4—C5117.69 (13)C4—C5—H5117.7
C3—C4—C6124.68 (13)C8—C7—H7119.9
C5—C4—C6117.60 (12)C6—C7—H7119.9
N1—C5—C4124.67 (13)C7—C8—H8116.3
O1—C6—C7121.61 (13)C9—C8—H8116.3
O1—C6—C4119.53 (13)C11—C10—H10119.8
C7—C6—C4118.86 (12)C9—C10—H10119.8
C8—C7—C6120.17 (13)C10—C11—H11119.2
C7—C8—C9127.43 (13)C12—C11—H11119.2
C14—C9—C10117.80 (13)C14—C13—H13119.5
C14—C9—C8119.54 (13)C12—C13—H13119.5
C10—C9—C8122.65 (13)C13—C14—H14119.4
C11—C10—C9120.46 (14)C9—C14—H14119.4
C10—C11—C12121.58 (14)C12—C15—H15A109.5
C13—C12—C11117.93 (13)C12—C15—H15B109.5
C13—C12—C15121.11 (14)H15A—C15—H15B109.5
C11—C12—C15120.95 (14)C12—C15—H15C109.5
C14—C13—C12121.01 (14)H15A—C15—H15C109.5
C13—C14—C9121.21 (14)H15B—C15—H15C109.5
C20—N2—C16116.36 (13)N2—C16—H16118.2
N2—C16—C17123.51 (14)C17—C16—H16118.2
C16—C17—C18118.90 (14)C16—C17—H17120.5
C17—C18—C19119.07 (13)C18—C17—H17120.5
C18—C19—C20117.21 (13)C17—C18—H18120.5
C18—C19—C21124.84 (13)C19—C18—H18120.5
C20—C19—C21117.95 (12)N2—C20—H20117.5
N2—C20—C19124.94 (13)C19—C20—H20117.5
O2—C21—C19119.07 (13)C26—C25—H25119.8
C22—C21—C19119.23 (12)C23—C22—H22119.8
C23—C22—C21120.45 (13)C21—C22—H22119.8
O2—C21—C22121.69 (13)C22—C23—H23116.3
C22—C23—C24127.46 (13)C24—C23—H23116.3
C29—C24—C25117.97 (13)C24—C25—H25119.8
C29—C24—C23119.10 (13)C25—C26—H26119.2
C25—C24—C23122.92 (13)C27—C26—H26119.2
C26—C25—C24120.50 (13)C29—C28—H28119.4
C25—C26—C27121.60 (14)C27—C28—H28119.4
C28—C27—C26117.77 (13)C28—C29—H29119.5
C28—C27—C30121.84 (13)C24—C29—H29119.5
C26—C27—C30120.38 (14)C27—C30—H30A109.5
C29—C28—C27121.19 (13)C27—C30—H30B109.5
C28—C29—C24120.94 (13)H30A—C30—H30B109.5
N1—C1—H1118.1C27—C30—H30C109.5
C2—C1—H1118.1H30A—C30—H30C109.5
C1—C2—H2120.5H30B—C30—H30C109.5
C5—N1—C1—C20.9 (2)C20—N2—C16—C170.8 (2)
N1—C1—C2—C30.3 (2)N2—C16—C17—C180.9 (2)
C1—C2—C3—C40.7 (2)C16—C17—C18—C190.2 (2)
C2—C3—C4—C51.1 (2)C17—C18—C19—C201.2 (2)
C2—C3—C4—C6176.94 (13)C17—C18—C19—C21179.11 (14)
C1—N1—C5—C40.4 (2)C16—N2—C20—C190.3 (2)
C3—C4—C5—N10.5 (2)C18—C19—C20—N21.3 (2)
C6—C4—C5—N1177.64 (13)C21—C19—C20—N2178.99 (14)
C3—C4—C6—O1156.74 (14)C18—C19—C21—O2172.83 (14)
C5—C4—C6—O121.3 (2)C20—C19—C21—O27.5 (2)
C3—C4—C6—C723.9 (2)C18—C19—C21—C227.9 (2)
C5—C4—C6—C7158.09 (13)C20—C19—C21—C22171.81 (13)
O1—C6—C7—C88.6 (2)O2—C21—C22—C2314.8 (2)
C4—C6—C7—C8171.99 (13)C19—C21—C22—C23164.46 (13)
C6—C7—C8—C9176.07 (13)C21—C22—C23—C24179.32 (13)
C7—C8—C9—C14169.49 (14)C22—C23—C24—C29173.98 (14)
C7—C8—C9—C1011.4 (2)C22—C23—C24—C257.7 (2)
C14—C9—C10—C110.5 (2)C29—C24—C25—C261.6 (2)
C8—C9—C10—C11179.57 (13)C23—C24—C25—C26176.72 (13)
C9—C10—C11—C120.2 (2)C24—C25—C26—C270.4 (2)
C10—C11—C12—C130.7 (2)C25—C26—C27—C281.0 (2)
C10—C11—C12—C15178.11 (14)C25—C26—C27—C30177.93 (14)
C11—C12—C13—C140.5 (2)C26—C27—C28—C291.3 (2)
C15—C12—C13—C14178.31 (14)C30—C27—C28—C29177.61 (14)
C12—C13—C14—C90.2 (2)C27—C28—C29—C240.2 (2)
C10—C9—C14—C130.7 (2)C25—C24—C29—C281.3 (2)
C8—C9—C14—C13179.79 (13)C23—C24—C29—C28177.09 (13)

Experimental details

Crystal data
Chemical formulaC15H13NO
Mr223.26
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)5.9026 (7), 14.2199 (16), 14.6772 (17)
α, β, γ (°)69.654 (2), 84.231 (2), 81.280 (2)
V3)1140.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.19 × 0.08 × 0.05
Data collection
DiffractometerBruker APEXII
Absorption correctionNumerical
(SADABS; Bruker, 2012
Tmin, Tmax0.988, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
23125, 4692, 3684
Rint0.027
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.105, 1.03
No. of reflections4692
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.23

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), POV-RAY (Cason, 2003) and ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Brazilian program Science Without Borders, the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Office of the Vice President for Research at the University of Notre Dame.

References

First citationBandgar, B. P., Patil, S. A., Korbad, B. L., Nile, S. H. & Khobragade, C. N. (2010). Eur. J. Med. Chem. 45, 2629–2633.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker–Nonius AXS, Madison, Wisconsin, USA.  Google Scholar
First citationCason, C. J. (2003). POV-RAY. Persistence of Vision Raytracer Pty. Ltd, Victoria, Australia.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJuvale, K., Pape, V. F. S. & Wiese, M. (2012). Bioorg. Med. Chem. 20, 346–355.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKatsori, A. M. & Hadjipavlou-Litina, D. (2011). Exp. Opin. Ther. Patents, 21, 1575–1596.  Google Scholar
First citationLiu, M., Wilairat, P., Croft, S. L., Tand, A. L. C. & Goa, M. L. (2003). Bioorg. Med. Chem. 11, 2729–2738.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPatil, C. B., Mahajan, S. K. & Katti, S. A. (2009). J. Pharm. Sci. Res. 3, 11–22.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivakumar, P. M., Prabhakar, P. K. & Doble, M. (2011). Med. Chem. Res. 20, 482–492.  Web of Science CrossRef CAS Google Scholar
First citationTrivedi, J. C., Bariwal, J. B., Upadhyay, K. D., Naliapara, Y. T., Joshi, S. K., Pannecouque, C. C., Clercqd, E. D. & Shah, A. K. (2007). Tetrahedron Lett. 48, 8472–8474.  Web of Science CrossRef CAS Google Scholar
First citationViana, G. S. B., Bandeira, M. A. M. & Matos, F. J. A. (2003). Phytomedicine, 10, 189–195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds