organic compounds
Methyl 2-(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)-4-nitrobenzoate
aDepartment of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, bDepartment of Chemical Crystallography, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and cSchool of Chemistry, University of Sydney, Camperdown 2006, Sydney, Australia
*Correspondence e-mail: michela.simone@sydney.edu.au
The six-membered boronate ester ring of the title compound, C13H16BNO6, adopts an with the C atom bearing the dimethyl substituents at the flap. The O—B—C—C torsion angles between the boronate group and the benzene ring are 72.5 (2) and 81.0 (2)°. The 4-nitrobenzoate unit adopts a slightly twisted conformation, with dihedral angles between the benzene ring and the nitrate and methyl ester groups of 17.5 (2) and 14.4 (3)°, respectively. In the crystal, inversion-related pairs of molecules show weak π–π stacking interactions [centroid–centroid distance = 4.0585 (9) Å and interplanar spacing = 3.6254 (7) Å].
Related literature
For use of ); for their use as sensors in the alcoholic beverage industry, see: Wiskur & Anslyn (2001) and as saccharide sensors, see: Baxter et al. (1990); Fedorak et al. (1989); Yamamoto et al. (1990); Yasuda et al. (1990). For a review on borolectins, see: Yang et al. (2002, 2004). For the utilization of as enzyme inhibitors, see: Adams et al. (1998); Fevig et al. (1996); Johnson & Houston (2002); Kettner et al. (1990); Prusoff et al. (1993). For the synthesis of aromatic ortho-substituted boronate see: Baudoin et al. (2000); Fang et al. (2005); Ishiyama et al. (2010); Wang et al. (2006).
as synthetic intermediates, see: Hall (2005Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 2001); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536812029650/pk2392sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812029650/pk2392Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812029650/pk2392Isup3.cml
The bromo-nitroester starting material 1 undergoes borylation by stirring with bis(neopentyl glycolato)diboron (1.2 eq.) in the presence of [1,1-bis(diphenylphosphino)ferrocene]dichloropalladium(II) (10 mol%), DMSO and potassium acetate (2.5 eq.) for 22 h at 60°C to afford the corresponding boronate ester 2 in 51% yield (Fig. 3). This reaction worked up to a half gram scale. The purification of the boronate ester 2 was difficult because the bis(neopentyl glycolato)diboron reagent, which was used in excess, proved difficult to completely remove via a variety of purification techniques (crystallizations using a range of solvent mixtures and temperatures, flash
using a range of neutral, acidic and basic solvent mixtures). Methyl 2-(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)-4-nitrobenzoate 2 was isolated as a pale yellow oil which crystallized on standing: m.p. 345–353 K (DCM; it underwent a over the range 345–351 K, then melted at 351–353 K).The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.
Boronic acids constitute an important class of synthetic intermediates (Hall, 2005). However, they have found wider applications more recently as sensors of 'gallate-like' compounds in the alcoholic beverage industry (Wiskur & Anslyn, 2001), in the development of saccharide sensors (in vivo at neutral pH in aqueous environment) (Baxter et al., 1990; Fedorak et al., 1989; Yamamoto et al., 1990; Yasuda et al., 1990), boronolectins (Yang et al., 2002, 2004), as protease (Fevig et al., 1996; Kettner et al., 1990; Prusoff et al., 1993), glycosidase (Johnson & Houston, 2002) and proteasome inhibitors (Adams et al., 1998).
The synthesis of ortho-substituted aromatic
becomes increasingly difficult as the aromatic ring becomes more substituted (Baudoin et al., 2000; Fang et al., 2005; Ishiyama et al., 2010; Wang et al., 2006). New strategies have recently been developed to circumvent the synthetic obstacles preventing these borylations (Baudoin et al., 2000; Fang et al., 2005; Ishiyama et al., 2010; Wang et al., 2006). Here we report the first successful synthesis and X-ray crystallographic analysis of boronate ester intermediate 2, which is substituted at the ortho and meta positions by a methyl ester and a nitro group with respect to the boronate ester moiety (Fig. 1).X-ray crystallography confirmed the structure of the title compound. The six-membered boronate ester ring adopts an envelope type conformation with C3 out of the plane (Fig. 1, 2). The torsion angles between the boronate and the aromatic ring system are 72.5 (2)° and 81.0 (2)°. The 4-nitrobenzoate moiety adopts a slightly twisted conformation with dihedral angles between the benzene ring and the nitrate and methyl ester groups of 17.5 (2)° and 14.4 (3)° respectively. Inversion-related pairs of molecules show π-stacking interactions: Centroid-centroid distance: 4.0585 (9) Å, 3.6254 (7) Å. There are no classical hydrogen bonds.
For use of
as synthetic intermediates, see: Hall (2005); for their use as sensors in the alcoholic beverage industry, see: Wiskur & Anslyn (2001) and as saccharide sensors, see: Baxter et al. (1990); Fedorak et al. (1989); Yamamoto et al. (1990); Yasuda et al. (1990). For a review on borolectins, see: Yang et al. (2002, 2004). For the utilization of as enzyme inhibitors, see: Adams et al. (1998); Fevig et al. (1996); Johnson & Houston (2002); Kettner et al. (1990); Prusoff et al. (1993). For the synthesis of aromatic ortho-substituted boronate see: Baudoin et al. (2000); Fang et al. (2005); Ishiyama et al. (2010); Wang et al. (2006).Data collection: COLLECT (Nonius, 2001); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003) and PLATON (Spek, 2009).C13H16BNO6 | F(000) = 616 |
Mr = 293.08 | Dx = 1.340 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3373 reflections |
a = 12.1774 (3) Å | θ = 5–27° |
b = 9.7928 (3) Å | µ = 0.11 mm−1 |
c = 13.4921 (4) Å | T = 150 K |
β = 115.4764 (12)° | Plate, colourless |
V = 1452.49 (7) Å3 | 0.25 × 0.20 × 0.15 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 2229 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
ω scans | θmax = 27.5°, θmin = 5.1° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −15→15 |
Tmin = 0.92, Tmax = 0.98 | k = −12→12 |
16148 measured reflections | l = −17→17 |
3286 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.114 | Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.05P)2 + 0.66P] , where P = (max(Fo2,0) + 2Fc2)/3 |
S = 0.92 | (Δ/σ)max = 0.0002 |
3286 reflections | Δρmax = 0.36 e Å−3 |
190 parameters | Δρmin = −0.39 e Å−3 |
0 restraints |
C13H16BNO6 | V = 1452.49 (7) Å3 |
Mr = 293.08 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 12.1774 (3) Å | µ = 0.11 mm−1 |
b = 9.7928 (3) Å | T = 150 K |
c = 13.4921 (4) Å | 0.25 × 0.20 × 0.15 mm |
β = 115.4764 (12)° |
Nonius KappaCCD diffractometer | 3286 independent reflections |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | 2229 reflections with I > 2σ(I) |
Tmin = 0.92, Tmax = 0.98 | Rint = 0.043 |
16148 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 0.92 | Δρmax = 0.36 e Å−3 |
3286 reflections | Δρmin = −0.39 e Å−3 |
190 parameters |
x | y | z | Uiso*/Ueq | ||
O1 | 0.12715 (11) | 0.67634 (11) | 0.37794 (9) | 0.0363 | |
C2 | 0.13726 (17) | 0.77688 (17) | 0.30436 (13) | 0.0384 | |
C3 | 0.14982 (15) | 0.91980 (17) | 0.35044 (13) | 0.0325 | |
C4 | 0.17357 (18) | 1.01872 (19) | 0.27425 (15) | 0.0443 | |
C5 | 0.0341 (2) | 0.9608 (2) | 0.3611 (2) | 0.0649 | |
C6 | 0.25847 (18) | 0.91925 (19) | 0.46109 (14) | 0.0457 | |
O7 | 0.25147 (12) | 0.81218 (13) | 0.53161 (9) | 0.0474 | |
B8 | 0.18826 (16) | 0.69741 (19) | 0.48684 (14) | 0.0305 | |
C9 | 0.17022 (14) | 0.59224 (16) | 0.56803 (12) | 0.0295 | |
C10 | 0.23148 (13) | 0.46714 (17) | 0.59640 (12) | 0.0301 | |
C11 | 0.31710 (14) | 0.43635 (17) | 0.54680 (13) | 0.0329 | |
O12 | 0.35352 (10) | 0.30678 (12) | 0.55875 (10) | 0.0380 | |
C13 | 0.43385 (17) | 0.2710 (2) | 0.50882 (15) | 0.0444 | |
O14 | 0.34969 (12) | 0.52155 (13) | 0.50062 (11) | 0.0502 | |
C15 | 0.21684 (14) | 0.37785 (18) | 0.67027 (13) | 0.0344 | |
C16 | 0.14051 (14) | 0.41192 (18) | 0.71801 (13) | 0.0345 | |
C17 | 0.07746 (14) | 0.53350 (17) | 0.68739 (12) | 0.0312 | |
C18 | 0.09013 (14) | 0.62350 (17) | 0.61390 (13) | 0.0325 | |
N19 | −0.00773 (13) | 0.56838 (15) | 0.73455 (12) | 0.0385 | |
O20 | 0.00100 (11) | 0.50649 (14) | 0.81687 (10) | 0.0451 | |
O21 | −0.08423 (13) | 0.65719 (14) | 0.68873 (13) | 0.0569 | |
H22 | 0.2125 | 0.7563 | 0.2935 | 0.0495* | |
H21 | 0.0629 | 0.7702 | 0.2345 | 0.0499* | |
H42 | 0.1825 | 1.1106 | 0.3051 | 0.0710* | |
H41 | 0.2498 | 0.9921 | 0.2680 | 0.0704* | |
H43 | 0.1034 | 1.0155 | 0.2010 | 0.0710* | |
H52 | 0.0436 | 1.0553 | 0.3874 | 0.1049* | |
H53 | 0.0229 | 0.8990 | 0.4128 | 0.1046* | |
H51 | −0.0345 | 0.9535 | 0.2899 | 0.1051* | |
H62 | 0.2630 | 1.0067 | 0.4988 | 0.0527* | |
H61 | 0.3341 | 0.9062 | 0.4495 | 0.0531* | |
H132 | 0.4574 | 0.1757 | 0.5267 | 0.0723* | |
H131 | 0.5044 | 0.3321 | 0.5356 | 0.0723* | |
H133 | 0.3879 | 0.2814 | 0.4298 | 0.0724* | |
H151 | 0.2617 | 0.2923 | 0.6890 | 0.0415* | |
H161 | 0.1301 | 0.3524 | 0.7695 | 0.0400* | |
H181 | 0.0457 | 0.7074 | 0.5971 | 0.0378* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0496 (7) | 0.0290 (6) | 0.0286 (6) | −0.0096 (5) | 0.0151 (5) | 0.0004 (5) |
C2 | 0.0548 (10) | 0.0329 (9) | 0.0298 (8) | −0.0059 (8) | 0.0204 (8) | 0.0027 (7) |
C3 | 0.0400 (9) | 0.0271 (8) | 0.0358 (8) | 0.0050 (7) | 0.0212 (7) | 0.0057 (7) |
C4 | 0.0591 (11) | 0.0335 (10) | 0.0478 (10) | 0.0048 (9) | 0.0300 (9) | 0.0102 (8) |
C5 | 0.0695 (14) | 0.0599 (14) | 0.0888 (16) | 0.0288 (12) | 0.0564 (13) | 0.0306 (12) |
C6 | 0.0613 (12) | 0.0318 (10) | 0.0396 (10) | −0.0140 (9) | 0.0175 (9) | 0.0046 (8) |
O7 | 0.0626 (8) | 0.0362 (7) | 0.0305 (6) | −0.0196 (6) | 0.0078 (6) | 0.0041 (5) |
B8 | 0.0313 (9) | 0.0274 (10) | 0.0290 (9) | −0.0022 (7) | 0.0093 (7) | 0.0010 (7) |
C9 | 0.0295 (8) | 0.0292 (9) | 0.0251 (7) | −0.0046 (7) | 0.0072 (6) | 0.0005 (6) |
C10 | 0.0266 (7) | 0.0323 (9) | 0.0272 (8) | −0.0035 (7) | 0.0077 (6) | 0.0025 (7) |
C11 | 0.0292 (8) | 0.0347 (10) | 0.0317 (8) | −0.0009 (7) | 0.0103 (7) | 0.0068 (7) |
O12 | 0.0403 (6) | 0.0366 (7) | 0.0451 (7) | 0.0044 (5) | 0.0260 (5) | 0.0098 (5) |
C13 | 0.0498 (10) | 0.0436 (11) | 0.0531 (11) | 0.0030 (9) | 0.0348 (9) | 0.0049 (9) |
O14 | 0.0525 (8) | 0.0402 (8) | 0.0727 (9) | 0.0043 (6) | 0.0408 (7) | 0.0197 (7) |
C15 | 0.0308 (8) | 0.0362 (10) | 0.0345 (9) | 0.0029 (7) | 0.0124 (7) | 0.0107 (7) |
C16 | 0.0341 (8) | 0.0385 (10) | 0.0293 (8) | −0.0012 (7) | 0.0120 (7) | 0.0070 (7) |
C17 | 0.0310 (8) | 0.0345 (9) | 0.0262 (8) | −0.0051 (7) | 0.0104 (6) | −0.0046 (7) |
C18 | 0.0345 (8) | 0.0268 (9) | 0.0308 (8) | −0.0030 (7) | 0.0091 (7) | −0.0018 (7) |
N19 | 0.0441 (8) | 0.0347 (8) | 0.0399 (8) | −0.0064 (7) | 0.0211 (7) | −0.0089 (7) |
O20 | 0.0517 (7) | 0.0552 (8) | 0.0336 (6) | −0.0089 (6) | 0.0233 (6) | −0.0066 (6) |
O21 | 0.0658 (9) | 0.0415 (8) | 0.0790 (10) | 0.0151 (7) | 0.0459 (8) | 0.0069 (7) |
O1—C2 | 1.4406 (18) | C9—C10 | 1.399 (2) |
O1—B8 | 1.347 (2) | C9—C18 | 1.395 (2) |
C2—C3 | 1.512 (2) | C10—C11 | 1.492 (2) |
C2—H22 | 1.009 | C10—C15 | 1.394 (2) |
C2—H21 | 0.989 | C11—O12 | 1.331 (2) |
C3—C4 | 1.528 (2) | C11—O14 | 1.2061 (19) |
C3—C5 | 1.531 (2) | O12—C13 | 1.4492 (19) |
C3—C6 | 1.510 (2) | C13—H132 | 0.976 |
C4—H42 | 0.977 | C13—H131 | 0.979 |
C4—H41 | 1.002 | C13—H133 | 0.974 |
C4—H43 | 0.990 | C15—C16 | 1.380 (2) |
C5—H52 | 0.980 | C15—H151 | 0.972 |
C5—H53 | 0.977 | C16—C17 | 1.380 (2) |
C5—H51 | 0.967 | C16—H161 | 0.956 |
C6—O7 | 1.443 (2) | C17—C18 | 1.384 (2) |
C6—H62 | 0.986 | C17—N19 | 1.471 (2) |
C6—H61 | 1.006 | C18—H181 | 0.955 |
O7—B8 | 1.349 (2) | N19—O20 | 1.2291 (18) |
B8—C9 | 1.586 (2) | N19—O21 | 1.2292 (19) |
C2—O1—B8 | 118.43 (13) | O7—B8—C9 | 116.97 (14) |
O1—C2—C3 | 111.88 (13) | O1—B8—C9 | 118.56 (14) |
O1—C2—H22 | 108.4 | B8—C9—C10 | 122.79 (14) |
C3—C2—H22 | 107.9 | B8—C9—C18 | 119.65 (14) |
O1—C2—H21 | 107.3 | C10—C9—C18 | 117.56 (14) |
C3—C2—H21 | 110.0 | C9—C10—C11 | 116.57 (14) |
H22—C2—H21 | 111.4 | C9—C10—C15 | 121.85 (15) |
C2—C3—C4 | 108.97 (13) | C11—C10—C15 | 121.53 (15) |
C2—C3—C5 | 110.29 (16) | C10—C11—O12 | 113.52 (13) |
C4—C3—C5 | 110.20 (15) | C10—C11—O14 | 122.73 (16) |
C2—C3—C6 | 107.08 (14) | O12—C11—O14 | 123.75 (15) |
C4—C3—C6 | 109.18 (14) | C11—O12—C13 | 115.50 (13) |
C5—C3—C6 | 111.04 (16) | O12—C13—H132 | 107.6 |
C3—C4—H42 | 108.4 | O12—C13—H131 | 110.0 |
C3—C4—H41 | 110.0 | H132—C13—H131 | 112.0 |
H42—C4—H41 | 109.7 | O12—C13—H133 | 107.4 |
C3—C4—H43 | 108.6 | H132—C13—H133 | 109.9 |
H42—C4—H43 | 110.1 | H131—C13—H133 | 109.8 |
H41—C4—H43 | 110.0 | C10—C15—C16 | 120.07 (15) |
C3—C5—H52 | 108.1 | C10—C15—H151 | 119.8 |
C3—C5—H53 | 108.7 | C16—C15—H151 | 120.2 |
H52—C5—H53 | 110.9 | C15—C16—C17 | 117.93 (15) |
C3—C5—H51 | 108.9 | C15—C16—H161 | 121.2 |
H52—C5—H51 | 110.2 | C17—C16—H161 | 120.9 |
H53—C5—H51 | 109.8 | C16—C17—C18 | 123.00 (15) |
C3—C6—O7 | 112.30 (14) | C16—C17—N19 | 118.41 (14) |
C3—C6—H62 | 109.8 | C18—C17—N19 | 118.59 (15) |
O7—C6—H62 | 107.3 | C9—C18—C17 | 119.52 (15) |
C3—C6—H61 | 108.5 | C9—C18—H181 | 121.0 |
O7—C6—H61 | 109.1 | C17—C18—H181 | 119.4 |
H62—C6—H61 | 109.8 | C17—N19—O20 | 118.24 (14) |
C6—O7—B8 | 119.62 (13) | C17—N19—O21 | 118.01 (14) |
O7—B8—O1 | 123.85 (15) | O20—N19—O21 | 123.75 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H42···O21i | 0.98 | 2.59 | 3.460 (3) | 149 |
C13—H132···O20ii | 0.98 | 2.56 | 3.356 (3) | 139 |
C13—H131···O14iii | 0.98 | 2.49 | 3.373 (3) | 150 |
C16—H161···O7ii | 0.96 | 2.47 | 3.205 (3) | 134 |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+1/2, y−1/2, −z+3/2; (iii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C13H16BNO6 |
Mr | 293.08 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 150 |
a, b, c (Å) | 12.1774 (3), 9.7928 (3), 13.4921 (4) |
β (°) | 115.4764 (12) |
V (Å3) | 1452.49 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.25 × 0.20 × 0.15 |
Data collection | |
Diffractometer | Nonius KappaCCD |
Absorption correction | Multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.92, 0.98 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16148, 3286, 2229 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.114, 0.92 |
No. of reflections | 3286 |
No. of parameters | 190 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.39 |
Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CAMERON (Watkin et al., 1996), CRYSTALS (Betteridge et al., 2003) and PLATON (Spek, 2009).
Acknowledgements
We thank Professor Andrew D. Hamilton for helpful discussions.
References
Adams, J., Behnke, M., Chen, S., Cruickshank, A. A., Dick, L. R., Grenier, L., Klunder, J. M., Ma, Y.-T., Plamondon, L. & Stein, R. L. (1998). Bioorg. Med. Chem. Lett. 8, 333–338. Web of Science CrossRef CAS PubMed Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Baudoin, O., Guénard, D. & Guéritte, F. (2000). J. Org. Chem. 65, 9268–9271. Web of Science CrossRef PubMed CAS Google Scholar
Baxter, P., Goldhill, J., Hardcastle, P. T. & Taylor, C. J. (1990). Gut, 31, 817–820. CrossRef CAS PubMed Web of Science Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Fang, H., Kaur, G., Yan, J. & Wang, B. (2005). Tetrahedron Lett. 46, 1671–1674. Web of Science CrossRef CAS Google Scholar
Fedorak, R. N., Gershon, M. D. & Field, M. (1989). Gastroenterology, 96, 37–44. CAS PubMed Web of Science Google Scholar
Fevig, J. M., Abelman, M. M., Brittelli, D. R., Kettner, C. A., Knabb, R. M. & Weber, P. C. (1996). Bioorg. Med. Chem. Lett. 6, 295–300. CrossRef CAS Web of Science Google Scholar
Hall, D. G. (2005). Boronic Acids. Preparation and Applications in Organic Synthesis and Medicine, 1st ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KgaA. Google Scholar
Ishiyama, T., Isou, H., Kikuchi, T. & Miyaura, N. (2010). Chem. Commun. 46, 159–161. Web of Science CrossRef CAS Google Scholar
Johnson, J. L. L. & Houston, T. A. (2002). Tetrahedron Lett. 43, 8905–8908. Web of Science CrossRef CAS Google Scholar
Kettner, C., Mersinger, L. & Knabb, R. (1990). J. Biol. Chem. 265, 18289–18297. CAS PubMed Web of Science Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Prusoff, W. H., Lin, T., Pivazyan, A. D., Sun, A. & Birks, E. (1993). Pharmacol. Ther. 60, 315–329. CrossRef CAS PubMed Web of Science Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, X.-J., Sun, X., Zhang, L., Xu, Y., Krishnamurthy, D. & Senanayake, C. H. (2006). Org. Lett. 8, 305–307. Web of Science CrossRef PubMed CAS Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
Wiskur, S. L. & Anslyn, E. V. (2001). J. Am. Chem. Soc. 123, 10109–10110. Web of Science CrossRef PubMed CAS Google Scholar
Yamamoto, T., Seino, Y., Fukumoto, H., Koh, G., Yano, H., Inagaki, N., Yamada, Y., Inoue, K., Manabe, T. & Imura, H. (1990). Biochem. Biophys. Res. Commun. 170, 223–230. CrossRef CAS PubMed Web of Science Google Scholar
Yang, W., Fan, H., Gao, X., Gao, S., Karnati, V. V. R., Ni, W., Hooks, W. B., Carson, J., Weston, B. & Wang, B. (2004). Chem. Biol. 11, 439–448. Web of Science CrossRef PubMed CAS Google Scholar
Yang, W., Gao, S., Gao, X., Karnati, V. R., Ni, W., Wang, B., Hooks, W. B., Carson, J. & Weston, B. (2002). Bioorg. Med. Chem. Lett. 12, 2175–2177. Web of Science CrossRef PubMed CAS Google Scholar
Yasuda, H., Kurokawa, T., Fujii, Y., Yamashita, A. & Ishibashi, S. (1990). Biochim. Biophys. Acta, 1021, 114–118. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Boronic acids constitute an important class of synthetic intermediates (Hall, 2005). However, they have found wider applications more recently as sensors of 'gallate-like' compounds in the alcoholic beverage industry (Wiskur & Anslyn, 2001), in the development of saccharide sensors (in vivo at neutral pH in aqueous environment) (Baxter et al., 1990; Fedorak et al., 1989; Yamamoto et al., 1990; Yasuda et al., 1990), boronolectins (Yang et al., 2002, 2004), as protease (Fevig et al., 1996; Kettner et al., 1990; Prusoff et al., 1993), glycosidase (Johnson & Houston, 2002) and proteasome inhibitors (Adams et al., 1998).
The synthesis of ortho-substituted aromatic esters becomes increasingly difficult as the aromatic ring becomes more substituted (Baudoin et al., 2000; Fang et al., 2005; Ishiyama et al., 2010; Wang et al., 2006). New strategies have recently been developed to circumvent the synthetic obstacles preventing these borylations (Baudoin et al., 2000; Fang et al., 2005; Ishiyama et al., 2010; Wang et al., 2006). Here we report the first successful synthesis and X-ray crystallographic analysis of boronate ester intermediate 2, which is substituted at the ortho and meta positions by a methyl ester and a nitro group with respect to the boronate ester moiety (Fig. 1).
X-ray crystallography confirmed the structure of the title compound. The six-membered boronate ester ring adopts an envelope type conformation with C3 out of the plane (Fig. 1, 2). The torsion angles between the boronate and the aromatic ring system are 72.5 (2)° and 81.0 (2)°. The 4-nitrobenzoate moiety adopts a slightly twisted conformation with dihedral angles between the benzene ring and the nitrate and methyl ester groups of 17.5 (2)° and 14.4 (3)° respectively. Inversion-related pairs of molecules show π-stacking interactions: Centroid-centroid distance: 4.0585 (9) Å, interplanar spacing: 3.6254 (7) Å. There are no classical hydrogen bonds.