organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-(5,5-di­methyl-1,3,2-dioxa­borinan-2-yl)-4-nitro­benzoate

aDepartment of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, bDepartment of Chemical Crystallography, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England, and cSchool of Chemistry, University of Sydney, Camperdown 2006, Sydney, Australia
*Correspondence e-mail: michela.simone@sydney.edu.au

(Received 16 February 2012; accepted 29 June 2012; online 10 July 2012)

The six-membered boronate ester ring of the title compound, C13H16BNO6, adopts an envelope conformation with the C atom bearing the dimethyl substituents at the flap. The O—B—C—C torsion angles between the boronate group and the benzene ring are 72.5 (2) and 81.0 (2)°. The 4-nitro­benzoate unit adopts a slightly twisted conformation, with dihedral angles between the benzene ring and the nitrate and methyl ester groups of 17.5 (2) and 14.4 (3)°, respectively. In the crystal, inversion-related pairs of mol­ecules show weak ππ stacking inter­actions [centroid–centroid distance = 4.0585 (9) Å and inter­planar spacing = 3.6254 (7) Å].

Related literature

For use of boronic acids as synthetic inter­mediates, see: Hall (2005[Hall, D. G. (2005). Boronic Acids. Preparation and Applications in Organic Synthesis and Medicine, 1st ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KgaA.]); for their use as sensors in the alcoholic beverage industry, see: Wiskur & Anslyn (2001[Wiskur, S. L. & Anslyn, E. V. (2001). J. Am. Chem. Soc. 123, 10109-10110.]) and as saccharide sensors, see: Baxter et al. (1990[Baxter, P., Goldhill, J., Hardcastle, P. T. & Taylor, C. J. (1990). Gut, 31, 817-820.]); Fedorak et al. (1989[Fedorak, R. N., Gershon, M. D. & Field, M. (1989). Gastroenterology, 96, 37-44.]); Yamamoto et al. (1990[Yamamoto, T., Seino, Y., Fukumoto, H., Koh, G., Yano, H., Inagaki, N., Yamada, Y., Inoue, K., Manabe, T. & Imura, H. (1990). Biochem. Biophys. Res. Commun. 170, 223-230.]); Yasuda et al. (1990[Yasuda, H., Kurokawa, T., Fujii, Y., Yamashita, A. & Ishibashi, S. (1990). Biochim. Biophys. Acta, 1021, 114-118.]). For a review on borolectins, see: Yang et al. (2002[Yang, W., Gao, S., Gao, X., Karnati, V. R., Ni, W., Wang, B., Hooks, W. B., Carson, J. & Weston, B. (2002). Bioorg. Med. Chem. Lett. 12, 2175-2177.], 2004[Yang, W., Fan, H., Gao, X., Gao, S., Karnati, V. V. R., Ni, W., Hooks, W. B., Carson, J., Weston, B. & Wang, B. (2004). Chem. Biol. 11, 439-448.]). For the utilization of boronic acids as enzyme inhibitors, see: Adams et al. (1998[Adams, J., Behnke, M., Chen, S., Cruickshank, A. A., Dick, L. R., Grenier, L., Klunder, J. M., Ma, Y.-T., Plamondon, L. & Stein, R. L. (1998). Bioorg. Med. Chem. Lett. 8, 333-338.]); Fevig et al. (1996[Fevig, J. M., Abelman, M. M., Brittelli, D. R., Kettner, C. A., Knabb, R. M. & Weber, P. C. (1996). Bioorg. Med. Chem. Lett. 6, 295-300.]); Johnson & Houston (2002[Johnson, J. L. L. & Houston, T. A. (2002). Tetrahedron Lett. 43, 8905-8908.]); Kettner et al. (1990[Kettner, C., Mersinger, L. & Knabb, R. (1990). J. Biol. Chem. 265, 18289-18297.]); Prusoff et al. (1993[Prusoff, W. H., Lin, T., Pivazyan, A. D., Sun, A. & Birks, E. (1993). Pharmacol. Ther. 60, 315-329.]). For the synthesis of aromatic ortho-substituted boronate esters, see: Baudoin et al. (2000[Baudoin, O., Guénard, D. & Guéritte, F. (2000). J. Org. Chem. 65, 9268-9271.]); Fang et al. (2005[Fang, H., Kaur, G., Yan, J. & Wang, B. (2005). Tetrahedron Lett. 46, 1671-1674.]); Ishiyama et al. (2010[Ishiyama, T., Isou, H., Kikuchi, T. & Miyaura, N. (2010). Chem. Commun. 46, 159-161.]); Wang et al. (2006[Wang, X.-J., Sun, X., Zhang, L., Xu, Y., Krishnamurthy, D. & Senanayake, C. H. (2006). Org. Lett. 8, 305-307.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16BNO6

  • Mr = 293.08

  • Monoclinic, P 21 /n

  • a = 12.1774 (3) Å

  • b = 9.7928 (3) Å

  • c = 13.4921 (4) Å

  • β = 115.4764 (12)°

  • V = 1452.49 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 150 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.92, Tmax = 0.98

  • 16148 measured reflections

  • 3286 independent reflections

  • 2229 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.114

  • S = 0.92

  • 3286 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Boronic acids constitute an important class of synthetic intermediates (Hall, 2005). However, they have found wider applications more recently as sensors of 'gallate-like' compounds in the alcoholic beverage industry (Wiskur & Anslyn, 2001), in the development of saccharide sensors (in vivo at neutral pH in aqueous environment) (Baxter et al., 1990; Fedorak et al., 1989; Yamamoto et al., 1990; Yasuda et al., 1990), boronolectins (Yang et al., 2002, 2004), as protease (Fevig et al., 1996; Kettner et al., 1990; Prusoff et al., 1993), glycosidase (Johnson & Houston, 2002) and proteasome inhibitors (Adams et al., 1998).

The synthesis of ortho-substituted aromatic esters becomes increasingly difficult as the aromatic ring becomes more substituted (Baudoin et al., 2000; Fang et al., 2005; Ishiyama et al., 2010; Wang et al., 2006). New strategies have recently been developed to circumvent the synthetic obstacles preventing these borylations (Baudoin et al., 2000; Fang et al., 2005; Ishiyama et al., 2010; Wang et al., 2006). Here we report the first successful synthesis and X-ray crystallographic analysis of boronate ester intermediate 2, which is substituted at the ortho and meta positions by a methyl ester and a nitro group with respect to the boronate ester moiety (Fig. 1).

X-ray crystallography confirmed the structure of the title compound. The six-membered boronate ester ring adopts an envelope type conformation with C3 out of the plane (Fig. 1, 2). The torsion angles between the boronate and the aromatic ring system are 72.5 (2)° and 81.0 (2)°. The 4-nitrobenzoate moiety adopts a slightly twisted conformation with dihedral angles between the benzene ring and the nitrate and methyl ester groups of 17.5 (2)° and 14.4 (3)° respectively. Inversion-related pairs of molecules show π-stacking interactions: Centroid-centroid distance: 4.0585 (9) Å, interplanar spacing: 3.6254 (7) Å. There are no classical hydrogen bonds.

Related literature top

For use of boronic acids as synthetic intermediates, see: Hall (2005); for their use as sensors in the alcoholic beverage industry, see: Wiskur & Anslyn (2001) and as saccharide sensors, see: Baxter et al. (1990); Fedorak et al. (1989); Yamamoto et al. (1990); Yasuda et al. (1990). For a review on borolectins, see: Yang et al. (2002, 2004). For the utilization of boronic acids as enzyme inhibitors, see: Adams et al. (1998); Fevig et al. (1996); Johnson & Houston (2002); Kettner et al. (1990); Prusoff et al. (1993). For the synthesis of aromatic ortho-substituted boronate esters, see: Baudoin et al. (2000); Fang et al. (2005); Ishiyama et al. (2010); Wang et al. (2006).

Experimental top

The bromo-nitroester starting material 1 undergoes borylation by stirring with bis(neopentyl glycolato)diboron (1.2 eq.) in the presence of [1,1-bis(diphenylphosphino)ferrocene]dichloropalladium(II) (10 mol%), DMSO and potassium acetate (2.5 eq.) for 22 h at 60°C to afford the corresponding boronate ester 2 in 51% yield (Fig. 3). This reaction worked up to a half gram scale. The purification of the boronate ester 2 was difficult because the bis(neopentyl glycolato)diboron reagent, which was used in excess, proved difficult to completely remove via a variety of purification techniques (crystallizations using a range of solvent mixtures and temperatures, flash column chromatography using a range of neutral, acidic and basic solvent mixtures). Methyl 2-(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)-4-nitrobenzoate 2 was isolated as a pale yellow oil which crystallized on standing: m.p. 345–353 K (DCM; it underwent a phase transition over the range 345–351 K, then melted at 351–353 K).

Refinement top

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Structure description top

Boronic acids constitute an important class of synthetic intermediates (Hall, 2005). However, they have found wider applications more recently as sensors of 'gallate-like' compounds in the alcoholic beverage industry (Wiskur & Anslyn, 2001), in the development of saccharide sensors (in vivo at neutral pH in aqueous environment) (Baxter et al., 1990; Fedorak et al., 1989; Yamamoto et al., 1990; Yasuda et al., 1990), boronolectins (Yang et al., 2002, 2004), as protease (Fevig et al., 1996; Kettner et al., 1990; Prusoff et al., 1993), glycosidase (Johnson & Houston, 2002) and proteasome inhibitors (Adams et al., 1998).

The synthesis of ortho-substituted aromatic esters becomes increasingly difficult as the aromatic ring becomes more substituted (Baudoin et al., 2000; Fang et al., 2005; Ishiyama et al., 2010; Wang et al., 2006). New strategies have recently been developed to circumvent the synthetic obstacles preventing these borylations (Baudoin et al., 2000; Fang et al., 2005; Ishiyama et al., 2010; Wang et al., 2006). Here we report the first successful synthesis and X-ray crystallographic analysis of boronate ester intermediate 2, which is substituted at the ortho and meta positions by a methyl ester and a nitro group with respect to the boronate ester moiety (Fig. 1).

X-ray crystallography confirmed the structure of the title compound. The six-membered boronate ester ring adopts an envelope type conformation with C3 out of the plane (Fig. 1, 2). The torsion angles between the boronate and the aromatic ring system are 72.5 (2)° and 81.0 (2)°. The 4-nitrobenzoate moiety adopts a slightly twisted conformation with dihedral angles between the benzene ring and the nitrate and methyl ester groups of 17.5 (2)° and 14.4 (3)° respectively. Inversion-related pairs of molecules show π-stacking interactions: Centroid-centroid distance: 4.0585 (9) Å, interplanar spacing: 3.6254 (7) Å. There are no classical hydrogen bonds.

For use of boronic acids as synthetic intermediates, see: Hall (2005); for their use as sensors in the alcoholic beverage industry, see: Wiskur & Anslyn (2001) and as saccharide sensors, see: Baxter et al. (1990); Fedorak et al. (1989); Yamamoto et al. (1990); Yasuda et al. (1990). For a review on borolectins, see: Yang et al. (2002, 2004). For the utilization of boronic acids as enzyme inhibitors, see: Adams et al. (1998); Fevig et al. (1996); Johnson & Houston (2002); Kettner et al. (1990); Prusoff et al. (1993). For the synthesis of aromatic ortho-substituted boronate esters, see: Baudoin et al. (2000); Fang et al. (2005); Ishiyama et al. (2010); Wang et al. (2006).

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitary radius.
[Figure 2] Fig. 2. Packing diagram of the title compound projected along the b-axis.
[Figure 3] Fig. 3. Synthesis of sterically hindered boronate ester 2 from the aryl bromide 1.
Methyl 2-(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)-4-nitrobenzoate top
Crystal data top
C13H16BNO6F(000) = 616
Mr = 293.08Dx = 1.340 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3373 reflections
a = 12.1774 (3) Åθ = 5–27°
b = 9.7928 (3) ŵ = 0.11 mm1
c = 13.4921 (4) ÅT = 150 K
β = 115.4764 (12)°Plate, colourless
V = 1452.49 (7) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2229 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 27.5°, θmin = 5.1°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1515
Tmin = 0.92, Tmax = 0.98k = 1212
16148 measured reflectionsl = 1717
3286 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.114 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.05P)2 + 0.66P] ,
where P = (max(Fo2,0) + 2Fc2)/3
S = 0.92(Δ/σ)max = 0.0002
3286 reflectionsΔρmax = 0.36 e Å3
190 parametersΔρmin = 0.39 e Å3
0 restraints
Crystal data top
C13H16BNO6V = 1452.49 (7) Å3
Mr = 293.08Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.1774 (3) ŵ = 0.11 mm1
b = 9.7928 (3) ÅT = 150 K
c = 13.4921 (4) Å0.25 × 0.20 × 0.15 mm
β = 115.4764 (12)°
Data collection top
Nonius KappaCCD
diffractometer
3286 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
2229 reflections with I > 2σ(I)
Tmin = 0.92, Tmax = 0.98Rint = 0.043
16148 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 0.92Δρmax = 0.36 e Å3
3286 reflectionsΔρmin = 0.39 e Å3
190 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.12715 (11)0.67634 (11)0.37794 (9)0.0363
C20.13726 (17)0.77688 (17)0.30436 (13)0.0384
C30.14982 (15)0.91980 (17)0.35044 (13)0.0325
C40.17357 (18)1.01872 (19)0.27425 (15)0.0443
C50.0341 (2)0.9608 (2)0.3611 (2)0.0649
C60.25847 (18)0.91925 (19)0.46109 (14)0.0457
O70.25147 (12)0.81218 (13)0.53161 (9)0.0474
B80.18826 (16)0.69741 (19)0.48684 (14)0.0305
C90.17022 (14)0.59224 (16)0.56803 (12)0.0295
C100.23148 (13)0.46714 (17)0.59640 (12)0.0301
C110.31710 (14)0.43635 (17)0.54680 (13)0.0329
O120.35352 (10)0.30678 (12)0.55875 (10)0.0380
C130.43385 (17)0.2710 (2)0.50882 (15)0.0444
O140.34969 (12)0.52155 (13)0.50062 (11)0.0502
C150.21684 (14)0.37785 (18)0.67027 (13)0.0344
C160.14051 (14)0.41192 (18)0.71801 (13)0.0345
C170.07746 (14)0.53350 (17)0.68739 (12)0.0312
C180.09013 (14)0.62350 (17)0.61390 (13)0.0325
N190.00773 (13)0.56838 (15)0.73455 (12)0.0385
O200.00100 (11)0.50649 (14)0.81687 (10)0.0451
O210.08423 (13)0.65719 (14)0.68873 (13)0.0569
H220.21250.75630.29350.0495*
H210.06290.77020.23450.0499*
H420.18251.11060.30510.0710*
H410.24980.99210.26800.0704*
H430.10341.01550.20100.0710*
H520.04361.05530.38740.1049*
H530.02290.89900.41280.1046*
H510.03450.95350.28990.1051*
H620.26301.00670.49880.0527*
H610.33410.90620.44950.0531*
H1320.45740.17570.52670.0723*
H1310.50440.33210.53560.0723*
H1330.38790.28140.42980.0724*
H1510.26170.29230.68900.0415*
H1610.13010.35240.76950.0400*
H1810.04570.70740.59710.0378*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0496 (7)0.0290 (6)0.0286 (6)0.0096 (5)0.0151 (5)0.0004 (5)
C20.0548 (10)0.0329 (9)0.0298 (8)0.0059 (8)0.0204 (8)0.0027 (7)
C30.0400 (9)0.0271 (8)0.0358 (8)0.0050 (7)0.0212 (7)0.0057 (7)
C40.0591 (11)0.0335 (10)0.0478 (10)0.0048 (9)0.0300 (9)0.0102 (8)
C50.0695 (14)0.0599 (14)0.0888 (16)0.0288 (12)0.0564 (13)0.0306 (12)
C60.0613 (12)0.0318 (10)0.0396 (10)0.0140 (9)0.0175 (9)0.0046 (8)
O70.0626 (8)0.0362 (7)0.0305 (6)0.0196 (6)0.0078 (6)0.0041 (5)
B80.0313 (9)0.0274 (10)0.0290 (9)0.0022 (7)0.0093 (7)0.0010 (7)
C90.0295 (8)0.0292 (9)0.0251 (7)0.0046 (7)0.0072 (6)0.0005 (6)
C100.0266 (7)0.0323 (9)0.0272 (8)0.0035 (7)0.0077 (6)0.0025 (7)
C110.0292 (8)0.0347 (10)0.0317 (8)0.0009 (7)0.0103 (7)0.0068 (7)
O120.0403 (6)0.0366 (7)0.0451 (7)0.0044 (5)0.0260 (5)0.0098 (5)
C130.0498 (10)0.0436 (11)0.0531 (11)0.0030 (9)0.0348 (9)0.0049 (9)
O140.0525 (8)0.0402 (8)0.0727 (9)0.0043 (6)0.0408 (7)0.0197 (7)
C150.0308 (8)0.0362 (10)0.0345 (9)0.0029 (7)0.0124 (7)0.0107 (7)
C160.0341 (8)0.0385 (10)0.0293 (8)0.0012 (7)0.0120 (7)0.0070 (7)
C170.0310 (8)0.0345 (9)0.0262 (8)0.0051 (7)0.0104 (6)0.0046 (7)
C180.0345 (8)0.0268 (9)0.0308 (8)0.0030 (7)0.0091 (7)0.0018 (7)
N190.0441 (8)0.0347 (8)0.0399 (8)0.0064 (7)0.0211 (7)0.0089 (7)
O200.0517 (7)0.0552 (8)0.0336 (6)0.0089 (6)0.0233 (6)0.0066 (6)
O210.0658 (9)0.0415 (8)0.0790 (10)0.0151 (7)0.0459 (8)0.0069 (7)
Geometric parameters (Å, º) top
O1—C21.4406 (18)C9—C101.399 (2)
O1—B81.347 (2)C9—C181.395 (2)
C2—C31.512 (2)C10—C111.492 (2)
C2—H221.009C10—C151.394 (2)
C2—H210.989C11—O121.331 (2)
C3—C41.528 (2)C11—O141.2061 (19)
C3—C51.531 (2)O12—C131.4492 (19)
C3—C61.510 (2)C13—H1320.976
C4—H420.977C13—H1310.979
C4—H411.002C13—H1330.974
C4—H430.990C15—C161.380 (2)
C5—H520.980C15—H1510.972
C5—H530.977C16—C171.380 (2)
C5—H510.967C16—H1610.956
C6—O71.443 (2)C17—C181.384 (2)
C6—H620.986C17—N191.471 (2)
C6—H611.006C18—H1810.955
O7—B81.349 (2)N19—O201.2291 (18)
B8—C91.586 (2)N19—O211.2292 (19)
C2—O1—B8118.43 (13)O7—B8—C9116.97 (14)
O1—C2—C3111.88 (13)O1—B8—C9118.56 (14)
O1—C2—H22108.4B8—C9—C10122.79 (14)
C3—C2—H22107.9B8—C9—C18119.65 (14)
O1—C2—H21107.3C10—C9—C18117.56 (14)
C3—C2—H21110.0C9—C10—C11116.57 (14)
H22—C2—H21111.4C9—C10—C15121.85 (15)
C2—C3—C4108.97 (13)C11—C10—C15121.53 (15)
C2—C3—C5110.29 (16)C10—C11—O12113.52 (13)
C4—C3—C5110.20 (15)C10—C11—O14122.73 (16)
C2—C3—C6107.08 (14)O12—C11—O14123.75 (15)
C4—C3—C6109.18 (14)C11—O12—C13115.50 (13)
C5—C3—C6111.04 (16)O12—C13—H132107.6
C3—C4—H42108.4O12—C13—H131110.0
C3—C4—H41110.0H132—C13—H131112.0
H42—C4—H41109.7O12—C13—H133107.4
C3—C4—H43108.6H132—C13—H133109.9
H42—C4—H43110.1H131—C13—H133109.8
H41—C4—H43110.0C10—C15—C16120.07 (15)
C3—C5—H52108.1C10—C15—H151119.8
C3—C5—H53108.7C16—C15—H151120.2
H52—C5—H53110.9C15—C16—C17117.93 (15)
C3—C5—H51108.9C15—C16—H161121.2
H52—C5—H51110.2C17—C16—H161120.9
H53—C5—H51109.8C16—C17—C18123.00 (15)
C3—C6—O7112.30 (14)C16—C17—N19118.41 (14)
C3—C6—H62109.8C18—C17—N19118.59 (15)
O7—C6—H62107.3C9—C18—C17119.52 (15)
C3—C6—H61108.5C9—C18—H181121.0
O7—C6—H61109.1C17—C18—H181119.4
H62—C6—H61109.8C17—N19—O20118.24 (14)
C6—O7—B8119.62 (13)C17—N19—O21118.01 (14)
O7—B8—O1123.85 (15)O20—N19—O21123.75 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H42···O21i0.982.593.460 (3)149
C13—H132···O20ii0.982.563.356 (3)139
C13—H131···O14iii0.982.493.373 (3)150
C16—H161···O7ii0.962.473.205 (3)134
Symmetry codes: (i) x, y+2, z+1; (ii) x+1/2, y1/2, z+3/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H16BNO6
Mr293.08
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)12.1774 (3), 9.7928 (3), 13.4921 (4)
β (°) 115.4764 (12)
V3)1452.49 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.92, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
16148, 3286, 2229
Rint0.043
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.114, 0.92
No. of reflections3286
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.39

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), CAMERON (Watkin et al., 1996), CRYSTALS (Betteridge et al., 2003) and PLATON (Spek, 2009).

 

Acknowledgements

We thank Professor Andrew D. Hamilton for helpful discussions.

References

First citationAdams, J., Behnke, M., Chen, S., Cruickshank, A. A., Dick, L. R., Grenier, L., Klunder, J. M., Ma, Y.-T., Plamondon, L. & Stein, R. L. (1998). Bioorg. Med. Chem. Lett. 8, 333–338.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBaudoin, O., Guénard, D. & Guéritte, F. (2000). J. Org. Chem. 65, 9268–9271.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBaxter, P., Goldhill, J., Hardcastle, P. T. & Taylor, C. J. (1990). Gut, 31, 817–820.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFang, H., Kaur, G., Yan, J. & Wang, B. (2005). Tetrahedron Lett. 46, 1671–1674.  Web of Science CrossRef CAS Google Scholar
First citationFedorak, R. N., Gershon, M. D. & Field, M. (1989). Gastroenterology, 96, 37–44.  CAS PubMed Web of Science Google Scholar
First citationFevig, J. M., Abelman, M. M., Brittelli, D. R., Kettner, C. A., Knabb, R. M. & Weber, P. C. (1996). Bioorg. Med. Chem. Lett. 6, 295–300.  CrossRef CAS Web of Science Google Scholar
First citationHall, D. G. (2005). Boronic Acids. Preparation and Applications in Organic Synthesis and Medicine, 1st ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KgaA.  Google Scholar
First citationIshiyama, T., Isou, H., Kikuchi, T. & Miyaura, N. (2010). Chem. Commun. 46, 159–161.  Web of Science CrossRef CAS Google Scholar
First citationJohnson, J. L. L. & Houston, T. A. (2002). Tetrahedron Lett. 43, 8905–8908.  Web of Science CrossRef CAS Google Scholar
First citationKettner, C., Mersinger, L. & Knabb, R. (1990). J. Biol. Chem. 265, 18289–18297.  CAS PubMed Web of Science Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrusoff, W. H., Lin, T., Pivazyan, A. D., Sun, A. & Birks, E. (1993). Pharmacol. Ther. 60, 315–329.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-J., Sun, X., Zhang, L., Xu, Y., Krishnamurthy, D. & Senanayake, C. H. (2006). Org. Lett. 8, 305–307.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWiskur, S. L. & Anslyn, E. V. (2001). J. Am. Chem. Soc. 123, 10109–10110.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYamamoto, T., Seino, Y., Fukumoto, H., Koh, G., Yano, H., Inagaki, N., Yamada, Y., Inoue, K., Manabe, T. & Imura, H. (1990). Biochem. Biophys. Res. Commun. 170, 223–230.  CrossRef CAS PubMed Web of Science Google Scholar
First citationYang, W., Fan, H., Gao, X., Gao, S., Karnati, V. V. R., Ni, W., Hooks, W. B., Carson, J., Weston, B. & Wang, B. (2004). Chem. Biol. 11, 439–448.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYang, W., Gao, S., Gao, X., Karnati, V. R., Ni, W., Wang, B., Hooks, W. B., Carson, J. & Weston, B. (2002). Bioorg. Med. Chem. Lett. 12, 2175–2177.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYasuda, H., Kurokawa, T., Fujii, Y., Yamashita, A. & Ishibashi, S. (1990). Biochim. Biophys. Acta, 1021, 114–118.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds