metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(1,10-phenanthroline)cobalt]-μ-2,4′-oxydibenzoato]

aDepartment of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an, Shaanxi 716000, People's Republic of China
*Correspondence e-mail: yadxgncl@126.com

(Received 12 June 2012; accepted 11 July 2012; online 18 July 2012)

In the title compound, [Co(C14H8O5)(C12H8N2)]n, the CoII atom is six-coordinated in a distorted octa­hedral coordination geometry by four O atoms from two chelating carboxyl­ate groups from different 2,4′-oxydibenzoate anions and by two N atoms from a 1,10-phenanthroline (phen) ligand. The two benzene rings of the 2,4′-oxydibenzoate ligand form a dihedral angle of 77.14 (16)°. Adjacent CoII atoms are bridged by 2,4′-oxydibenzoate anions to form a helical chain that propagates along the b-axis direction. Neighboring chains are further assembled by inter­molecular ππ stacking inter­actions between inversion-related phen ligands [centroid-to-centroid distance = 4.0869 (8) Å] to form a two-dimensional supra­molecular architecture.

Related literature

For related structures and the properties of coordination polymers, see: Han et al. (2005[Han, Z. B., Cheng, X. N. & Chen, X. M. (2005). Cryst. Growth Des. 5, 695-700.]); Xue et al. (2009[Xue, D. X., Lin, J. B., Zhang, J. P. & Chen, X. M. (2009). CrystEngComm, 11, 183-188.]); Sun et al. (2010[Sun, J. K., Yao, Q. X., Ju, Z. F. & Zhang, J. (2010). CrystEngComm, 12, 1709-1711.]); Wang et al. (2010[Wang, H. L., Zhang, D. P., Sun, D. F., Chen, Y. T., Wang, K., Ni, Z. H., Tian, L. J. & Jiang, J. Z. (2010). CrystEngComm, 12, 1096-1102.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C14H8O5)(C12H8N2)]

  • Mr = 495.34

  • Monoclinic, P 21 /n

  • a = 7.8524 (16) Å

  • b = 15.345 (3) Å

  • c = 18.778 (4) Å

  • β = 99.72 (3)°

  • V = 2230.3 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.782, Tmax = 0.898

  • 18945 measured reflections

  • 3921 independent reflections

  • 2794 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.141

  • S = 1.15

  • 3921 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The rational design and syntheses of metal–organic frameworks has been of increasing interest in the crystal engineering of coordination polymers owing to their ability to provide diverse assemblies with fascinating topological structures and material properties (Han et al., 2005; Xue et al.,2009). The semi-rigid V-shaped multi-carboxylate ligands with two benzene rings, which contain a central molecular framework that can be bridged by an oxygen atom, have sufficient flexibility that they can freely twist around the oxygen atom, leading to metal complexes with diverse structures in the assembly process (Sun et al., 2010; Wang et al., 2010).

The asymmetric unit contains one CoII ion, one 1,10-phenanthroline ligand and one 2,4'-oxydibenzoate anion. Each CoII atom has a distorted octahedral geometry and is six-coordinated by four O atoms from two chelating carboxylate groups of non-symmetry related 2,4'-oxydibenzoate ligands and by two N atoms from a 1,10-phenanthroline molecule (Fig. 1). The Co—O bond distances vary from 2.077 (3) to 2.201 (3) Å and the Co—N bond lengths are 2.077 (4) and 2.107 (4) Å. Adjacent CoII atoms are linked by 2,4'-oxydibenzoate ligands with carboxyl groups to form infinite one-dimensional helical chains along the b-axis direction (Fig. 2). Neighboring chains are further assembled by intermolecular ππ stacking interaction between the phenanthroline ring systems with a ring centroid-centroid distance of 4.0869 (8) Å, forming a two-dimensional supramolecular architecture (Fig. 3).

Related literature top

For related structures and the properties of coordination polymers, see: Han et al. (2005); Xue et al. (2009); Sun et al. (2010); Wang et al. (2010).

Experimental top

A mixture of CoSO4.7H2O (0.0149, 0.05 mmol), 2,4'-oxybis(benzoic acid) (0.0129, 0.05 mmol), 1,10-phenanthroline (0.0099 g, 0.05 mmol), H2O (8 ml) was sealed in 25 ml Teflon-lined stainless steel reactor, which was heated to 413 K for 5 d and was subsequently cooled slowly to room temperature. Red block-shaped crystals were collected in 47% yield based on Co.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93Å) and allowed to ride on their parent atoms, with Uiso(H) values equal to 1.2Ueq(C).

Structure description top

The rational design and syntheses of metal–organic frameworks has been of increasing interest in the crystal engineering of coordination polymers owing to their ability to provide diverse assemblies with fascinating topological structures and material properties (Han et al., 2005; Xue et al.,2009). The semi-rigid V-shaped multi-carboxylate ligands with two benzene rings, which contain a central molecular framework that can be bridged by an oxygen atom, have sufficient flexibility that they can freely twist around the oxygen atom, leading to metal complexes with diverse structures in the assembly process (Sun et al., 2010; Wang et al., 2010).

The asymmetric unit contains one CoII ion, one 1,10-phenanthroline ligand and one 2,4'-oxydibenzoate anion. Each CoII atom has a distorted octahedral geometry and is six-coordinated by four O atoms from two chelating carboxylate groups of non-symmetry related 2,4'-oxydibenzoate ligands and by two N atoms from a 1,10-phenanthroline molecule (Fig. 1). The Co—O bond distances vary from 2.077 (3) to 2.201 (3) Å and the Co—N bond lengths are 2.077 (4) and 2.107 (4) Å. Adjacent CoII atoms are linked by 2,4'-oxydibenzoate ligands with carboxyl groups to form infinite one-dimensional helical chains along the b-axis direction (Fig. 2). Neighboring chains are further assembled by intermolecular ππ stacking interaction between the phenanthroline ring systems with a ring centroid-centroid distance of 4.0869 (8) Å, forming a two-dimensional supramolecular architecture (Fig. 3).

For related structures and the properties of coordination polymers, see: Han et al. (2005); Xue et al. (2009); Sun et al. (2010); Wang et al. (2010).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of CoII atoms in the title compound, with thermal ellipsoids drawn at the 50% level. Symmetry code: A -x + 3/2, y + 1/2, -z + 3/2.
[Figure 2] Fig. 2. The helical chain formed by molecules of the title compound that extends along b-axis.
[Figure 3] Fig. 3. The 2D supramolecular structure formed through ππ interactions.
catena-Poly[[(1,10-phenanthroline)cobalt]-µ-2,4'-oxydibenzoato] top
Crystal data top
[Co(C14H8O5)(C12H8N2)]F(000) = 1012
Mr = 495.34Dx = 1.475 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5540 reflections
a = 7.8524 (16) Åθ = 3.0–25.4°
b = 15.345 (3) ŵ = 0.81 mm1
c = 18.778 (4) ÅT = 293 K
β = 99.72 (3)°Block, red
V = 2230.3 (8) Å30.40 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker SMART
diffractometer
3921 independent reflections
Radiation source: fine-focus sealed tube2794 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
φ and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.782, Tmax = 0.898k = 1815
18945 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0374P)2 + 2.4235P]
where P = (Fo2 + 2Fc2)/3
3921 reflections(Δ/σ)max = 0.003
307 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Co(C14H8O5)(C12H8N2)]V = 2230.3 (8) Å3
Mr = 495.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8524 (16) ŵ = 0.81 mm1
b = 15.345 (3) ÅT = 293 K
c = 18.778 (4) Å0.40 × 0.20 × 0.15 mm
β = 99.72 (3)°
Data collection top
Bruker SMART
diffractometer
3921 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2794 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 0.898Rint = 0.066
18945 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.15Δρmax = 0.29 e Å3
3921 reflectionsΔρmin = 0.35 e Å3
307 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.6161 (4)0.7767 (2)0.64914 (18)0.0608 (9)
O50.8475 (5)0.7208 (2)0.61748 (19)0.0631 (9)
C140.6932 (7)0.7120 (3)0.6281 (3)0.0535 (12)
C110.6083 (6)0.6252 (3)0.6175 (2)0.0483 (11)
C120.4465 (7)0.6116 (3)0.6354 (3)0.0630 (14)
H120.38810.65780.65240.076*
C100.6901 (6)0.5560 (3)0.5906 (2)0.0562 (13)
H100.79810.56400.57760.067*
C130.3704 (7)0.5299 (3)0.6283 (3)0.0632 (14)
H130.26240.52100.64110.076*
Co10.66874 (8)0.35628 (4)0.84782 (3)0.0515 (2)
O20.5626 (4)0.3396 (2)0.73244 (17)0.0595 (9)
C190.8855 (7)0.6524 (3)0.9794 (4)0.0756 (18)
H190.93170.70830.98550.091*
O30.3900 (4)0.3788 (2)0.59100 (17)0.0586 (9)
N20.6821 (5)0.4027 (2)0.9525 (2)0.0516 (10)
C60.0948 (7)0.3431 (3)0.5734 (3)0.0661 (14)
H60.09130.35230.52420.079*
C260.7996 (6)0.5268 (3)0.9018 (3)0.0525 (12)
C10.4169 (6)0.3533 (3)0.7488 (3)0.0507 (11)
O10.4041 (4)0.3737 (2)0.81312 (18)0.0678 (10)
C70.2449 (6)0.3566 (3)0.6210 (3)0.0523 (12)
N10.7779 (5)0.4804 (2)0.8387 (2)0.0566 (10)
C20.2544 (6)0.3446 (3)0.6948 (2)0.0476 (11)
C80.4557 (6)0.4624 (3)0.6022 (2)0.0502 (12)
C180.8689 (6)0.6116 (3)0.9098 (3)0.0653 (15)
C170.9161 (7)0.6477 (4)0.8483 (4)0.0824 (19)
H170.96200.70370.85040.099*
C240.6333 (6)0.3639 (4)1.0079 (3)0.0619 (13)
H240.58720.30811.00100.074*
C40.0473 (7)0.3059 (4)0.6720 (4)0.0783 (18)
H40.14670.28980.68940.094*
C90.6133 (7)0.4752 (3)0.5827 (3)0.0568 (13)
H90.66900.42920.56410.068*
C230.6459 (7)0.4005 (4)1.0763 (3)0.0736 (16)
H230.60980.36981.11380.088*
C50.0513 (7)0.3157 (4)0.5990 (4)0.0784 (17)
H50.15230.30390.56680.094*
C220.7118 (7)0.4819 (4)1.0872 (3)0.0720 (16)
H220.72150.50771.13250.086*
C200.8358 (7)0.6121 (4)1.0358 (4)0.0783 (18)
H200.84830.64091.08000.094*
C210.7651 (6)0.5271 (4)1.0304 (3)0.0627 (15)
C150.8250 (7)0.5179 (4)0.7816 (3)0.0729 (16)
H150.81060.48770.73800.087*
C160.8963 (8)0.6026 (4)0.7850 (4)0.087 (2)
H160.92960.62740.74420.104*
C30.1048 (7)0.3200 (3)0.7192 (3)0.0627 (14)
H30.10690.31270.76850.075*
C250.7487 (6)0.4845 (3)0.9629 (3)0.0509 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.069 (2)0.043 (2)0.072 (2)0.0033 (17)0.0164 (18)0.0001 (17)
O50.068 (2)0.046 (2)0.078 (3)0.0039 (18)0.0199 (19)0.0048 (17)
C140.063 (3)0.048 (3)0.048 (3)0.000 (3)0.005 (2)0.010 (2)
C110.054 (3)0.040 (3)0.051 (3)0.008 (2)0.009 (2)0.003 (2)
C120.065 (3)0.043 (3)0.083 (4)0.001 (3)0.018 (3)0.004 (3)
C100.057 (3)0.055 (3)0.058 (3)0.008 (3)0.016 (2)0.007 (3)
C130.066 (3)0.047 (3)0.081 (4)0.012 (3)0.025 (3)0.007 (3)
Co10.0622 (4)0.0414 (4)0.0508 (4)0.0034 (3)0.0096 (3)0.0037 (3)
O20.052 (2)0.071 (2)0.057 (2)0.0007 (17)0.0132 (16)0.0115 (17)
C190.064 (4)0.036 (3)0.111 (5)0.008 (3)0.029 (3)0.022 (3)
O30.072 (2)0.050 (2)0.056 (2)0.0153 (17)0.0190 (17)0.0088 (16)
N20.058 (2)0.041 (2)0.056 (3)0.0075 (19)0.011 (2)0.0021 (19)
C60.074 (4)0.052 (3)0.068 (4)0.010 (3)0.000 (3)0.009 (3)
C260.045 (3)0.036 (3)0.071 (4)0.009 (2)0.005 (2)0.001 (2)
C10.064 (3)0.036 (2)0.054 (3)0.001 (2)0.014 (2)0.008 (2)
O10.072 (2)0.084 (3)0.049 (2)0.0129 (19)0.0150 (17)0.0154 (19)
C70.060 (3)0.045 (3)0.053 (3)0.009 (2)0.010 (2)0.012 (2)
N10.071 (3)0.044 (2)0.053 (3)0.008 (2)0.005 (2)0.011 (2)
C20.050 (3)0.042 (3)0.052 (3)0.004 (2)0.014 (2)0.012 (2)
C80.069 (3)0.040 (3)0.042 (3)0.007 (2)0.009 (2)0.001 (2)
C180.057 (3)0.043 (3)0.088 (4)0.010 (2)0.013 (3)0.015 (3)
C170.070 (4)0.050 (3)0.114 (6)0.004 (3)0.025 (4)0.012 (4)
C240.066 (3)0.060 (3)0.061 (3)0.007 (3)0.013 (3)0.002 (3)
C40.056 (3)0.073 (4)0.111 (5)0.017 (3)0.027 (3)0.032 (4)
C90.072 (3)0.044 (3)0.058 (3)0.001 (3)0.020 (3)0.003 (2)
C230.072 (4)0.089 (5)0.061 (4)0.020 (3)0.013 (3)0.002 (3)
C50.061 (4)0.071 (4)0.097 (5)0.003 (3)0.005 (3)0.031 (4)
C220.067 (4)0.094 (5)0.053 (4)0.031 (3)0.004 (3)0.015 (3)
C200.074 (4)0.067 (4)0.086 (5)0.022 (3)0.011 (3)0.017 (4)
C210.050 (3)0.057 (3)0.074 (4)0.020 (3)0.011 (3)0.020 (3)
C150.083 (4)0.073 (4)0.060 (4)0.000 (3)0.003 (3)0.019 (3)
C160.077 (4)0.080 (4)0.097 (5)0.007 (3)0.005 (4)0.047 (4)
C30.061 (3)0.060 (3)0.072 (4)0.006 (3)0.025 (3)0.010 (3)
C250.050 (3)0.045 (3)0.054 (3)0.016 (2)0.002 (2)0.004 (2)
Geometric parameters (Å, º) top
O4—C141.261 (5)C6—H60.9300
O4—Co1i2.077 (3)C26—N11.369 (6)
O5—C141.267 (5)C26—C181.408 (7)
O5—Co1i2.190 (3)C26—C251.432 (7)
C14—C111.488 (6)C1—O11.269 (5)
C14—Co1i2.473 (5)C1—C21.495 (6)
C11—C101.381 (6)C7—C21.387 (6)
C11—C121.384 (6)N1—C151.324 (6)
C12—C131.385 (6)C2—C31.384 (6)
C12—H120.9300C8—C91.363 (6)
C10—C91.375 (6)C18—C171.385 (8)
C10—H100.9300C17—C161.363 (8)
C13—C81.368 (6)C17—H170.9300
C13—H130.9300C24—C231.390 (7)
Co1—N22.077 (4)C24—H240.9300
Co1—O4ii2.077 (3)C4—C51.374 (8)
Co1—O12.087 (3)C4—C31.379 (7)
Co1—N12.107 (4)C4—H40.9300
Co1—O5ii2.190 (3)C9—H90.9300
Co1—O22.201 (3)C23—C221.354 (8)
Co1—C14ii2.473 (5)C23—H230.9300
O2—C11.252 (5)C5—H50.9300
C19—C201.342 (8)C22—C211.395 (8)
C19—C181.436 (8)C22—H220.9300
C19—H190.9300C20—C211.415 (8)
O3—C81.385 (5)C20—H200.9300
O3—C71.396 (5)C21—C251.412 (7)
N2—C241.312 (6)C15—C161.412 (8)
N2—C251.361 (6)C15—H150.9300
C6—C71.369 (7)C16—H160.9300
C6—C51.382 (7)C3—H30.9300
C14—O4—Co1i92.3 (3)O1—C1—C2118.2 (4)
C14—O5—Co1i87.1 (3)C1—O1—Co191.8 (3)
O4—C14—O5119.2 (4)C6—C7—C2121.8 (5)
O4—C14—C11121.2 (4)C6—C7—O3116.4 (4)
O5—C14—C11119.5 (4)C2—C7—O3121.7 (4)
O4—C14—Co1i57.1 (2)C15—N1—C26117.6 (5)
O5—C14—Co1i62.2 (2)C15—N1—Co1129.2 (4)
C11—C14—Co1i177.0 (4)C26—N1—Co1113.1 (3)
C10—C11—C12118.4 (4)C3—C2—C7117.4 (4)
C10—C11—C14120.8 (4)C3—C2—C1118.4 (4)
C12—C11—C14120.8 (4)C7—C2—C1124.1 (4)
C11—C12—C13120.8 (5)C9—C8—C13120.5 (4)
C11—C12—H12119.6C9—C8—O3115.1 (4)
C13—C12—H12119.6C13—C8—O3124.3 (4)
C9—C10—C11120.6 (4)C17—C18—C26115.8 (6)
C9—C10—H10119.7C17—C18—C19125.9 (6)
C11—C10—H10119.7C26—C18—C19118.3 (6)
C8—C13—C12119.4 (5)C16—C17—C18121.1 (6)
C8—C13—H13120.3C16—C17—H17119.5
C12—C13—H13120.3C18—C17—H17119.5
N2—Co1—O4ii105.35 (14)N2—C24—C23124.4 (5)
N2—Co1—O198.04 (14)N2—C24—H24117.8
O4ii—Co1—O1147.79 (14)C23—C24—H24117.8
N2—Co1—N179.09 (16)C5—C4—C3119.7 (5)
O4ii—Co1—N1101.12 (15)C5—C4—H4120.2
O1—Co1—N1104.84 (15)C3—C4—H4120.2
N2—Co1—O5ii92.31 (14)C8—C9—C10120.2 (5)
O4ii—Co1—O5ii61.42 (13)C8—C9—H9119.9
O1—Co1—O5ii96.30 (14)C10—C9—H9119.9
N1—Co1—O5ii158.04 (14)C22—C23—C24118.6 (6)
N2—Co1—O2157.20 (13)C22—C23—H23120.7
O4ii—Co1—O297.45 (13)C24—C23—H23120.7
O1—Co1—O261.06 (12)C4—C5—C6120.0 (5)
N1—Co1—O296.71 (14)C4—C5—H5120.0
O5ii—Co1—O298.68 (13)C6—C5—H5120.0
N2—Co1—C14ii100.58 (15)C23—C22—C21120.0 (5)
O4ii—Co1—C14ii30.64 (14)C23—C22—H22120.0
O1—Co1—C14ii123.66 (16)C21—C22—H22120.0
N1—Co1—C14ii130.70 (17)C19—C20—C21122.1 (6)
O5ii—Co1—C14ii30.78 (13)C19—C20—H20119.0
O2—Co1—C14ii99.04 (14)C21—C20—H20119.0
C1—O2—Co187.1 (3)C22—C21—C25117.6 (5)
C20—C19—C18121.6 (5)C22—C21—C20124.6 (6)
C20—C19—H19119.2C25—C21—C20117.8 (6)
C18—C19—H19119.2N1—C15—C16121.8 (6)
C8—O3—C7118.2 (4)N1—C15—H15119.1
C24—N2—C25117.5 (4)C16—C15—H15119.1
C24—N2—Co1128.4 (4)C17—C16—C15119.5 (6)
C25—N2—Co1114.1 (3)C17—C16—H16120.2
C7—C6—C5119.5 (5)C15—C16—H16120.2
C7—C6—H6120.2C4—C3—C2121.5 (5)
C5—C6—H6120.2C4—C3—H3119.3
N1—C26—C18124.2 (5)C2—C3—H3119.3
N1—C26—C25116.5 (4)N2—C25—C21122.0 (5)
C18—C26—C25119.3 (5)N2—C25—C26117.1 (4)
O2—C1—O1119.8 (4)C21—C25—C26120.9 (5)
O2—C1—C2122.0 (4)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Co(C14H8O5)(C12H8N2)]
Mr495.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.8524 (16), 15.345 (3), 18.778 (4)
β (°) 99.72 (3)
V3)2230.3 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.40 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.782, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
18945, 3921, 2794
Rint0.066
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.141, 1.15
No. of reflections3921
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.35

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 21003103) and the Key Scientific Research Foundation of Shaanxi Provincial Education Office of China (grant No. 2010JS061).

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHan, Z. B., Cheng, X. N. & Chen, X. M. (2005). Cryst. Growth Des. 5, 695–700.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, J. K., Yao, Q. X., Ju, Z. F. & Zhang, J. (2010). CrystEngComm, 12, 1709–1711.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, H. L., Zhang, D. P., Sun, D. F., Chen, Y. T., Wang, K., Ni, Z. H., Tian, L. J. & Jiang, J. Z. (2010). CrystEngComm, 12, 1096–1102.  Web of Science CSD CrossRef CAS Google Scholar
First citationXue, D. X., Lin, J. B., Zhang, J. P. & Chen, X. M. (2009). CrystEngComm, 11, 183–188.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds