metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­[(1R,2S,4R,8R,9S,11R)-2,9-di­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane]nickel(II) dichloride dihydrate

aKansas Wesleyan University, 100 East Claflin, Salina, Kansas 67401, USA, and bKansas State University, Manhattan, Kansas 66502, USA
*Correspondence e-mail: James.Townsend@kwu.edu

(Received 28 June 2012; accepted 19 July 2012; online 25 July 2012)

The crystal structure of the title complex, [Ni(C12H28N4)(H2O)2]Cl2·2H2O, displays O—H⋯Cl and O—H⋯O hydrogen bonding. The tetra­aza­cyclo­tetra­decane ligand inter­acts with the NiII atom in the cis V configuration and the final two ligand binding sites are occupied by water.

Related literature

For uses of the title compound, see: Kimura et al. (1992[Kimura, E., Bu, X., Shionoya, M., Wada, S. & Maruyama, S. (1992). Inorg. Chem. 31, 4542-4546.]); Liang et al. (2002[Liang, X., Parkinson, J. A., Weishaupl, M., Gould, R. O., Paisey, S. J., Park, H., Hunter, T. M., Blindauer, C. A. & Parsons, S. (2002). J. Am. Chem. Soc. 124, 9105-9112.]); Burrows et al. (1992[Burrows, C. J., Rokita, S. E., Muller, J. G., Chen, X. & Dadiz, A. C. (1992). J. Am. Chem. Soc. 114, 6407-6411.], 1988[Burrows, C. J., Kinneary, J. F. & Albert, J. S. (1988). J. Am. Chem. Soc. 110, 6124-6129.]); Kelly et al. (1999[Kelly, C. A., Blinn, E. L., Camaioni, N., D'Angelantonio, M. & Mulazzani, Q. G. (1999). Inorg. Chem. 38, 1579-1584.]); Churchard et al. (2010[Churchard, A. J., Cyanski, M. K., Dobrzycki, K., Budzianowski, A. & Grochala, W. (2010). Energy Environ. 3, 1973-1978.]). For the synthesis of the ligand, see: Beck & Lang (2003[Beck, W. & Lang, M. A. (2003). Z. Naturforsch. Teil B, 58, 447-450.]); Beck et al. (1998[Beck, W., Hass, K., Ponikwar, W. & Noth, H. (1998). Angew. Chem. Int. Ed. 37, 1086-1089.], 2003[Beck, W., Schapp, J., Hass, K. & Sunkel, K. (2003). Eur. J. Inorg. Chem. 20, 3745-3751.]). For metal complex formation, see: Sadler et al. (2007[Sadler, P. J., Hunter, T. M., McNae, I. W., Simpson, D. P., Smith, S. M., Moggach, S., White, F., Walkinshaw, M. D. & Parsons, S. (2007). Chem. Eur. J. 13, 40-50.]); Voelcker et al. (2008[Voelcker, N. H., Alfonso, I. & Ghadiri, M. R. (2008). ChemBioChem, 9, 1776-1786.]). For nickel cyclam complex crystal structures with a cis-V configuration, see: Sadler et al. (2007[Sadler, P. J., Hunter, T. M., McNae, I. W., Simpson, D. P., Smith, S. M., Moggach, S., White, F., Walkinshaw, M. D. & Parsons, S. (2007). Chem. Eur. J. 13, 40-50.]); Ito et al. (1981[Ito, T., Toriumi, K. & Ito, H. (1981). Bull. Chem. Soc. Jpn, 54, 1096-1100.], 1982[Ito, T., Sugimoto, M. & Ito, H. (1982). Bull. Chem. Soc. Jpn, 55, 1971-1972.]); Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For details of peptide racemization, see: Liardon & Ledermann (1986[Liardon, R. & Ledermann, S. (1986). Inorg. Chem. 34, 557-565.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C12H28N4)(H2O)2]Cl2·2H2O

  • Mr = 430.06

  • Orthorhombic, P 21 21 21

  • a = 9.7309 (8) Å

  • b = 14.0994 (11) Å

  • c = 14.6000 (11) Å

  • V = 2003.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.26 mm−1

  • T = 120 K

  • 0.28 × 0.24 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.720, Tmax = 0.864

  • 25180 measured reflections

  • 7454 independent reflections

  • 6563 reflections with I > σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.083

  • S = 1.04

  • 7454 reflections

  • 246 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.38 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3205 Friedel pairs

  • Flack parameter: −0.006 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl1 0.73 (2) 2.44 (2) 3.1580 (12) 172 (2)
O1—H1B⋯O3 0.85 (2) 1.84 (2) 2.6912 (17) 176 (2)
O2—H2A⋯Cl2 0.74 (2) 2.38 (2) 3.1192 (13) 176 (2)
O2—H2B⋯O4 0.80 (2) 1.88 (2) 2.6767 (18) 177 (2)
O3—H3A⋯Cl2 0.81 (2) 2.50 (3) 3.2587 (15) 156 (2)
O3—H3B⋯Cl1i 0.78 (2) 2.48 (2) 3.2256 (14) 160 (2)
O4—H4A⋯Cl1 0.75 (3) 2.50 (3) 3.1971 (18) 154 (2)
O4—H4B⋯Cl1ii 0.72 (3) 2.50 (3) 3.2227 (16) 173 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: XCIF in SHELXTL.

Supporting information


Comment top

The ligand in the title compound was synthesized by base-catalyzed metal-templated cyclization of dipeptides, metal removal using HCl and finally amide reduction to yield a C-functionalized cyclam molecule (Beck & Lang, 2003). The stereochemical integrity of the ligands previously synthesized, however, was never established. Strong bases such as NaOMe, which is used in the ligand synthesis, have the ability to racemize peptides Liardon et al. (1986). The crystal structure of the title compound shows that the stereochemical integrity of the (2S,9S)-2,9-dimethyl-1,4,8,11-tetraazacyclotetradecane ligand is maintained throughout the synthesis.

Cyclam metal complexes have 6 possible configurations: trans I—V and cis V (Liang et al., 2002). Typically the structure of cyclam metal complexes tends to favor the thermodynamically most stable trans III configuration in the solid state (Liang et al., 2002). However, in this case the compound has adopted the cis V configuration with two water molecules acting as ligands to the metal center. The chloride counter ions interact with the water ligands through O—H···Cl hydrogen bonds. Similarly configured nickel cyclam complexes were reported by Ito et al. (1981, 1982). A recent crystal structure search in the CCDC database has shown that only 4% of cyclam complexes without nitrogen functionalization, utilizing halogen containing counter ions and monodentate ligands for the final two coordination sites, adopt a cis V configuration (Allen, 2002).

When chiral carbons are present in the cyclam it is possible to generate two stereoisomers for each metal complex configuration. The diastereomers for each configuration are dependent on the chirality around the N atoms in the complex as the carbon chirality in the cyclam ligand is both encoded and maintained during synthesis. The title compound has adopted a diastereomer that places the methyl side arms into the equatorial plane of the 5 membered rings. This minimizes steric interactions with the remainder of the cyclam and the water ligands attached to the nickel center.

Related literature top

For uses of the title compound, see: Kimura et al. (1992); Liang et al. (2002); Burrows et al. (1992, 1988); Kelly et al. (1999); Churchard et al. (2010). For the synthesis of the ligand, see: Beck & Lang (2003); Beck et al. (1998, 2003). For metal complex formation, see: Sadler et al. (2007); Voelcker et al. (2008). For nickel cyclam complex crystal structures with a cis-V configuration, see: Sadler et al. (2007); Ito et al. (1981, 1982); Allen (2002). For details of peptide racemization, see: Liardon et al. (1986).

Experimental top

The (2S,9S)-2,9-dimethyl-1,4,8,11-tetraazacyclotetradecane (100 mg, 0.44 mmol) was dissolved in methanol (2 ml) and the NiCl2.6H2O (105 mg, 0.44 mmol) was added in methanol (2 ml). The reaction mixture was heated to reflux for ten minutes and allowed to cool. A purple crystalline solid was isolated for X-ray analysis after 4 months of crystallization via slow evaporation at RT.

Refinement top

All hydrogen atoms, excepting amine and water H atoms, were placed in idealized positions and allowed to ride. Coordinates of the amine and water H atoms were allowed to refine. Absolute configuration was determined by inspection of the Flack parameter produced by least-squares refinement. A value of -0.006 (7) indicated that the chosen configuration was correct.

Structure description top

The ligand in the title compound was synthesized by base-catalyzed metal-templated cyclization of dipeptides, metal removal using HCl and finally amide reduction to yield a C-functionalized cyclam molecule (Beck & Lang, 2003). The stereochemical integrity of the ligands previously synthesized, however, was never established. Strong bases such as NaOMe, which is used in the ligand synthesis, have the ability to racemize peptides Liardon et al. (1986). The crystal structure of the title compound shows that the stereochemical integrity of the (2S,9S)-2,9-dimethyl-1,4,8,11-tetraazacyclotetradecane ligand is maintained throughout the synthesis.

Cyclam metal complexes have 6 possible configurations: trans I—V and cis V (Liang et al., 2002). Typically the structure of cyclam metal complexes tends to favor the thermodynamically most stable trans III configuration in the solid state (Liang et al., 2002). However, in this case the compound has adopted the cis V configuration with two water molecules acting as ligands to the metal center. The chloride counter ions interact with the water ligands through O—H···Cl hydrogen bonds. Similarly configured nickel cyclam complexes were reported by Ito et al. (1981, 1982). A recent crystal structure search in the CCDC database has shown that only 4% of cyclam complexes without nitrogen functionalization, utilizing halogen containing counter ions and monodentate ligands for the final two coordination sites, adopt a cis V configuration (Allen, 2002).

When chiral carbons are present in the cyclam it is possible to generate two stereoisomers for each metal complex configuration. The diastereomers for each configuration are dependent on the chirality around the N atoms in the complex as the carbon chirality in the cyclam ligand is both encoded and maintained during synthesis. The title compound has adopted a diastereomer that places the methyl side arms into the equatorial plane of the 5 membered rings. This minimizes steric interactions with the remainder of the cyclam and the water ligands attached to the nickel center.

For uses of the title compound, see: Kimura et al. (1992); Liang et al. (2002); Burrows et al. (1992, 1988); Kelly et al. (1999); Churchard et al. (2010). For the synthesis of the ligand, see: Beck & Lang (2003); Beck et al. (1998, 2003). For metal complex formation, see: Sadler et al. (2007); Voelcker et al. (2008). For nickel cyclam complex crystal structures with a cis-V configuration, see: Sadler et al. (2007); Ito et al. (1981, 1982); Allen (2002). For details of peptide racemization, see: Liardon et al. (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XCIF in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
Diaqua[(1R,2S,4R,8R,9S,11R)-2,9- dimethyl-1,4,8,11-tetraazacyclotetradecane]nickel(II) dichloride dihydrate top
Crystal data top
[Ni(C12H28N4)(H2O)2]Cl2·2H2OF(000) = 920
Mr = 430.06Dx = 1.426 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9955 reflections
a = 9.7309 (8) Åθ = 3.1–33.2°
b = 14.0994 (11) ŵ = 1.26 mm1
c = 14.6000 (11) ÅT = 120 K
V = 2003.1 (3) Å3Plate, purple
Z = 40.28 × 0.24 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
7454 independent reflections
Radiation source: fine-focus sealed tube6563 reflections with I > σ(I)
Graphite monochromatorRint = 0.061
φ and ω scansθmax = 33.1°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.720, Tmax = 0.864k = 2021
25180 measured reflectionsl = 2221
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.035P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
7454 reflectionsΔρmax = 0.29 e Å3
246 parametersΔρmin = 0.38 e Å3
0 restraintsAbsolute structure: Flack (1983), 3205 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (7)
Crystal data top
[Ni(C12H28N4)(H2O)2]Cl2·2H2OV = 2003.1 (3) Å3
Mr = 430.06Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.7309 (8) ŵ = 1.26 mm1
b = 14.0994 (11) ÅT = 120 K
c = 14.6000 (11) Å0.28 × 0.24 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
7454 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6563 reflections with I > σ(I)
Tmin = 0.720, Tmax = 0.864Rint = 0.061
25180 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083Δρmax = 0.29 e Å3
S = 1.03Δρmin = 0.38 e Å3
7454 reflectionsAbsolute structure: Flack (1983), 3205 Friedel pairs
246 parametersAbsolute structure parameter: 0.006 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.71927 (4)0.16329 (3)0.06960 (2)0.02112 (8)
Cl20.79391 (5)0.60262 (3)0.074484 (19)0.02032 (8)
Ni10.749450 (19)0.382317 (11)0.280156 (10)0.01238 (5)
O10.87944 (13)0.32002 (8)0.18131 (7)0.0182 (2)
H1A0.841 (2)0.2877 (15)0.1520 (12)0.022*
H1B0.925 (2)0.3587 (13)0.1483 (12)0.022*
O20.63308 (14)0.43853 (8)0.16958 (6)0.0188 (2)
H2A0.670 (3)0.4766 (14)0.1447 (12)0.023*
H2B0.590 (2)0.4070 (14)0.1346 (13)0.023*
O31.03357 (16)0.44143 (10)0.08293 (8)0.0264 (3)
H3A0.985 (3)0.4846 (15)0.0655 (13)0.032*
H3B1.069 (3)0.4260 (15)0.0375 (15)0.032*
O40.49336 (18)0.32714 (12)0.05395 (10)0.0389 (4)
H4A0.538 (3)0.2856 (19)0.0410 (16)0.047*
H4B0.436 (3)0.3292 (19)0.0224 (16)0.047*
N110.87279 (15)0.31679 (9)0.37995 (8)0.0157 (2)
H110.838 (2)0.3325 (13)0.4315 (10)0.019*
C121.02074 (17)0.33903 (11)0.37783 (10)0.0191 (3)
H12A1.05950.31820.31850.023*
H12B1.06780.30320.42700.023*
C131.04857 (18)0.44409 (11)0.39043 (10)0.0200 (3)
H13A1.14730.45280.40450.024*
H13B0.99560.46690.44400.024*
C141.01209 (17)0.50543 (11)0.30776 (9)0.0181 (3)
H14A1.04820.57020.31780.022*
H14B1.05810.47920.25280.022*
N150.86136 (14)0.51134 (9)0.28990 (7)0.0151 (2)
H150.849 (2)0.5386 (13)0.2377 (11)0.018*
C160.79010 (17)0.57511 (10)0.35683 (9)0.0153 (3)
H16A0.82260.55850.41980.018*
C170.63766 (18)0.55513 (10)0.35165 (9)0.0168 (3)
H17A0.58900.59210.39930.020*
H17B0.60200.57490.29110.020*
N180.61136 (14)0.45273 (8)0.36543 (7)0.0143 (2)
H180.634 (2)0.4368 (13)0.4203 (11)0.017*
C190.46435 (17)0.43027 (11)0.35336 (10)0.0186 (3)
H19A0.43580.44810.29060.022*
H19B0.40960.46840.39710.022*
C200.43414 (18)0.32571 (11)0.36862 (10)0.0192 (3)
H20A0.33350.31750.37470.023*
H20B0.47650.30600.42730.023*
C210.48560 (17)0.26014 (11)0.29316 (10)0.0187 (3)
H21A0.44710.19600.30340.022*
H21B0.45040.28330.23360.022*
N220.63722 (14)0.25275 (9)0.28777 (7)0.0149 (2)
H220.662 (2)0.2237 (13)0.2382 (11)0.018*
C230.69697 (18)0.19430 (10)0.36349 (9)0.0174 (3)
H23A0.65460.21560.42240.021*
C240.84928 (18)0.21402 (10)0.36830 (9)0.0170 (3)
H24A0.89000.17910.42050.020*
H24B0.89430.19190.31140.020*
C250.8201 (2)0.67969 (11)0.34008 (10)0.0228 (3)
H25A0.91880.69130.34710.034*
H25B0.76920.71820.38450.034*
H25C0.79160.69680.27790.034*
C260.6686 (2)0.08823 (11)0.35262 (11)0.0266 (4)
H26A0.56930.07700.35440.040*
H26B0.71300.05340.40270.040*
H26C0.70550.06630.29390.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0206 (2)0.02300 (17)0.01969 (14)0.00200 (14)0.00002 (13)0.00204 (11)
Cl20.0262 (2)0.02052 (16)0.01430 (13)0.00036 (15)0.00089 (13)0.00095 (11)
Ni10.01140 (10)0.01451 (8)0.01122 (7)0.00030 (8)0.00007 (7)0.00057 (5)
O10.0176 (6)0.0210 (5)0.0159 (4)0.0025 (5)0.0020 (4)0.0034 (4)
O20.0185 (6)0.0224 (5)0.0155 (4)0.0030 (5)0.0025 (4)0.0017 (4)
O30.0282 (8)0.0289 (6)0.0221 (5)0.0022 (6)0.0062 (5)0.0027 (4)
O40.0328 (9)0.0410 (8)0.0428 (7)0.0097 (7)0.0187 (6)0.0186 (6)
N110.0148 (6)0.0176 (5)0.0146 (4)0.0005 (5)0.0009 (4)0.0020 (4)
C120.0134 (7)0.0229 (7)0.0210 (6)0.0025 (6)0.0025 (5)0.0015 (5)
C130.0148 (8)0.0225 (7)0.0225 (6)0.0013 (6)0.0054 (6)0.0016 (5)
C140.0129 (7)0.0220 (7)0.0193 (6)0.0025 (6)0.0014 (5)0.0002 (5)
N150.0149 (6)0.0177 (5)0.0128 (4)0.0003 (5)0.0005 (4)0.0009 (4)
C160.0150 (7)0.0164 (6)0.0145 (5)0.0011 (5)0.0003 (5)0.0017 (4)
C170.0173 (8)0.0145 (6)0.0186 (5)0.0008 (6)0.0005 (5)0.0004 (5)
N180.0131 (6)0.0147 (5)0.0150 (5)0.0004 (5)0.0008 (4)0.0002 (4)
C190.0126 (8)0.0216 (7)0.0215 (6)0.0009 (6)0.0014 (5)0.0012 (5)
C200.0151 (8)0.0198 (7)0.0228 (6)0.0015 (6)0.0036 (6)0.0020 (5)
C210.0135 (7)0.0214 (7)0.0211 (6)0.0022 (6)0.0015 (5)0.0024 (5)
N220.0150 (6)0.0178 (5)0.0119 (4)0.0002 (5)0.0005 (4)0.0009 (4)
C230.0191 (8)0.0184 (6)0.0146 (5)0.0002 (6)0.0006 (5)0.0016 (4)
C240.0163 (8)0.0151 (6)0.0195 (6)0.0001 (6)0.0019 (5)0.0016 (5)
C250.0216 (9)0.0175 (7)0.0294 (7)0.0043 (6)0.0001 (6)0.0024 (5)
C260.0250 (10)0.0188 (7)0.0359 (8)0.0032 (7)0.0037 (7)0.0062 (6)
Geometric parameters (Å, º) top
Ni1—N182.0836 (12)C16—C251.523 (2)
Ni1—N112.1017 (13)C16—H16A1.0000
Ni1—O12.1105 (11)C17—N181.4800 (19)
Ni1—N152.1249 (13)C17—H17A0.9900
Ni1—O22.1253 (11)C17—H17B0.9900
Ni1—N222.1312 (13)N18—C191.476 (2)
O1—H1A0.73 (2)N18—H180.861 (16)
O1—H1B0.85 (2)C19—C201.520 (2)
O2—H2A0.74 (2)C19—H19A0.9900
O2—H2B0.80 (2)C19—H19B0.9900
O3—H3A0.81 (2)C20—C211.523 (2)
O3—H3B0.78 (2)C20—H20A0.9900
O4—H4A0.75 (3)C20—H20B0.9900
O4—H4B0.72 (3)C21—N221.481 (2)
N11—C121.474 (2)C21—H21A0.9900
N11—C241.4767 (19)C21—H21B0.9900
N11—H110.853 (15)N22—C231.4965 (18)
C12—C131.517 (2)N22—H220.864 (17)
C12—H12A0.9900C23—C241.510 (3)
C12—H12B0.9900C23—C261.529 (2)
C13—C141.527 (2)C23—H23A1.0000
C13—H13A0.9900C24—H24A0.9900
C13—H13B0.9900C24—H24B0.9900
C14—N151.492 (2)C25—H25A0.9800
C14—H14A0.9900C25—H25B0.9800
C14—H14B0.9900C25—H25C0.9800
N15—C161.4980 (18)C26—H26A0.9800
N15—H150.861 (17)C26—H26B0.9800
C16—C171.512 (2)C26—H26C0.9800
N18—Ni1—N1199.41 (5)N18—C17—H17A109.6
N18—Ni1—O1173.42 (4)C16—C17—H17A109.6
N11—Ni1—O187.06 (4)N18—C17—H17B109.6
N18—Ni1—N1583.26 (5)C16—C17—H17B109.6
N11—Ni1—N1592.14 (5)H17A—C17—H17B108.1
O1—Ni1—N1595.45 (5)C19—N18—C17111.14 (12)
N18—Ni1—O286.14 (5)C19—N18—Ni1116.84 (9)
N11—Ni1—O2174.18 (5)C17—N18—Ni1105.79 (9)
O1—Ni1—O287.43 (5)C19—N18—H18107.6 (14)
N15—Ni1—O290.27 (5)C17—N18—H18109.7 (13)
N18—Ni1—N2292.68 (5)Ni1—N18—H18105.5 (13)
N11—Ni1—N2283.09 (5)N18—C19—C20112.22 (13)
O1—Ni1—N2289.20 (5)N18—C19—H19A109.2
N15—Ni1—N22173.17 (5)C20—C19—H19A109.2
O2—Ni1—N2294.95 (5)N18—C19—H19B109.2
Ni1—O1—H1A110.9 (18)C20—C19—H19B109.2
Ni1—O1—H1B115.6 (13)H19A—C19—H19B107.9
H1A—O1—H1B109.4 (19)C19—C20—C21114.79 (12)
Ni1—O2—H2A112.7 (18)C19—C20—H20A108.6
Ni1—O2—H2B124.1 (14)C21—C20—H20A108.6
H2A—O2—H2B110 (2)C19—C20—H20B108.6
H3A—O3—H3B102 (2)C21—C20—H20B108.6
H4A—O4—H4B108 (3)H20A—C20—H20B107.5
C12—N11—C24110.96 (13)N22—C21—C20114.12 (13)
C12—N11—Ni1116.73 (9)N22—C21—H21A108.7
C24—N11—Ni1105.25 (9)C20—C21—H21A108.7
C12—N11—H11110.4 (14)N22—C21—H21B108.7
C24—N11—H11107.2 (13)C20—C21—H21B108.7
Ni1—N11—H11105.8 (13)H21A—C21—H21B107.6
N11—C12—C13112.31 (14)C21—N22—C23112.74 (12)
N11—C12—H12A109.1C21—N22—Ni1116.93 (9)
C13—C12—H12A109.1C23—N22—Ni1108.15 (9)
N11—C12—H12B109.1C21—N22—H22110.6 (15)
C13—C12—H12B109.1C23—N22—H22104.5 (12)
H12A—C12—H12B107.9Ni1—N22—H22102.7 (13)
C12—C13—C14114.56 (12)N22—C23—C24108.32 (12)
C12—C13—H13A108.6N22—C23—C26113.08 (13)
C14—C13—H13A108.6C24—C23—C26111.22 (14)
C12—C13—H13B108.6N22—C23—H23A108.0
C14—C13—H13B108.6C24—C23—H23A108.0
H13A—C13—H13B107.6C26—C23—H23A108.0
N15—C14—C13113.47 (13)N11—C24—C23109.77 (13)
N15—C14—H14A108.9N11—C24—H24A109.7
C13—C14—H14A108.9C23—C24—H24A109.7
N15—C14—H14B108.9N11—C24—H24B109.7
C13—C14—H14B108.9C23—C24—H24B109.7
H14A—C14—H14B107.7H24A—C24—H24B108.2
C14—N15—C16112.00 (11)C16—C25—H25A109.5
C14—N15—Ni1117.88 (9)C16—C25—H25B109.5
C16—N15—Ni1108.68 (9)H25A—C25—H25B109.5
C14—N15—H15108.2 (15)C16—C25—H25C109.5
C16—N15—H15104.2 (13)H25A—C25—H25C109.5
Ni1—N15—H15104.7 (13)H25B—C25—H25C109.5
N15—C16—C17108.04 (11)C23—C26—H26A109.5
N15—C16—C25112.81 (12)C23—C26—H26B109.5
C17—C16—C25111.14 (13)H26A—C26—H26B109.5
N15—C16—H16A108.2C23—C26—H26C109.5
C17—C16—H16A108.2H26A—C26—H26C109.5
C25—C16—H16A108.2H26B—C26—H26C109.5
N18—C17—C16110.16 (13)
N18—Ni1—N11—C12122.05 (10)N11—Ni1—N18—C19122.13 (10)
O1—Ni1—N11—C1256.81 (10)N15—Ni1—N18—C19146.81 (10)
N15—Ni1—N11—C1238.54 (10)O2—Ni1—N18—C1956.08 (10)
N22—Ni1—N11—C12146.36 (11)N22—Ni1—N18—C1938.70 (10)
N18—Ni1—N11—C24114.41 (10)N11—Ni1—N18—C17113.58 (9)
O1—Ni1—N11—C2466.72 (10)N15—Ni1—N18—C1722.53 (9)
N15—Ni1—N11—C24162.07 (10)O2—Ni1—N18—C1768.20 (9)
N22—Ni1—N11—C2422.83 (10)N22—Ni1—N18—C17162.98 (9)
C24—N11—C12—C13179.52 (11)C17—N18—C19—C20179.10 (11)
Ni1—N11—C12—C1359.94 (14)Ni1—N18—C19—C2059.39 (13)
N11—C12—C13—C1472.87 (18)N18—C19—C20—C2171.94 (17)
C12—C13—C14—N1568.35 (18)C19—C20—C21—N2268.51 (18)
C13—C14—N15—C1675.20 (15)C20—C21—N22—C2374.12 (15)
C13—C14—N15—Ni152.00 (14)C20—C21—N22—Ni152.15 (14)
N18—Ni1—N15—C14134.12 (9)N18—Ni1—N22—C2135.07 (10)
N11—Ni1—N15—C1434.89 (9)N11—Ni1—N22—C21134.24 (10)
O1—Ni1—N15—C1452.36 (9)O1—Ni1—N22—C21138.62 (10)
O2—Ni1—N15—C14139.80 (9)O2—Ni1—N22—C2151.28 (10)
N18—Ni1—N15—C165.35 (9)N18—Ni1—N22—C2393.44 (9)
N11—Ni1—N15—C1693.88 (9)N11—Ni1—N22—C235.72 (9)
O1—Ni1—N15—C16178.86 (9)O1—Ni1—N22—C2392.86 (9)
O2—Ni1—N15—C1691.42 (9)O2—Ni1—N22—C23179.79 (9)
C14—N15—C16—C17163.86 (11)C21—N22—C23—C24163.87 (12)
Ni1—N15—C16—C1731.87 (12)Ni1—N22—C23—C2433.01 (13)
C14—N15—C16—C2572.87 (16)C21—N22—C23—C2672.38 (17)
Ni1—N15—C16—C25155.13 (11)Ni1—N22—C23—C26156.76 (12)
N15—C16—C17—N1854.08 (14)C12—N11—C24—C23175.69 (11)
C25—C16—C17—N18178.35 (10)Ni1—N11—C24—C2348.56 (12)
C16—C17—N18—C19175.47 (11)N22—C23—C24—N1155.86 (14)
C16—C17—N18—Ni147.70 (12)C26—C23—C24—N11179.28 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl10.73 (2)2.44 (2)3.1580 (12)172 (2)
O1—H1B···O30.85 (2)1.84 (2)2.6912 (17)176 (2)
O2—H2A···Cl20.74 (2)2.38 (2)3.1192 (13)176 (2)
O2—H2B···O40.80 (2)1.88 (2)2.6767 (18)177 (2)
O3—H3A···Cl20.81 (2)2.50 (3)3.2587 (15)156 (2)
O3—H3B···Cl1i0.78 (2)2.48 (2)3.2256 (14)160 (2)
O4—H4A···Cl10.75 (3)2.50 (3)3.1971 (18)154 (2)
O4—H4B···Cl1ii0.72 (3)2.50 (3)3.2227 (16)173 (3)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Ni(C12H28N4)(H2O)2]Cl2·2H2O
Mr430.06
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)9.7309 (8), 14.0994 (11), 14.6000 (11)
V3)2003.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.28 × 0.24 × 0.12
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.720, 0.864
No. of measured, independent and
observed [I > σ(I)] reflections
25180, 7454, 6563
Rint0.061
(sin θ/λ)max1)0.769
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.083, 1.03
No. of reflections7454
No. of parameters246
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.38
Absolute structureFlack (1983), 3205 Friedel pairs
Absolute structure parameter0.006 (7)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), XCIF in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl10.73 (2)2.44 (2)3.1580 (12)172 (2)
O1—H1B···O30.85 (2)1.84 (2)2.6912 (17)176 (2)
O2—H2A···Cl20.74 (2)2.38 (2)3.1192 (13)176 (2)
O2—H2B···O40.80 (2)1.88 (2)2.6767 (18)177 (2)
O3—H3A···Cl20.81 (2)2.50 (3)3.2587 (15)156 (2)
O3—H3B···Cl1i0.78 (2)2.48 (2)3.2256 (14)160 (2)
O4—H4A···Cl10.75 (3)2.50 (3)3.1971 (18)154 (2)
O4—H4B···Cl1ii0.72 (3)2.50 (3)3.2227 (16)173 (3)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z.
 

Acknowledgements

We would like to thank Kansas State University for the generous use of their spectroscopy equipment.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBeck, W., Hass, K., Ponikwar, W. & Noth, H. (1998). Angew. Chem. Int. Ed. 37, 1086–1089.  Google Scholar
First citationBeck, W. & Lang, M. A. (2003). Z. Naturforsch. Teil B, 58, 447–450.  Google Scholar
First citationBeck, W., Schapp, J., Hass, K. & Sunkel, K. (2003). Eur. J. Inorg. Chem. 20, 3745–3751.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurrows, C. J., Kinneary, J. F. & Albert, J. S. (1988). J. Am. Chem. Soc. 110, 6124–6129.  PubMed Web of Science Google Scholar
First citationBurrows, C. J., Rokita, S. E., Muller, J. G., Chen, X. & Dadiz, A. C. (1992). J. Am. Chem. Soc. 114, 6407–6411.  Google Scholar
First citationChurchard, A. J., Cyanski, M. K., Dobrzycki, K., Budzianowski, A. & Grochala, W. (2010). Energy Environ. 3, 1973–1978.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIto, T., Sugimoto, M. & Ito, H. (1982). Bull. Chem. Soc. Jpn, 55, 1971–1972.  CrossRef CAS Web of Science Google Scholar
First citationIto, T., Toriumi, K. & Ito, H. (1981). Bull. Chem. Soc. Jpn, 54, 1096–1100.  CrossRef CAS Web of Science Google Scholar
First citationKelly, C. A., Blinn, E. L., Camaioni, N., D'Angelantonio, M. & Mulazzani, Q. G. (1999). Inorg. Chem. 38, 1579–1584.  Web of Science CrossRef CAS Google Scholar
First citationKimura, E., Bu, X., Shionoya, M., Wada, S. & Maruyama, S. (1992). Inorg. Chem. 31, 4542–4546.  CrossRef CAS Web of Science Google Scholar
First citationLiang, X., Parkinson, J. A., Weishaupl, M., Gould, R. O., Paisey, S. J., Park, H., Hunter, T. M., Blindauer, C. A. & Parsons, S. (2002). J. Am. Chem. Soc. 124, 9105–9112.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiardon, R. & Ledermann, S. (1986). Inorg. Chem. 34, 557–565.  CAS Google Scholar
First citationSadler, P. J., Hunter, T. M., McNae, I. W., Simpson, D. P., Smith, S. M., Moggach, S., White, F., Walkinshaw, M. D. & Parsons, S. (2007). Chem. Eur. J. 13, 40–50.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVoelcker, N. H., Alfonso, I. & Ghadiri, M. R. (2008). ChemBioChem, 9, 1776–1786.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds