metal-organic compounds
Diaqua[(1R,2S,4R,8R,9S,11R)-2,9-dimethyl-1,4,8,11-tetraazacyclotetradecane]nickel(II) dichloride dihydrate
aKansas Wesleyan University, 100 East Claflin, Salina, Kansas 67401, USA, and bKansas State University, Manhattan, Kansas 66502, USA
*Correspondence e-mail: James.Townsend@kwu.edu
The 12H28N4)(H2O)2]Cl2·2H2O, displays O—H⋯Cl and O—H⋯O hydrogen bonding. The tetraazacyclotetradecane ligand interacts with the NiII atom in the cis V configuration and the final two ligand binding sites are occupied by water.
of the title complex, [Ni(CRelated literature
For uses of the title compound, see: Kimura et al. (1992); Liang et al. (2002); Burrows et al. (1992, 1988); Kelly et al. (1999); Churchard et al. (2010). For the synthesis of the ligand, see: Beck & Lang (2003); Beck et al. (1998, 2003). For metal complex formation, see: Sadler et al. (2007); Voelcker et al. (2008). For nickel cyclam complex crystal structures with a cis-V configuration, see: Sadler et al. (2007); Ito et al. (1981, 1982); Allen (2002). For details of peptide see: Liardon & Ledermann (1986).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XCIF in SHELXTL.
Supporting information
https://doi.org/10.1107/S160053681203276X/pk2429sup1.cif
contains datablocks I, global. DOI:Supporting information file. DOI: https://doi.org/10.1107/S160053681203276X/pk2429Isup2.mol
Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681203276X/pk2429Isup3.hkl
The (2S,9S)-2,9-dimethyl-1,4,8,11-tetraazacyclotetradecane (100 mg, 0.44 mmol) was dissolved in methanol (2 ml) and the NiCl2.6H2O (105 mg, 0.44 mmol) was added in methanol (2 ml). The reaction mixture was heated to reflux for ten minutes and allowed to cool. A purple crystalline solid was isolated for X-ray analysis after 4 months of crystallization via slow evaporation at RT.
All hydrogen atoms, excepting amine and water H atoms, were placed in idealized positions and allowed to ride. Coordinates of the amine and water H atoms were allowed to refine.
was determined by inspection of the produced by least-squares A value of -0.006 (7) indicated that the chosen configuration was correct.The ligand in the title compound was synthesized by base-catalyzed metal-templated
of dipeptides, metal removal using HCl and finally amide reduction to yield a C-functionalized cyclam molecule (Beck & Lang, 2003). The stereochemical integrity of the ligands previously synthesized, however, was never established. Strong bases such as NaOMe, which is used in the ligand synthesis, have the ability to racemize Liardon et al. (1986). The of the title compound shows that the stereochemical integrity of the (2S,9S)-2,9-dimethyl-1,4,8,11-tetraazacyclotetradecane ligand is maintained throughout the synthesis.Cyclam metal complexes have 6 possible configurations: trans I—V and cis V (Liang et al., 2002). Typically the structure of cyclam metal complexes tends to favor the thermodynamically most stable trans III configuration in the solid state (Liang et al., 2002). However, in this case the compound has adopted the cis V configuration with two water molecules acting as ligands to the metal center. The chloride counter ions interact with the water ligands through O—H···Cl hydrogen bonds. Similarly configured nickel cyclam complexes were reported by Ito et al. (1981, 1982). A recent
search in the CCDC database has shown that only 4% of cyclam complexes without nitrogen functionalization, utilizing halogen containing counter ions and monodentate ligands for the final two coordination sites, adopt a cis V configuration (Allen, 2002).When chiral carbons are present in the cyclam it is possible to generate two
for each metal complex configuration. The for each configuration are dependent on the around the N atoms in the complex as the carbon in the cyclam ligand is both encoded and maintained during synthesis. The title compound has adopted a diastereomer that places the methyl side arms into the equatorial plane of the 5 membered rings. This minimizes steric interactions with the remainder of the cyclam and the water ligands attached to the nickel center.For uses of the title compound, see: Kimura et al. (1992); Liang et al. (2002); Burrows et al. (1992, 1988); Kelly et al. (1999); Churchard et al. (2010). For the synthesis of the ligand, see: Beck & Lang (2003); Beck et al. (1998, 2003). For metal complex formation, see: Sadler et al. (2007); Voelcker et al. (2008). For nickel cyclam complex crystal structures with a cis-V configuration, see: Sadler et al. (2007); Ito et al. (1981, 1982); Allen (2002). For details of peptide
see: Liardon et al. (1986).Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: XCIF in SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. |
[Ni(C12H28N4)(H2O)2]Cl2·2H2O | F(000) = 920 |
Mr = 430.06 | Dx = 1.426 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 9955 reflections |
a = 9.7309 (8) Å | θ = 3.1–33.2° |
b = 14.0994 (11) Å | µ = 1.26 mm−1 |
c = 14.6000 (11) Å | T = 120 K |
V = 2003.1 (3) Å3 | Plate, purple |
Z = 4 | 0.28 × 0.24 × 0.12 mm |
Bruker APEXII CCD diffractometer | 7454 independent reflections |
Radiation source: fine-focus sealed tube | 6563 reflections with I > σ(I) |
Graphite monochromator | Rint = 0.061 |
φ and ω scans | θmax = 33.1°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −14→14 |
Tmin = 0.720, Tmax = 0.864 | k = −20→21 |
25180 measured reflections | l = −22→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.083 | w = 1/[σ2(Fo2) + (0.035P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
7454 reflections | Δρmax = 0.29 e Å−3 |
246 parameters | Δρmin = −0.38 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 3205 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.006 (7) |
[Ni(C12H28N4)(H2O)2]Cl2·2H2O | V = 2003.1 (3) Å3 |
Mr = 430.06 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 9.7309 (8) Å | µ = 1.26 mm−1 |
b = 14.0994 (11) Å | T = 120 K |
c = 14.6000 (11) Å | 0.28 × 0.24 × 0.12 mm |
Bruker APEXII CCD diffractometer | 7454 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 6563 reflections with I > σ(I) |
Tmin = 0.720, Tmax = 0.864 | Rint = 0.061 |
25180 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.083 | Δρmax = 0.29 e Å−3 |
S = 1.03 | Δρmin = −0.38 e Å−3 |
7454 reflections | Absolute structure: Flack (1983), 3205 Friedel pairs |
246 parameters | Absolute structure parameter: −0.006 (7) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.71927 (4) | 0.16329 (3) | 0.06960 (2) | 0.02112 (8) | |
Cl2 | 0.79391 (5) | 0.60262 (3) | 0.074484 (19) | 0.02032 (8) | |
Ni1 | 0.749450 (19) | 0.382317 (11) | 0.280156 (10) | 0.01238 (5) | |
O1 | 0.87944 (13) | 0.32002 (8) | 0.18131 (7) | 0.0182 (2) | |
H1A | 0.841 (2) | 0.2877 (15) | 0.1520 (12) | 0.022* | |
H1B | 0.925 (2) | 0.3587 (13) | 0.1483 (12) | 0.022* | |
O2 | 0.63308 (14) | 0.43853 (8) | 0.16958 (6) | 0.0188 (2) | |
H2A | 0.670 (3) | 0.4766 (14) | 0.1447 (12) | 0.023* | |
H2B | 0.590 (2) | 0.4070 (14) | 0.1346 (13) | 0.023* | |
O3 | 1.03357 (16) | 0.44143 (10) | 0.08293 (8) | 0.0264 (3) | |
H3A | 0.985 (3) | 0.4846 (15) | 0.0655 (13) | 0.032* | |
H3B | 1.069 (3) | 0.4260 (15) | 0.0375 (15) | 0.032* | |
O4 | 0.49336 (18) | 0.32714 (12) | 0.05395 (10) | 0.0389 (4) | |
H4A | 0.538 (3) | 0.2856 (19) | 0.0410 (16) | 0.047* | |
H4B | 0.436 (3) | 0.3292 (19) | 0.0224 (16) | 0.047* | |
N11 | 0.87279 (15) | 0.31679 (9) | 0.37995 (8) | 0.0157 (2) | |
H11 | 0.838 (2) | 0.3325 (13) | 0.4315 (10) | 0.019* | |
C12 | 1.02074 (17) | 0.33903 (11) | 0.37783 (10) | 0.0191 (3) | |
H12A | 1.0595 | 0.3182 | 0.3185 | 0.023* | |
H12B | 1.0678 | 0.3032 | 0.4270 | 0.023* | |
C13 | 1.04857 (18) | 0.44409 (11) | 0.39043 (10) | 0.0200 (3) | |
H13A | 1.1473 | 0.4528 | 0.4045 | 0.024* | |
H13B | 0.9956 | 0.4669 | 0.4440 | 0.024* | |
C14 | 1.01209 (17) | 0.50543 (11) | 0.30776 (9) | 0.0181 (3) | |
H14A | 1.0482 | 0.5702 | 0.3178 | 0.022* | |
H14B | 1.0581 | 0.4792 | 0.2528 | 0.022* | |
N15 | 0.86136 (14) | 0.51134 (9) | 0.28990 (7) | 0.0151 (2) | |
H15 | 0.849 (2) | 0.5386 (13) | 0.2377 (11) | 0.018* | |
C16 | 0.79010 (17) | 0.57511 (10) | 0.35683 (9) | 0.0153 (3) | |
H16A | 0.8226 | 0.5585 | 0.4198 | 0.018* | |
C17 | 0.63766 (18) | 0.55513 (10) | 0.35165 (9) | 0.0168 (3) | |
H17A | 0.5890 | 0.5921 | 0.3993 | 0.020* | |
H17B | 0.6020 | 0.5749 | 0.2911 | 0.020* | |
N18 | 0.61136 (14) | 0.45273 (8) | 0.36543 (7) | 0.0143 (2) | |
H18 | 0.634 (2) | 0.4368 (13) | 0.4203 (11) | 0.017* | |
C19 | 0.46435 (17) | 0.43027 (11) | 0.35336 (10) | 0.0186 (3) | |
H19A | 0.4358 | 0.4481 | 0.2906 | 0.022* | |
H19B | 0.4096 | 0.4684 | 0.3971 | 0.022* | |
C20 | 0.43414 (18) | 0.32571 (11) | 0.36862 (10) | 0.0192 (3) | |
H20A | 0.3335 | 0.3175 | 0.3747 | 0.023* | |
H20B | 0.4765 | 0.3060 | 0.4273 | 0.023* | |
C21 | 0.48560 (17) | 0.26014 (11) | 0.29316 (10) | 0.0187 (3) | |
H21A | 0.4471 | 0.1960 | 0.3034 | 0.022* | |
H21B | 0.4504 | 0.2833 | 0.2336 | 0.022* | |
N22 | 0.63722 (14) | 0.25275 (9) | 0.28777 (7) | 0.0149 (2) | |
H22 | 0.662 (2) | 0.2237 (13) | 0.2382 (11) | 0.018* | |
C23 | 0.69697 (18) | 0.19430 (10) | 0.36349 (9) | 0.0174 (3) | |
H23A | 0.6546 | 0.2156 | 0.4224 | 0.021* | |
C24 | 0.84928 (18) | 0.21402 (10) | 0.36830 (9) | 0.0170 (3) | |
H24A | 0.8900 | 0.1791 | 0.4205 | 0.020* | |
H24B | 0.8943 | 0.1919 | 0.3114 | 0.020* | |
C25 | 0.8201 (2) | 0.67969 (11) | 0.34008 (10) | 0.0228 (3) | |
H25A | 0.9188 | 0.6913 | 0.3471 | 0.034* | |
H25B | 0.7692 | 0.7182 | 0.3845 | 0.034* | |
H25C | 0.7916 | 0.6968 | 0.2779 | 0.034* | |
C26 | 0.6686 (2) | 0.08823 (11) | 0.35262 (11) | 0.0266 (4) | |
H26A | 0.5693 | 0.0770 | 0.3544 | 0.040* | |
H26B | 0.7130 | 0.0534 | 0.4027 | 0.040* | |
H26C | 0.7055 | 0.0663 | 0.2939 | 0.040* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0206 (2) | 0.02300 (17) | 0.01969 (14) | −0.00200 (14) | −0.00002 (13) | −0.00204 (11) |
Cl2 | 0.0262 (2) | 0.02052 (16) | 0.01430 (13) | −0.00036 (15) | 0.00089 (13) | 0.00095 (11) |
Ni1 | 0.01140 (10) | 0.01451 (8) | 0.01122 (7) | −0.00030 (8) | −0.00007 (7) | −0.00057 (5) |
O1 | 0.0176 (6) | 0.0210 (5) | 0.0159 (4) | −0.0025 (5) | 0.0020 (4) | −0.0034 (4) |
O2 | 0.0185 (6) | 0.0224 (5) | 0.0155 (4) | −0.0030 (5) | −0.0025 (4) | 0.0017 (4) |
O3 | 0.0282 (8) | 0.0289 (6) | 0.0221 (5) | 0.0022 (6) | 0.0062 (5) | 0.0027 (4) |
O4 | 0.0328 (9) | 0.0410 (8) | 0.0428 (7) | 0.0097 (7) | −0.0187 (6) | −0.0186 (6) |
N11 | 0.0148 (6) | 0.0176 (5) | 0.0146 (4) | 0.0005 (5) | −0.0009 (4) | −0.0020 (4) |
C12 | 0.0134 (7) | 0.0229 (7) | 0.0210 (6) | 0.0025 (6) | −0.0025 (5) | −0.0015 (5) |
C13 | 0.0148 (8) | 0.0225 (7) | 0.0225 (6) | −0.0013 (6) | −0.0054 (6) | −0.0016 (5) |
C14 | 0.0129 (7) | 0.0220 (7) | 0.0193 (6) | −0.0025 (6) | 0.0014 (5) | −0.0002 (5) |
N15 | 0.0149 (6) | 0.0177 (5) | 0.0128 (4) | 0.0003 (5) | 0.0005 (4) | −0.0009 (4) |
C16 | 0.0150 (7) | 0.0164 (6) | 0.0145 (5) | −0.0011 (5) | 0.0003 (5) | −0.0017 (4) |
C17 | 0.0173 (8) | 0.0145 (6) | 0.0186 (5) | 0.0008 (6) | 0.0005 (5) | −0.0004 (5) |
N18 | 0.0131 (6) | 0.0147 (5) | 0.0150 (5) | −0.0004 (5) | −0.0008 (4) | 0.0002 (4) |
C19 | 0.0126 (8) | 0.0216 (7) | 0.0215 (6) | 0.0009 (6) | 0.0014 (5) | −0.0012 (5) |
C20 | 0.0151 (8) | 0.0198 (7) | 0.0228 (6) | −0.0015 (6) | 0.0036 (6) | −0.0020 (5) |
C21 | 0.0135 (7) | 0.0214 (7) | 0.0211 (6) | −0.0022 (6) | −0.0015 (5) | −0.0024 (5) |
N22 | 0.0150 (6) | 0.0178 (5) | 0.0119 (4) | 0.0002 (5) | −0.0005 (4) | −0.0009 (4) |
C23 | 0.0191 (8) | 0.0184 (6) | 0.0146 (5) | −0.0002 (6) | −0.0006 (5) | 0.0016 (4) |
C24 | 0.0163 (8) | 0.0151 (6) | 0.0195 (6) | 0.0001 (6) | −0.0019 (5) | 0.0016 (5) |
C25 | 0.0216 (9) | 0.0175 (7) | 0.0294 (7) | −0.0043 (6) | −0.0001 (6) | −0.0024 (5) |
C26 | 0.0250 (10) | 0.0188 (7) | 0.0359 (8) | −0.0032 (7) | −0.0037 (7) | 0.0062 (6) |
Ni1—N18 | 2.0836 (12) | C16—C25 | 1.523 (2) |
Ni1—N11 | 2.1017 (13) | C16—H16A | 1.0000 |
Ni1—O1 | 2.1105 (11) | C17—N18 | 1.4800 (19) |
Ni1—N15 | 2.1249 (13) | C17—H17A | 0.9900 |
Ni1—O2 | 2.1253 (11) | C17—H17B | 0.9900 |
Ni1—N22 | 2.1312 (13) | N18—C19 | 1.476 (2) |
O1—H1A | 0.73 (2) | N18—H18 | 0.861 (16) |
O1—H1B | 0.85 (2) | C19—C20 | 1.520 (2) |
O2—H2A | 0.74 (2) | C19—H19A | 0.9900 |
O2—H2B | 0.80 (2) | C19—H19B | 0.9900 |
O3—H3A | 0.81 (2) | C20—C21 | 1.523 (2) |
O3—H3B | 0.78 (2) | C20—H20A | 0.9900 |
O4—H4A | 0.75 (3) | C20—H20B | 0.9900 |
O4—H4B | 0.72 (3) | C21—N22 | 1.481 (2) |
N11—C12 | 1.474 (2) | C21—H21A | 0.9900 |
N11—C24 | 1.4767 (19) | C21—H21B | 0.9900 |
N11—H11 | 0.853 (15) | N22—C23 | 1.4965 (18) |
C12—C13 | 1.517 (2) | N22—H22 | 0.864 (17) |
C12—H12A | 0.9900 | C23—C24 | 1.510 (3) |
C12—H12B | 0.9900 | C23—C26 | 1.529 (2) |
C13—C14 | 1.527 (2) | C23—H23A | 1.0000 |
C13—H13A | 0.9900 | C24—H24A | 0.9900 |
C13—H13B | 0.9900 | C24—H24B | 0.9900 |
C14—N15 | 1.492 (2) | C25—H25A | 0.9800 |
C14—H14A | 0.9900 | C25—H25B | 0.9800 |
C14—H14B | 0.9900 | C25—H25C | 0.9800 |
N15—C16 | 1.4980 (18) | C26—H26A | 0.9800 |
N15—H15 | 0.861 (17) | C26—H26B | 0.9800 |
C16—C17 | 1.512 (2) | C26—H26C | 0.9800 |
N18—Ni1—N11 | 99.41 (5) | N18—C17—H17A | 109.6 |
N18—Ni1—O1 | 173.42 (4) | C16—C17—H17A | 109.6 |
N11—Ni1—O1 | 87.06 (4) | N18—C17—H17B | 109.6 |
N18—Ni1—N15 | 83.26 (5) | C16—C17—H17B | 109.6 |
N11—Ni1—N15 | 92.14 (5) | H17A—C17—H17B | 108.1 |
O1—Ni1—N15 | 95.45 (5) | C19—N18—C17 | 111.14 (12) |
N18—Ni1—O2 | 86.14 (5) | C19—N18—Ni1 | 116.84 (9) |
N11—Ni1—O2 | 174.18 (5) | C17—N18—Ni1 | 105.79 (9) |
O1—Ni1—O2 | 87.43 (5) | C19—N18—H18 | 107.6 (14) |
N15—Ni1—O2 | 90.27 (5) | C17—N18—H18 | 109.7 (13) |
N18—Ni1—N22 | 92.68 (5) | Ni1—N18—H18 | 105.5 (13) |
N11—Ni1—N22 | 83.09 (5) | N18—C19—C20 | 112.22 (13) |
O1—Ni1—N22 | 89.20 (5) | N18—C19—H19A | 109.2 |
N15—Ni1—N22 | 173.17 (5) | C20—C19—H19A | 109.2 |
O2—Ni1—N22 | 94.95 (5) | N18—C19—H19B | 109.2 |
Ni1—O1—H1A | 110.9 (18) | C20—C19—H19B | 109.2 |
Ni1—O1—H1B | 115.6 (13) | H19A—C19—H19B | 107.9 |
H1A—O1—H1B | 109.4 (19) | C19—C20—C21 | 114.79 (12) |
Ni1—O2—H2A | 112.7 (18) | C19—C20—H20A | 108.6 |
Ni1—O2—H2B | 124.1 (14) | C21—C20—H20A | 108.6 |
H2A—O2—H2B | 110 (2) | C19—C20—H20B | 108.6 |
H3A—O3—H3B | 102 (2) | C21—C20—H20B | 108.6 |
H4A—O4—H4B | 108 (3) | H20A—C20—H20B | 107.5 |
C12—N11—C24 | 110.96 (13) | N22—C21—C20 | 114.12 (13) |
C12—N11—Ni1 | 116.73 (9) | N22—C21—H21A | 108.7 |
C24—N11—Ni1 | 105.25 (9) | C20—C21—H21A | 108.7 |
C12—N11—H11 | 110.4 (14) | N22—C21—H21B | 108.7 |
C24—N11—H11 | 107.2 (13) | C20—C21—H21B | 108.7 |
Ni1—N11—H11 | 105.8 (13) | H21A—C21—H21B | 107.6 |
N11—C12—C13 | 112.31 (14) | C21—N22—C23 | 112.74 (12) |
N11—C12—H12A | 109.1 | C21—N22—Ni1 | 116.93 (9) |
C13—C12—H12A | 109.1 | C23—N22—Ni1 | 108.15 (9) |
N11—C12—H12B | 109.1 | C21—N22—H22 | 110.6 (15) |
C13—C12—H12B | 109.1 | C23—N22—H22 | 104.5 (12) |
H12A—C12—H12B | 107.9 | Ni1—N22—H22 | 102.7 (13) |
C12—C13—C14 | 114.56 (12) | N22—C23—C24 | 108.32 (12) |
C12—C13—H13A | 108.6 | N22—C23—C26 | 113.08 (13) |
C14—C13—H13A | 108.6 | C24—C23—C26 | 111.22 (14) |
C12—C13—H13B | 108.6 | N22—C23—H23A | 108.0 |
C14—C13—H13B | 108.6 | C24—C23—H23A | 108.0 |
H13A—C13—H13B | 107.6 | C26—C23—H23A | 108.0 |
N15—C14—C13 | 113.47 (13) | N11—C24—C23 | 109.77 (13) |
N15—C14—H14A | 108.9 | N11—C24—H24A | 109.7 |
C13—C14—H14A | 108.9 | C23—C24—H24A | 109.7 |
N15—C14—H14B | 108.9 | N11—C24—H24B | 109.7 |
C13—C14—H14B | 108.9 | C23—C24—H24B | 109.7 |
H14A—C14—H14B | 107.7 | H24A—C24—H24B | 108.2 |
C14—N15—C16 | 112.00 (11) | C16—C25—H25A | 109.5 |
C14—N15—Ni1 | 117.88 (9) | C16—C25—H25B | 109.5 |
C16—N15—Ni1 | 108.68 (9) | H25A—C25—H25B | 109.5 |
C14—N15—H15 | 108.2 (15) | C16—C25—H25C | 109.5 |
C16—N15—H15 | 104.2 (13) | H25A—C25—H25C | 109.5 |
Ni1—N15—H15 | 104.7 (13) | H25B—C25—H25C | 109.5 |
N15—C16—C17 | 108.04 (11) | C23—C26—H26A | 109.5 |
N15—C16—C25 | 112.81 (12) | C23—C26—H26B | 109.5 |
C17—C16—C25 | 111.14 (13) | H26A—C26—H26B | 109.5 |
N15—C16—H16A | 108.2 | C23—C26—H26C | 109.5 |
C17—C16—H16A | 108.2 | H26A—C26—H26C | 109.5 |
C25—C16—H16A | 108.2 | H26B—C26—H26C | 109.5 |
N18—C17—C16 | 110.16 (13) | ||
N18—Ni1—N11—C12 | −122.05 (10) | N11—Ni1—N18—C19 | −122.13 (10) |
O1—Ni1—N11—C12 | 56.81 (10) | N15—Ni1—N18—C19 | 146.81 (10) |
N15—Ni1—N11—C12 | −38.54 (10) | O2—Ni1—N18—C19 | 56.08 (10) |
N22—Ni1—N11—C12 | 146.36 (11) | N22—Ni1—N18—C19 | −38.70 (10) |
N18—Ni1—N11—C24 | 114.41 (10) | N11—Ni1—N18—C17 | 113.58 (9) |
O1—Ni1—N11—C24 | −66.72 (10) | N15—Ni1—N18—C17 | 22.53 (9) |
N15—Ni1—N11—C24 | −162.07 (10) | O2—Ni1—N18—C17 | −68.20 (9) |
N22—Ni1—N11—C24 | 22.83 (10) | N22—Ni1—N18—C17 | −162.98 (9) |
C24—N11—C12—C13 | −179.52 (11) | C17—N18—C19—C20 | −179.10 (11) |
Ni1—N11—C12—C13 | 59.94 (14) | Ni1—N18—C19—C20 | 59.39 (13) |
N11—C12—C13—C14 | −72.87 (18) | N18—C19—C20—C21 | −71.94 (17) |
C12—C13—C14—N15 | 68.35 (18) | C19—C20—C21—N22 | 68.51 (18) |
C13—C14—N15—C16 | 75.20 (15) | C20—C21—N22—C23 | 74.12 (15) |
C13—C14—N15—Ni1 | −52.00 (14) | C20—C21—N22—Ni1 | −52.15 (14) |
N18—Ni1—N15—C14 | 134.12 (9) | N18—Ni1—N22—C21 | 35.07 (10) |
N11—Ni1—N15—C14 | 34.89 (9) | N11—Ni1—N22—C21 | 134.24 (10) |
O1—Ni1—N15—C14 | −52.36 (9) | O1—Ni1—N22—C21 | −138.62 (10) |
O2—Ni1—N15—C14 | −139.80 (9) | O2—Ni1—N22—C21 | −51.28 (10) |
N18—Ni1—N15—C16 | 5.35 (9) | N18—Ni1—N22—C23 | −93.44 (9) |
N11—Ni1—N15—C16 | −93.88 (9) | N11—Ni1—N22—C23 | 5.72 (9) |
O1—Ni1—N15—C16 | 178.86 (9) | O1—Ni1—N22—C23 | 92.86 (9) |
O2—Ni1—N15—C16 | 91.42 (9) | O2—Ni1—N22—C23 | −179.79 (9) |
C14—N15—C16—C17 | −163.86 (11) | C21—N22—C23—C24 | −163.87 (12) |
Ni1—N15—C16—C17 | −31.87 (12) | Ni1—N22—C23—C24 | −33.01 (13) |
C14—N15—C16—C25 | 72.87 (16) | C21—N22—C23—C26 | 72.38 (17) |
Ni1—N15—C16—C25 | −155.13 (11) | Ni1—N22—C23—C26 | −156.76 (12) |
N15—C16—C17—N18 | 54.08 (14) | C12—N11—C24—C23 | −175.69 (11) |
C25—C16—C17—N18 | 178.35 (10) | Ni1—N11—C24—C23 | −48.56 (12) |
C16—C17—N18—C19 | −175.47 (11) | N22—C23—C24—N11 | 55.86 (14) |
C16—C17—N18—Ni1 | −47.70 (12) | C26—C23—C24—N11 | −179.28 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Cl1 | 0.73 (2) | 2.44 (2) | 3.1580 (12) | 172 (2) |
O1—H1B···O3 | 0.85 (2) | 1.84 (2) | 2.6912 (17) | 176 (2) |
O2—H2A···Cl2 | 0.74 (2) | 2.38 (2) | 3.1192 (13) | 176 (2) |
O2—H2B···O4 | 0.80 (2) | 1.88 (2) | 2.6767 (18) | 177 (2) |
O3—H3A···Cl2 | 0.81 (2) | 2.50 (3) | 3.2587 (15) | 156 (2) |
O3—H3B···Cl1i | 0.78 (2) | 2.48 (2) | 3.2256 (14) | 160 (2) |
O4—H4A···Cl1 | 0.75 (3) | 2.50 (3) | 3.1971 (18) | 154 (2) |
O4—H4B···Cl1ii | 0.72 (3) | 2.50 (3) | 3.2227 (16) | 173 (3) |
Symmetry codes: (i) x+1/2, −y+1/2, −z; (ii) x−1/2, −y+1/2, −z. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C12H28N4)(H2O)2]Cl2·2H2O |
Mr | 430.06 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 120 |
a, b, c (Å) | 9.7309 (8), 14.0994 (11), 14.6000 (11) |
V (Å3) | 2003.1 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.26 |
Crystal size (mm) | 0.28 × 0.24 × 0.12 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.720, 0.864 |
No. of measured, independent and observed [I > σ(I)] reflections | 25180, 7454, 6563 |
Rint | 0.061 |
(sin θ/λ)max (Å−1) | 0.769 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.083, 1.03 |
No. of reflections | 7454 |
No. of parameters | 246 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.29, −0.38 |
Absolute structure | Flack (1983), 3205 Friedel pairs |
Absolute structure parameter | −0.006 (7) |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), XCIF in SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···Cl1 | 0.73 (2) | 2.44 (2) | 3.1580 (12) | 172 (2) |
O1—H1B···O3 | 0.85 (2) | 1.84 (2) | 2.6912 (17) | 176 (2) |
O2—H2A···Cl2 | 0.74 (2) | 2.38 (2) | 3.1192 (13) | 176 (2) |
O2—H2B···O4 | 0.80 (2) | 1.88 (2) | 2.6767 (18) | 177 (2) |
O3—H3A···Cl2 | 0.81 (2) | 2.50 (3) | 3.2587 (15) | 156 (2) |
O3—H3B···Cl1i | 0.78 (2) | 2.48 (2) | 3.2256 (14) | 160 (2) |
O4—H4A···Cl1 | 0.75 (3) | 2.50 (3) | 3.1971 (18) | 154 (2) |
O4—H4B···Cl1ii | 0.72 (3) | 2.50 (3) | 3.2227 (16) | 173 (3) |
Symmetry codes: (i) x+1/2, −y+1/2, −z; (ii) x−1/2, −y+1/2, −z. |
Acknowledgements
We would like to thank Kansas State University for the generous use of their spectroscopy equipment.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Beck, W., Hass, K., Ponikwar, W. & Noth, H. (1998). Angew. Chem. Int. Ed. 37, 1086–1089. Google Scholar
Beck, W. & Lang, M. A. (2003). Z. Naturforsch. Teil B, 58, 447–450. Google Scholar
Beck, W., Schapp, J., Hass, K. & Sunkel, K. (2003). Eur. J. Inorg. Chem. 20, 3745–3751. Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burrows, C. J., Kinneary, J. F. & Albert, J. S. (1988). J. Am. Chem. Soc. 110, 6124–6129. PubMed Web of Science Google Scholar
Burrows, C. J., Rokita, S. E., Muller, J. G., Chen, X. & Dadiz, A. C. (1992). J. Am. Chem. Soc. 114, 6407–6411. Google Scholar
Churchard, A. J., Cyanski, M. K., Dobrzycki, K., Budzianowski, A. & Grochala, W. (2010). Energy Environ. 3, 1973–1978. CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ito, T., Sugimoto, M. & Ito, H. (1982). Bull. Chem. Soc. Jpn, 55, 1971–1972. CrossRef CAS Web of Science Google Scholar
Ito, T., Toriumi, K. & Ito, H. (1981). Bull. Chem. Soc. Jpn, 54, 1096–1100. CrossRef CAS Web of Science Google Scholar
Kelly, C. A., Blinn, E. L., Camaioni, N., D'Angelantonio, M. & Mulazzani, Q. G. (1999). Inorg. Chem. 38, 1579–1584. Web of Science CrossRef CAS Google Scholar
Kimura, E., Bu, X., Shionoya, M., Wada, S. & Maruyama, S. (1992). Inorg. Chem. 31, 4542–4546. CrossRef CAS Web of Science Google Scholar
Liang, X., Parkinson, J. A., Weishaupl, M., Gould, R. O., Paisey, S. J., Park, H., Hunter, T. M., Blindauer, C. A. & Parsons, S. (2002). J. Am. Chem. Soc. 124, 9105–9112. Web of Science CSD CrossRef PubMed CAS Google Scholar
Liardon, R. & Ledermann, S. (1986). Inorg. Chem. 34, 557–565. CAS Google Scholar
Sadler, P. J., Hunter, T. M., McNae, I. W., Simpson, D. P., Smith, S. M., Moggach, S., White, F., Walkinshaw, M. D. & Parsons, S. (2007). Chem. Eur. J. 13, 40–50. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Voelcker, N. H., Alfonso, I. & Ghadiri, M. R. (2008). ChemBioChem, 9, 1776–1786. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The ligand in the title compound was synthesized by base-catalyzed metal-templated cyclization of dipeptides, metal removal using HCl and finally amide reduction to yield a C-functionalized cyclam molecule (Beck & Lang, 2003). The stereochemical integrity of the ligands previously synthesized, however, was never established. Strong bases such as NaOMe, which is used in the ligand synthesis, have the ability to racemize peptides Liardon et al. (1986). The crystal structure of the title compound shows that the stereochemical integrity of the (2S,9S)-2,9-dimethyl-1,4,8,11-tetraazacyclotetradecane ligand is maintained throughout the synthesis.
Cyclam metal complexes have 6 possible configurations: trans I—V and cis V (Liang et al., 2002). Typically the structure of cyclam metal complexes tends to favor the thermodynamically most stable trans III configuration in the solid state (Liang et al., 2002). However, in this case the compound has adopted the cis V configuration with two water molecules acting as ligands to the metal center. The chloride counter ions interact with the water ligands through O—H···Cl hydrogen bonds. Similarly configured nickel cyclam complexes were reported by Ito et al. (1981, 1982). A recent crystal structure search in the CCDC database has shown that only 4% of cyclam complexes without nitrogen functionalization, utilizing halogen containing counter ions and monodentate ligands for the final two coordination sites, adopt a cis V configuration (Allen, 2002).
When chiral carbons are present in the cyclam it is possible to generate two stereoisomers for each metal complex configuration. The diastereomers for each configuration are dependent on the chirality around the N atoms in the complex as the carbon chirality in the cyclam ligand is both encoded and maintained during synthesis. The title compound has adopted a diastereomer that places the methyl side arms into the equatorial plane of the 5 membered rings. This minimizes steric interactions with the remainder of the cyclam and the water ligands attached to the nickel center.