organic compounds
4-{[8-(4-Acetyloxybenzoyl)-2,7-dimethoxynaphthalen-1-yl]carbonyl}phenyl acetate
aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp
In the molecule of the title compound, C30H24O8, the two 4-acetoxybenzoyl groups at the 1- and 8-positions of the naphthalene ring system are aligned almost antiparallel, and the two benzene rings make a dihedral angle of 54.21 (9)°. The dihedral angles between the benzene rings and the naphthalene ring system are 63.63 (8) and 78.54 (8)°.
Related literature
For formation reactions of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto et al. (2009, 2011). For the structures of closely related compounds, see: Hijikata et al. (2010); Muto, Kato et al. (2010); Sasagawa, Hijikata et al. (2011); Sasagawa, Muto et al. (2011); Muto, Sasagawa et al. (2012).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S160053681203228X/pk2431sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053681203228X/pk2431Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S160053681203228X/pk2431Isup3.cml
The title compound was prepared by an esterification reaction of 1,8-bis(4-hydroxybenzoyl)-2,7-dimethoxynaphthalene (1.0 mmol, 428.5 mg), which was obtained via SNAr reaction of 1,8-bis(4-fluorobenzoyl)-2,7-dimethoxynaphthalene with sodium hydroxide, with acetic anhydride (63.0 mmol, 6.43 g) in the presence of concentrated sulfuric acid (1 drop). After the reaction mixture was stirred at room temperature for 1 h, it was poured into water (30 ml). The aqueous layer was extracted with CHCl3 (15 ml × 3).The combined extracts were washed with aqueous NaHCO3 followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake. The crude product was purified by recrystallization from methanol (isolated yield 56%). The isolated product was crystallized from methanol to give single-crystals.
1H NMR δ (300 MHz, CDCl3); 2.30 (6H, s), 3.70 (6H, s), 7.07 (4H, d, J = 8.4 Hz), 7.20 (2H, d, J= 8.7 Hz), 7.69 (4H, d, J = 8.1 Hz), 7.95 (2H, d, J = 9.0 Hz) p.p.m. 13C NMR δ(75 MHz, CDCl3); 21.20, 56.31, 110.03, 120.88, 121.03, 125.36, 120.72, 130.56, 132.18,136.12, 153.94, 156.27, 168.72, 195.69 p.p.m. IR(KBr); 1760(C═O, ester), 1662(C═O, ketone), 1609, 1511, 1461(Ar, napthalene) cm-1. (m/z): [M + H]+ Calcd for C30H25O8, 513.1549; found, 513.1545. M.p. = 434.4 - 436.9 K
All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uĩso(H)= 1.2 Ueq(C). Displacement parameters of atoms C6 and O1 were restrained using the SHELXL97 commands DELU and SIMU.
In the course of our study on selective electrophilic aromatic aroylation of the naphthalene ring core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalene derivatives such as [2,7-dimethoxy-8-(4-methylbenzoyl)-1-naphthyl](4-methylphenyl)methanone [1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene] (Muto et al., 2010), [2,7-dimethoxy-8-(2,4,6-trimethylbenzoyl)naphthalen-1-yl](2,4,6-trimethylphenyl)methanone [1,8-bis(2,4,6-trimethylbenzoyl)-2,7-dimethoxynaphthalene] (Muto et al., 2012), {8-[4-(bromomethyl)benzoyl]-2,7-dimethoxynaphthalen-1-yl}[4-(bromomethyl)phenyl]methanone [1,8-bis(4-bromomethylbenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa, Hijikata et al., 2011), and {8-[4-(butoxy)benzoyl]-2,7-dimethoxynaphthalen-1-yl}[4-(butoxy)phenyl]methanone [1,8-bis(4-butoxylbenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa, Muto et al., 2011). The aroyl groups in these compounds are almost perpendicularly attached to the naphthalene rings and oriented in opposite directions (anti-orientation). Moreover, we have also shown that the aroyl groups of 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene (Hijikata et al., 2010) are oriented in the same direction (syn-orientation) in the crystal. As part of our ongoing studies on the molecular structures of these kinds of homologous molecules, the X-ray
of the title compound, 1,8-diaroylated naphthalene bearing acetoxy groups, is discussed in this article.The molecular structure of the title compound is displayed in Fig 1. Two 4-acetoxybenzoyl groups are twisted away from the attached naphthalene ring and are situated in anti orientation. The dihedral angle between the best planes of the two phenyl rings is 54.21 (9)°. The two dihedral angles between the best planes of the 4-acetoxyphenyl rings and the naphthalene ring are 63.63 (8) and 78.54 (8)°, respectively.
The dihedral angles between the naphthalene ring system and the bridging ketonic carbonyl C—C(═O)—C planes [58.30 (9) and 54.11 (9)°] are larger than those between the phenyl rings and the bridging carbonyl planes [10.65 (10) and 28.80 (10)°]. Besides, the dihedral angles between the phenyl rings and the bridging acetoxy C—C(═O)—O planes [57.29 (10) and 60.32 (13)°] are similar to those between the naphthalene ring system and the bridging ketonic carbonyl C—C(═O)—O planes.
In the molecular packing, four C—H···O interactions are observed, i.e., two types of C—H···O interactions between the oxygen atoms of the ketonic carbonyl groups and the hydrogen atoms of the methoxy groups [C11—H11C···O4 = 2.36 Å, C12—H12A···O3 = 2.53 Å], C—H···O interaction between carbonyl oxygen atom of the acetoxy groups and hydrogen atom of the napthalene ring [C3—H3···O7 = 2.47 Å], and C—H···O interaction between carbonyl oxygen atom of the acetoxy group and hydrogen atom of the benzene ring [C21—H21···O8 = 2.53 Å]. The C—H···O interactions between the methoxy group and the ketonic carbonyl group and between the acetoxy group and the benzene ring effectively contribute to stabilization of the molecular packing (Fig. 2).
For formation reactions of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto et al. (2009, 2011). For the structures of closely related compounds, see: Hijikata et al. (2010); Muto, Kato et al. (2010); Sasagawa, Hijikata et al. (2011); Sasagawa, Muto et al. (2011); Muto, Sasagawa et al. (2012).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C30H24O8 | F(000) = 2144 |
Mr = 512.49 | Dx = 1.305 Mg m−3 |
Monoclinic, C2/c | Melting point = 436.9–434.4 K |
Hall symbol: -C 2yc | Cu Kα radiation, λ = 1.54178 Å |
a = 44.115 (6) Å | Cell parameters from 2415 reflections |
b = 7.9710 (9) Å | θ = 3.0–66.9° |
c = 15.035 (4) Å | µ = 0.79 mm−1 |
β = 99.439 (16)° | T = 193 K |
V = 5215.2 (15) Å3 | Platelet, colorless |
Z = 8 | 0.60 × 0.20 × 0.05 mm |
Rigaku R-AXIS RAPID diffractometer | 4760 independent reflections |
Radiation source: rotating anode | 3547 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 10.000 pixels mm-1 | θmax = 68.1°, θmin = 4.1° |
ω scans | h = −52→51 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −9→9 |
Tmin = 0.649, Tmax = 0.962 | l = −18→18 |
44265 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.127 | w = 1/[σ2(Fo2) + (0.0509P)2 + 3.8146P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max = 0.003 |
4760 reflections | Δρmax = 0.21 e Å−3 |
348 parameters | Δρmin = −0.23 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00093 (6) |
C30H24O8 | V = 5215.2 (15) Å3 |
Mr = 512.49 | Z = 8 |
Monoclinic, C2/c | Cu Kα radiation |
a = 44.115 (6) Å | µ = 0.79 mm−1 |
b = 7.9710 (9) Å | T = 193 K |
c = 15.035 (4) Å | 0.60 × 0.20 × 0.05 mm |
β = 99.439 (16)° |
Rigaku R-AXIS RAPID diffractometer | 4760 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 3547 reflections with I > 2σ(I) |
Tmin = 0.649, Tmax = 0.962 | Rint = 0.024 |
44265 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.127 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.21 e Å−3 |
4760 reflections | Δρmin = −0.23 e Å−3 |
348 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.67019 (4) | −0.50504 (18) | 0.69478 (11) | 0.0666 (4) | |
O2 | 0.57758 (4) | 0.0498 (2) | 0.38430 (9) | 0.0684 (4) | |
O3 | 0.60948 (3) | −0.21880 (19) | 0.69000 (9) | 0.0577 (4) | |
O4 | 0.63836 (3) | 0.07349 (17) | 0.58412 (9) | 0.0530 (3) | |
O5 | 0.73159 (3) | 0.02768 (17) | 0.94108 (10) | 0.0600 (4) | |
O6 | 0.50983 (3) | 0.3687 (2) | 0.63806 (10) | 0.0713 (5) | |
O7 | 0.72389 (4) | −0.1669 (2) | 1.04398 (11) | 0.0749 (5) | |
O8 | 0.48041 (4) | 0.3266 (2) | 0.50231 (13) | 0.0765 (5) | |
C1 | 0.65066 (5) | −0.5185 (3) | 0.44900 (17) | 0.0674 (6) | |
H1 | 0.6537 | −0.5870 | 0.3995 | 0.081* | |
C2 | 0.61596 (5) | −0.3398 (3) | 0.34495 (14) | 0.0663 (6) | |
H2 | 0.6187 | −0.4115 | 0.2964 | 0.080* | |
C3 | 0.66475 (5) | −0.5624 (3) | 0.53323 (18) | 0.0662 (6) | |
H3 | 0.6775 | −0.6588 | 0.5423 | 0.079* | |
C4 | 0.63189 (5) | −0.3764 (3) | 0.43240 (15) | 0.0577 (5) | |
C5 | 0.59705 (5) | −0.2061 (3) | 0.32843 (14) | 0.0647 (6) | |
H5 | 0.5858 | −0.1876 | 0.2697 | 0.078* | |
C6 | 0.65994 (5) | −0.4615 (3) | 0.60696 (15) | 0.0556 (5) | |
C7 | 0.62858 (4) | −0.2672 (3) | 0.50575 (12) | 0.0493 (5) | |
C8 | 0.59414 (5) | −0.0946 (3) | 0.39916 (13) | 0.0547 (5) | |
C9 | 0.64307 (4) | −0.3145 (2) | 0.59433 (13) | 0.0488 (5) | |
C10 | 0.61025 (4) | −0.1195 (2) | 0.48571 (12) | 0.0474 (4) | |
C11 | 0.68463 (6) | −0.6645 (3) | 0.71381 (19) | 0.0754 (7) | |
H11A | 0.6885 | −0.6830 | 0.7791 | 0.090* | |
H11B | 0.7041 | −0.6667 | 0.6907 | 0.090* | |
H11C | 0.6711 | −0.7532 | 0.6847 | 0.090* | |
C12 | 0.55560 (6) | 0.0640 (4) | 0.30369 (15) | 0.0797 (7) | |
H12A | 0.5663 | 0.0748 | 0.2518 | 0.096* | |
H12B | 0.5428 | 0.1633 | 0.3074 | 0.096* | |
H12C | 0.5426 | −0.0364 | 0.2964 | 0.096* | |
C13 | 0.63614 (4) | −0.2268 (2) | 0.67754 (12) | 0.0477 (4) | |
C14 | 0.61272 (4) | 0.0255 (2) | 0.54981 (12) | 0.0454 (4) | |
C15 | 0.69160 (5) | −0.1424 (3) | 0.72838 (14) | 0.0544 (5) | |
H15 | 0.6964 | −0.1745 | 0.6714 | 0.065* | |
C16 | 0.71455 (5) | −0.0820 (3) | 0.79466 (14) | 0.0573 (5) | |
H16 | 0.7350 | −0.0725 | 0.7833 | 0.069* | |
C17 | 0.66159 (4) | −0.1561 (2) | 0.74484 (12) | 0.0451 (4) | |
C18 | 0.70746 (5) | −0.0359 (2) | 0.87711 (13) | 0.0511 (5) | |
C19 | 0.65498 (5) | −0.1042 (2) | 0.82785 (13) | 0.0495 (5) | |
H19 | 0.6344 | −0.1107 | 0.8391 | 0.059* | |
C20 | 0.67777 (5) | −0.0431 (3) | 0.89443 (14) | 0.0537 (5) | |
H20 | 0.6730 | −0.0070 | 0.9508 | 0.064* | |
C21 | 0.55710 (4) | 0.0299 (3) | 0.56628 (12) | 0.0517 (5) | |
H21 | 0.5555 | −0.0848 | 0.5490 | 0.062* | |
C22 | 0.58486 (4) | 0.1138 (2) | 0.56932 (11) | 0.0453 (4) | |
C23 | 0.53169 (5) | 0.1133 (3) | 0.58840 (13) | 0.0574 (5) | |
H23 | 0.5128 | 0.0560 | 0.5879 | 0.069* | |
C24 | 0.58705 (5) | 0.2828 (3) | 0.59350 (12) | 0.0501 (5) | |
H24 | 0.6061 | 0.3399 | 0.5961 | 0.060* | |
C25 | 0.53453 (5) | 0.2814 (3) | 0.61117 (13) | 0.0568 (5) | |
C26 | 0.56166 (5) | 0.3679 (3) | 0.61376 (13) | 0.0557 (5) | |
H26 | 0.5630 | 0.4835 | 0.6291 | 0.067* | |
C27 | 0.73804 (5) | −0.0490 (3) | 1.02320 (15) | 0.0575 (5) | |
C28 | 0.76456 (5) | 0.0327 (3) | 1.08052 (16) | 0.0713 (6) | |
H28A | 0.7587 | 0.1460 | 1.0965 | 0.086* | |
H28B | 0.7819 | 0.0392 | 1.0473 | 0.086* | |
H28C | 0.7706 | −0.0333 | 1.1356 | 0.086* | |
C29 | 0.48345 (5) | 0.3866 (3) | 0.57648 (19) | 0.0667 (6) | |
C30 | 0.46120 (6) | 0.4943 (4) | 0.6140 (2) | 0.0937 (9) | |
H30A | 0.4635 | 0.4768 | 0.6793 | 0.112* | |
H30B | 0.4402 | 0.4649 | 0.5859 | 0.112* | |
H30C | 0.4652 | 0.6123 | 0.6017 | 0.112* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0778 (10) | 0.0442 (8) | 0.0766 (11) | 0.0067 (7) | 0.0087 (8) | −0.0012 (7) |
O2 | 0.0918 (11) | 0.0719 (10) | 0.0371 (8) | 0.0067 (9) | −0.0022 (7) | −0.0024 (7) |
O3 | 0.0519 (8) | 0.0720 (10) | 0.0501 (8) | −0.0014 (7) | 0.0106 (6) | −0.0031 (7) |
O4 | 0.0542 (8) | 0.0500 (8) | 0.0525 (8) | −0.0057 (6) | 0.0020 (6) | −0.0068 (6) |
O5 | 0.0662 (9) | 0.0515 (8) | 0.0579 (9) | −0.0124 (7) | −0.0027 (7) | −0.0004 (7) |
O6 | 0.0650 (9) | 0.0921 (12) | 0.0572 (9) | 0.0241 (8) | 0.0109 (7) | 0.0053 (8) |
O7 | 0.0694 (10) | 0.0795 (11) | 0.0707 (10) | −0.0193 (9) | −0.0040 (8) | 0.0163 (9) |
O8 | 0.0638 (10) | 0.0704 (11) | 0.0880 (13) | −0.0015 (8) | −0.0094 (9) | 0.0064 (9) |
C1 | 0.0698 (14) | 0.0650 (14) | 0.0716 (16) | −0.0075 (12) | 0.0239 (12) | −0.0233 (12) |
C2 | 0.0724 (14) | 0.0812 (16) | 0.0477 (12) | −0.0163 (13) | 0.0172 (11) | −0.0253 (11) |
C3 | 0.0625 (13) | 0.0501 (12) | 0.0892 (18) | −0.0022 (10) | 0.0220 (12) | −0.0146 (12) |
C4 | 0.0594 (12) | 0.0574 (12) | 0.0603 (13) | −0.0092 (10) | 0.0213 (10) | −0.0180 (10) |
C5 | 0.0711 (14) | 0.0807 (16) | 0.0423 (11) | −0.0103 (13) | 0.0090 (10) | −0.0139 (11) |
C6 | 0.0560 (11) | 0.0474 (11) | 0.0632 (13) | −0.0043 (9) | 0.0096 (10) | −0.0061 (10) |
C7 | 0.0523 (10) | 0.0518 (11) | 0.0456 (11) | −0.0108 (9) | 0.0132 (8) | −0.0090 (9) |
C8 | 0.0615 (12) | 0.0643 (13) | 0.0393 (10) | −0.0108 (10) | 0.0109 (9) | −0.0074 (9) |
C9 | 0.0491 (10) | 0.0440 (10) | 0.0543 (11) | −0.0061 (8) | 0.0117 (9) | −0.0067 (8) |
C10 | 0.0545 (11) | 0.0512 (11) | 0.0377 (10) | −0.0081 (9) | 0.0107 (8) | −0.0060 (8) |
C11 | 0.0712 (15) | 0.0450 (12) | 0.0991 (19) | 0.0075 (11) | −0.0183 (13) | −0.0118 (12) |
C12 | 0.0871 (17) | 0.100 (2) | 0.0459 (13) | 0.0052 (15) | −0.0069 (12) | −0.0032 (12) |
C13 | 0.0539 (11) | 0.0444 (10) | 0.0453 (10) | 0.0006 (8) | 0.0090 (8) | 0.0037 (8) |
C14 | 0.0552 (11) | 0.0450 (10) | 0.0353 (9) | −0.0050 (8) | 0.0057 (8) | 0.0006 (8) |
C15 | 0.0583 (11) | 0.0536 (12) | 0.0524 (12) | −0.0067 (9) | 0.0125 (9) | −0.0041 (9) |
C16 | 0.0560 (11) | 0.0577 (12) | 0.0589 (13) | −0.0107 (10) | 0.0114 (10) | −0.0020 (10) |
C17 | 0.0515 (10) | 0.0363 (9) | 0.0467 (10) | 0.0013 (8) | 0.0055 (8) | 0.0026 (8) |
C18 | 0.0577 (11) | 0.0397 (10) | 0.0526 (11) | −0.0037 (9) | −0.0012 (9) | 0.0000 (8) |
C19 | 0.0527 (11) | 0.0452 (10) | 0.0502 (11) | 0.0048 (8) | 0.0070 (9) | −0.0006 (8) |
C20 | 0.0616 (12) | 0.0497 (11) | 0.0488 (11) | 0.0037 (9) | 0.0058 (9) | −0.0044 (9) |
C21 | 0.0589 (12) | 0.0564 (12) | 0.0379 (10) | −0.0024 (9) | 0.0025 (8) | 0.0008 (9) |
C22 | 0.0524 (10) | 0.0516 (11) | 0.0300 (9) | −0.0001 (8) | 0.0006 (7) | −0.0009 (8) |
C23 | 0.0538 (11) | 0.0736 (15) | 0.0438 (11) | −0.0015 (10) | 0.0049 (9) | 0.0069 (10) |
C24 | 0.0559 (11) | 0.0530 (11) | 0.0388 (10) | −0.0006 (9) | 0.0000 (8) | 0.0015 (8) |
C25 | 0.0597 (12) | 0.0694 (14) | 0.0404 (11) | 0.0152 (11) | 0.0055 (9) | 0.0053 (10) |
C26 | 0.0642 (13) | 0.0551 (12) | 0.0449 (11) | 0.0084 (10) | 0.0004 (9) | 0.0005 (9) |
C27 | 0.0588 (12) | 0.0546 (12) | 0.0567 (13) | −0.0021 (10) | 0.0023 (10) | −0.0029 (10) |
C28 | 0.0694 (14) | 0.0717 (15) | 0.0671 (15) | −0.0109 (12) | −0.0056 (11) | −0.0074 (12) |
C29 | 0.0533 (12) | 0.0697 (15) | 0.0782 (17) | 0.0033 (11) | 0.0141 (12) | 0.0230 (13) |
C30 | 0.0704 (16) | 0.107 (2) | 0.110 (2) | 0.0262 (16) | 0.0331 (15) | 0.0328 (18) |
O1—C6 | 1.369 (3) | C12—H12B | 0.9800 |
O1—C11 | 1.430 (3) | C12—H12C | 0.9800 |
O2—C8 | 1.362 (3) | C13—C17 | 1.493 (3) |
O2—C12 | 1.427 (3) | C14—C22 | 1.487 (3) |
O3—C13 | 1.223 (2) | C15—C16 | 1.385 (3) |
O4—C14 | 1.225 (2) | C15—C17 | 1.390 (3) |
O5—C27 | 1.365 (3) | C15—H15 | 0.9500 |
O5—C18 | 1.407 (2) | C16—C18 | 1.377 (3) |
O6—C29 | 1.371 (3) | C16—H16 | 0.9500 |
O6—C25 | 1.407 (2) | C17—C19 | 1.390 (3) |
O7—C27 | 1.198 (3) | C18—C20 | 1.378 (3) |
O8—C29 | 1.200 (3) | C19—C20 | 1.385 (3) |
C1—C3 | 1.362 (3) | C19—H19 | 0.9500 |
C1—C4 | 1.402 (3) | C20—H20 | 0.9500 |
C1—H1 | 0.9500 | C21—C23 | 1.390 (3) |
C2—C5 | 1.351 (3) | C21—C22 | 1.389 (3) |
C2—C4 | 1.416 (3) | C21—H21 | 0.9500 |
C2—H2 | 0.9500 | C22—C24 | 1.395 (3) |
C3—C6 | 1.413 (3) | C23—C25 | 1.384 (3) |
C3—H3 | 0.9500 | C23—H23 | 0.9500 |
C4—C7 | 1.431 (3) | C24—C26 | 1.385 (3) |
C5—C8 | 1.408 (3) | C24—H24 | 0.9500 |
C5—H5 | 0.9500 | C25—C26 | 1.376 (3) |
C6—C9 | 1.384 (3) | C26—H26 | 0.9500 |
C7—C9 | 1.430 (3) | C27—C28 | 1.485 (3) |
C7—C10 | 1.432 (3) | C28—H28A | 0.9800 |
C8—C10 | 1.391 (3) | C28—H28B | 0.9800 |
C9—C13 | 1.508 (3) | C28—H28C | 0.9800 |
C10—C14 | 1.498 (3) | C29—C30 | 1.483 (4) |
C11—H11A | 0.9800 | C30—H30A | 0.9800 |
C11—H11B | 0.9800 | C30—H30B | 0.9800 |
C11—H11C | 0.9800 | C30—H30C | 0.9800 |
C12—H12A | 0.9800 | ||
C6—O1—C11 | 118.99 (18) | C16—C15—H15 | 119.9 |
C8—O2—C12 | 118.56 (18) | C17—C15—H15 | 119.9 |
C27—O5—C18 | 118.60 (16) | C18—C16—C15 | 119.55 (19) |
C29—O6—C25 | 117.98 (18) | C18—C16—H16 | 120.2 |
C3—C1—C4 | 122.6 (2) | C15—C16—H16 | 120.2 |
C3—C1—H1 | 118.7 | C15—C17—C19 | 118.83 (18) |
C4—C1—H1 | 118.7 | C15—C17—C13 | 122.76 (17) |
C5—C2—C4 | 122.0 (2) | C19—C17—C13 | 118.41 (17) |
C5—C2—H2 | 119.0 | C16—C18—C20 | 121.49 (18) |
C4—C2—H2 | 119.0 | C16—C18—O5 | 116.96 (18) |
C1—C3—C6 | 118.6 (2) | C20—C18—O5 | 121.46 (18) |
C1—C3—H3 | 120.7 | C20—C19—C17 | 121.27 (19) |
C6—C3—H3 | 120.7 | C20—C19—H19 | 119.4 |
C1—C4—C2 | 121.4 (2) | C17—C19—H19 | 119.4 |
C1—C4—C7 | 119.1 (2) | C18—C20—C19 | 118.53 (19) |
C2—C4—C7 | 119.5 (2) | C18—C20—H20 | 120.7 |
C2—C5—C8 | 119.3 (2) | C19—C20—H20 | 120.7 |
C2—C5—H5 | 120.3 | C23—C21—C22 | 120.2 (2) |
C8—C5—H5 | 120.3 | C23—C21—H21 | 119.9 |
O1—C6—C9 | 115.61 (18) | C22—C21—H21 | 119.9 |
O1—C6—C3 | 122.9 (2) | C21—C22—C24 | 119.76 (18) |
C9—C6—C3 | 121.4 (2) | C21—C22—C14 | 121.26 (18) |
C4—C7—C9 | 118.11 (19) | C24—C22—C14 | 118.96 (17) |
C4—C7—C10 | 117.59 (18) | C25—C23—C21 | 118.6 (2) |
C9—C7—C10 | 124.28 (17) | C25—C23—H23 | 120.7 |
O2—C8—C10 | 116.90 (17) | C21—C23—H23 | 120.7 |
O2—C8—C5 | 121.51 (19) | C26—C24—C22 | 120.43 (19) |
C10—C8—C5 | 121.3 (2) | C26—C24—H24 | 119.8 |
C6—C9—C7 | 119.92 (18) | C22—C24—H24 | 119.8 |
C6—C9—C13 | 117.15 (18) | C26—C25—C23 | 122.3 (2) |
C7—C9—C13 | 122.02 (17) | C26—C25—O6 | 117.1 (2) |
C8—C10—C7 | 119.91 (17) | C23—C25—O6 | 120.5 (2) |
C8—C10—C14 | 117.62 (18) | C25—C26—C24 | 118.7 (2) |
C7—C10—C14 | 121.36 (16) | C25—C26—H26 | 120.7 |
O1—C11—H11A | 109.5 | C24—C26—H26 | 120.7 |
O1—C11—H11B | 109.5 | O7—C27—O5 | 123.17 (19) |
H11A—C11—H11B | 109.5 | O7—C27—C28 | 126.0 (2) |
O1—C11—H11C | 109.5 | O5—C27—C28 | 110.85 (19) |
H11A—C11—H11C | 109.5 | C27—C28—H28A | 109.5 |
H11B—C11—H11C | 109.5 | C27—C28—H28B | 109.5 |
O2—C12—H12A | 109.5 | H28A—C28—H28B | 109.5 |
O2—C12—H12B | 109.5 | C27—C28—H28C | 109.5 |
H12A—C12—H12B | 109.5 | H28A—C28—H28C | 109.5 |
O2—C12—H12C | 109.5 | H28B—C28—H28C | 109.5 |
H12A—C12—H12C | 109.5 | O8—C29—O6 | 122.6 (2) |
H12B—C12—H12C | 109.5 | O8—C29—C30 | 127.1 (2) |
O3—C13—C17 | 120.79 (17) | O6—C29—C30 | 110.2 (2) |
O3—C13—C9 | 118.83 (17) | C29—C30—H30A | 109.5 |
C17—C13—C9 | 120.35 (16) | C29—C30—H30B | 109.5 |
O4—C14—C22 | 120.38 (17) | H30A—C30—H30B | 109.5 |
O4—C14—C10 | 118.46 (17) | C29—C30—H30C | 109.5 |
C22—C14—C10 | 121.13 (16) | H30A—C30—H30C | 109.5 |
C16—C15—C17 | 120.28 (19) | H30B—C30—H30C | 109.5 |
C4—C1—C3—C6 | 0.8 (3) | C7—C10—C14—O4 | 45.0 (3) |
C3—C1—C4—C2 | −175.9 (2) | C8—C10—C14—C22 | 55.0 (2) |
C3—C1—C4—C7 | 3.5 (3) | C7—C10—C14—C22 | −137.04 (18) |
C5—C2—C4—C1 | 177.9 (2) | C17—C15—C16—C18 | 0.1 (3) |
C5—C2—C4—C7 | −1.4 (3) | C16—C15—C17—C19 | 1.7 (3) |
C4—C2—C5—C8 | 3.2 (3) | C16—C15—C17—C13 | −177.39 (19) |
C11—O1—C6—C9 | 172.72 (18) | O3—C13—C17—C15 | −171.31 (19) |
C11—O1—C6—C3 | −4.3 (3) | C9—C13—C17—C15 | 10.7 (3) |
C1—C3—C6—O1 | 172.5 (2) | O3—C13—C17—C19 | 9.6 (3) |
C1—C3—C6—C9 | −4.4 (3) | C9—C13—C17—C19 | −168.36 (17) |
C1—C4—C7—C9 | −4.1 (3) | C15—C16—C18—C20 | −2.2 (3) |
C2—C4—C7—C9 | 175.27 (18) | C15—C16—C18—O5 | −178.72 (18) |
C1—C4—C7—C10 | 177.48 (18) | C27—O5—C18—C16 | −123.6 (2) |
C2—C4—C7—C10 | −3.2 (3) | C27—O5—C18—C20 | 59.9 (3) |
C12—O2—C8—C10 | −166.42 (19) | C15—C17—C19—C20 | −1.5 (3) |
C12—O2—C8—C5 | 19.1 (3) | C13—C17—C19—C20 | 177.64 (18) |
C2—C5—C8—O2 | 174.0 (2) | C16—C18—C20—C19 | 2.4 (3) |
C2—C5—C8—C10 | −0.2 (3) | O5—C18—C20—C19 | 178.76 (17) |
O1—C6—C9—C7 | −173.40 (17) | C17—C19—C20—C18 | −0.5 (3) |
C3—C6—C9—C7 | 3.7 (3) | C23—C21—C22—C24 | −0.9 (3) |
O1—C6—C9—C13 | −4.1 (3) | C23—C21—C22—C14 | 177.33 (17) |
C3—C6—C9—C13 | 173.02 (18) | O4—C14—C22—C21 | −151.77 (18) |
C4—C7—C9—C6 | 0.6 (3) | C10—C14—C22—C21 | 30.3 (3) |
C10—C7—C9—C6 | 178.93 (18) | O4—C14—C22—C24 | 26.5 (3) |
C4—C7—C9—C13 | −168.20 (17) | C10—C14—C22—C24 | −151.44 (17) |
C10—C7—C9—C13 | 10.1 (3) | C22—C21—C23—C25 | 1.6 (3) |
O2—C8—C10—C7 | −178.93 (17) | C21—C22—C24—C26 | −0.5 (3) |
C5—C8—C10—C7 | −4.4 (3) | C14—C22—C24—C26 | −178.78 (17) |
O2—C8—C10—C14 | −10.8 (3) | C21—C23—C25—C26 | −0.9 (3) |
C5—C8—C10—C14 | 163.68 (19) | C21—C23—C25—O6 | −177.03 (16) |
C4—C7—C10—C8 | 6.0 (3) | C29—O6—C25—C26 | 119.9 (2) |
C9—C7—C10—C8 | −172.35 (18) | C29—O6—C25—C23 | −63.8 (3) |
C4—C7—C10—C14 | −161.67 (17) | C23—C25—C26—C24 | −0.5 (3) |
C9—C7—C10—C14 | 20.0 (3) | O6—C25—C26—C24 | 175.78 (17) |
C6—C9—C13—O3 | −113.6 (2) | C22—C24—C26—C25 | 1.2 (3) |
C7—C9—C13—O3 | 55.5 (3) | C18—O5—C27—O7 | −0.9 (3) |
C6—C9—C13—C17 | 64.4 (2) | C18—O5—C27—C28 | 178.60 (18) |
C7—C9—C13—C17 | −126.51 (19) | C25—O6—C29—O8 | 2.4 (3) |
C8—C10—C14—O4 | −122.9 (2) | C25—O6—C29—C30 | −175.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11C···O4i | 0.98 | 2.36 | 3.320 (3) | 166 |
C12—H12A···O3ii | 0.98 | 2.53 | 3.380 (3) | 145 |
C3—H3···O7iii | 0.95 | 2.47 | 3.369 (3) | 158 |
C21—H21···O8iv | 0.95 | 2.53 | 3.364 (3) | 146 |
Symmetry codes: (i) x, y−1, z; (ii) x, −y, z−1/2; (iii) x, −y−1, z−1/2; (iv) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C30H24O8 |
Mr | 512.49 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 193 |
a, b, c (Å) | 44.115 (6), 7.9710 (9), 15.035 (4) |
β (°) | 99.439 (16) |
V (Å3) | 5215.2 (15) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 0.79 |
Crystal size (mm) | 0.60 × 0.20 × 0.05 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.649, 0.962 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 44265, 4760, 3547 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.127, 1.11 |
No. of reflections | 4760 |
No. of parameters | 348 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.23 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku, 2010), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11C···O4i | 0.98 | 2.36 | 3.320 (3) | 166 |
C12—H12A···O3ii | 0.98 | 2.53 | 3.380 (3) | 145 |
C3—H3···O7iii | 0.95 | 2.47 | 3.369 (3) | 158 |
C21—H21···O8iv | 0.95 | 2.53 | 3.364 (3) | 146 |
Symmetry codes: (i) x, y−1, z; (ii) x, −y, z−1/2; (iii) x, −y−1, z−1/2; (iv) −x+1, −y, −z+1. |
Acknowledgements
The authors express their gratitude to Master Toyokazu Muto, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture & Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for their technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902–o2903. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752. Web of Science CSD CrossRef IUCr Journals Google Scholar
Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2012). Acta Cryst. E68, o23. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284. Web of Science CrossRef CAS Google Scholar
Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915. Web of Science CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sasagawa, K., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2119. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sasagawa, K., Muto, T., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o3354. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the course of our study on selective electrophilic aromatic aroylation of the naphthalene ring core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalene derivatives such as [2,7-dimethoxy-8-(4-methylbenzoyl)-1-naphthyl](4-methylphenyl)methanone [1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene] (Muto et al., 2010), [2,7-dimethoxy-8-(2,4,6-trimethylbenzoyl)naphthalen-1-yl](2,4,6-trimethylphenyl)methanone [1,8-bis(2,4,6-trimethylbenzoyl)-2,7-dimethoxynaphthalene] (Muto et al., 2012), {8-[4-(bromomethyl)benzoyl]-2,7-dimethoxynaphthalen-1-yl}[4-(bromomethyl)phenyl]methanone [1,8-bis(4-bromomethylbenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa, Hijikata et al., 2011), and {8-[4-(butoxy)benzoyl]-2,7-dimethoxynaphthalen-1-yl}[4-(butoxy)phenyl]methanone [1,8-bis(4-butoxylbenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa, Muto et al., 2011). The aroyl groups in these compounds are almost perpendicularly attached to the naphthalene rings and oriented in opposite directions (anti-orientation). Moreover, we have also shown that the aroyl groups of 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene (Hijikata et al., 2010) are oriented in the same direction (syn-orientation) in the crystal. As part of our ongoing studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of the title compound, 1,8-diaroylated naphthalene bearing acetoxy groups, is discussed in this article.
The molecular structure of the title compound is displayed in Fig 1. Two 4-acetoxybenzoyl groups are twisted away from the attached naphthalene ring and are situated in anti orientation. The dihedral angle between the best planes of the two phenyl rings is 54.21 (9)°. The two dihedral angles between the best planes of the 4-acetoxyphenyl rings and the naphthalene ring are 63.63 (8) and 78.54 (8)°, respectively.
The dihedral angles between the naphthalene ring system and the bridging ketonic carbonyl C—C(═O)—C planes [58.30 (9) and 54.11 (9)°] are larger than those between the phenyl rings and the bridging carbonyl planes [10.65 (10) and 28.80 (10)°]. Besides, the dihedral angles between the phenyl rings and the bridging acetoxy C—C(═O)—O planes [57.29 (10) and 60.32 (13)°] are similar to those between the naphthalene ring system and the bridging ketonic carbonyl C—C(═O)—O planes.
In the molecular packing, four C—H···O interactions are observed, i.e., two types of C—H···O interactions between the oxygen atoms of the ketonic carbonyl groups and the hydrogen atoms of the methoxy groups [C11—H11C···O4 = 2.36 Å, C12—H12A···O3 = 2.53 Å], C—H···O interaction between carbonyl oxygen atom of the acetoxy groups and hydrogen atom of the napthalene ring [C3—H3···O7 = 2.47 Å], and C—H···O interaction between carbonyl oxygen atom of the acetoxy group and hydrogen atom of the benzene ring [C21—H21···O8 = 2.53 Å]. The C—H···O interactions between the methoxy group and the ketonic carbonyl group and between the acetoxy group and the benzene ring effectively contribute to stabilization of the molecular packing (Fig. 2).