organic compounds
(E)-4-[(4-Bromophenyl)iminomethyl]-2-methoxyphenol
aInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic, and bDepartment of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran
*Correspondence e-mail: fejfarov@fzu.cz
In the 14H12BrNO2, the dihedral angle between the rings is 37.87 (10)° and the molecule has an E conformation about the central C=N bond. In the crystal, molecules are connected by intermolecular O—H⋯N hydrogen bonds into zigzag chains running parallel to the b axis. The packing also features C—H⋯O interactions.
of the title compound, CRelated literature
For Schiff base derivatives and related structures, see: Fejfarová et al. (2010a,b); Özek et al. (2009, 2010); Akkurt et al. (2008); Khalaji et al. (2007, 2009). For applications and properties of Schiff base compounds, see: da Silva et al. (2011); Dalapati et al. (2011); Sun et al. (2012).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006.
Supporting information
https://doi.org/10.1107/S1600536812031704/pk2433sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812031704/pk2433Isup2.hkl
To a stirring solution of the 4-hydroxy-3-methoxybenzaldehyde (0.2 mmol, in 5 ml of methanol) was added 4-bromoaniline (0.2 mmol) in 10 ml of methanol, and the mixture was stirred for 1 h in air at 323 K and was then left at room temperature for several days without disturbance yielding suitable crystals of (1) that subsequently were filtered off and washed with Et2O. Yield: 91%.
All H atoms bonded to carbon atoms were positioned geometrically and treated as riding on their parent atoms. The methyl H atoms were allowed to rotate freely about the adjacent C—O bonds. The hydroxyl H atoms were found in difference Fourier maps and their coordinates were refined with a restraint on the O—H bond length 0.85 Å with σ of 0.01. All hydrogen atoms were refined with thermal displacement coefficients Uiso(H) set to 1.5Ueq(C, O) for methyl and hydroxyl groups and to 1.2Ueq(C) for the CH and CH2 groups.
Schiff base compounds exhibit a broad range of biological activities, including antifungal and antibacterial properties (da Silva et al., 2011). They are used as anion sensors (Dalapati et al., 2011) and as non-linear optics compounds (Sun et al., 2012).
The present work is part of a ongoing structural study of
(Khalaji et al., 2009; Fejfarová et al., 2010a,b) and we report here the structure of (E)-(4-hydroxy-3-methoxybenzylidene)-4-bromoaniline, (1). In the crystal, the dihedral angle between the two phenyl rings is 37.87 (10)° and the molecule has an E conformation about the central C=N bond. The methoxy group is slightly twisted from the attached benzene ring [C2—C3—O1—C7 = 13.8 (3)°]. The C=N and C—N bond lengths of 1.283 (3) Å and 1.419 (3) Å agree well with the corresponding distances in other (Akkurt et al., 2008; Özek et al., 2009, 2010; Khalaji et al., 2007, 2009; Fejfarová et al., 2010a,b).The molecules are connected by intermolecular O—H···N hydrogen bonds, forming zigzag chains parallel to the b axis (Fig. 2). The
is further stabilized by intermolecular C—H···O hydrogen bonds.For Schiff base derivatives and related structures, see: Fejfarová et al. (2010a,b); Özek et al. (2009, 2010); Akkurt et al. (2008); Khalaji et al. (2007, 2009). For applications and properties of Schiff base compounds, see: da Silva et al. (2011); Dalapati et al. (2011); Sun et al. (2012).
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).Fig. 1. Molecular structure of (1). Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. Packing of molecules in direction of a axis. Hydrogen bonds are drawn as dashed lines. |
C14H12BrNO2 | F(000) = 616 |
Mr = 306.2 | Dx = 1.556 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.5418 Å |
Hall symbol: -P 2ybc | Cell parameters from 6414 reflections |
a = 6.5692 (3) Å | θ = 3.9–66.9° |
b = 11.4323 (4) Å | µ = 4.24 mm−1 |
c = 17.5552 (9) Å | T = 120 K |
β = 97.798 (4)° | Plate, colourless |
V = 1306.22 (10) Å3 | 0.33 × 0.13 × 0.04 mm |
Z = 4 |
Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector | 2320 independent reflections |
Radiation source: Enhance Ultra (Cu) X-ray Source | 1991 reflections with I > 3σ(I) |
Mirror monochromator | Rint = 0.044 |
Detector resolution: 10.3784 pixels mm-1 | θmax = 67.0°, θmin = 4.6° |
Rotation method data acquisition using ω scans | h = −7→7 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −13→13 |
Tmin = 0.432, Tmax = 1 | l = −19→20 |
12474 measured reflections |
Refinement on F2 | 45 constraints |
R[F > 3σ(F)] = 0.028 | H atoms treated by a mixture of independent and constrained refinement |
wR(F) = 0.067 | Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2) |
S = 1.65 | (Δ/σ)max = 0.0003 |
2320 reflections | Δρmax = 0.27 e Å−3 |
166 parameters | Δρmin = −0.37 e Å−3 |
1 restraint |
C14H12BrNO2 | V = 1306.22 (10) Å3 |
Mr = 306.2 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 6.5692 (3) Å | µ = 4.24 mm−1 |
b = 11.4323 (4) Å | T = 120 K |
c = 17.5552 (9) Å | 0.33 × 0.13 × 0.04 mm |
β = 97.798 (4)° |
Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector | 2320 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 1991 reflections with I > 3σ(I) |
Tmin = 0.432, Tmax = 1 | Rint = 0.044 |
12474 measured reflections |
R[F > 3σ(F)] = 0.028 | 1 restraint |
wR(F) = 0.067 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.65 | Δρmax = 0.27 e Å−3 |
2320 reflections | Δρmin = −0.37 e Å−3 |
166 parameters |
Experimental. Absorption correction: CrysAlis PRO (Agilent, 2011) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement. The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.68807 (4) | 0.03813 (2) | 0.611307 (17) | 0.04255 (10) | |
O1 | 1.0904 (2) | 0.70826 (13) | 0.18744 (10) | 0.0341 (5) | |
O2 | 0.8114 (2) | 0.88161 (13) | 0.17128 (9) | 0.0283 (5) | |
N1 | 0.8397 (3) | 0.43584 (16) | 0.39607 (10) | 0.0260 (6) | |
C1 | 0.7469 (3) | 0.61449 (19) | 0.32641 (12) | 0.0268 (6) | |
C2 | 0.9135 (3) | 0.61379 (19) | 0.28390 (13) | 0.0278 (7) | |
C3 | 0.9362 (3) | 0.70156 (18) | 0.23240 (13) | 0.0260 (6) | |
C4 | 0.7941 (3) | 0.79425 (18) | 0.22238 (13) | 0.0252 (6) | |
C5 | 0.6294 (3) | 0.79520 (19) | 0.26391 (13) | 0.0292 (7) | |
C6 | 0.6055 (3) | 0.70607 (19) | 0.31557 (13) | 0.0296 (7) | |
C7 | 1.2114 (4) | 0.6054 (2) | 0.18148 (15) | 0.0342 (8) | |
C8 | 0.7179 (3) | 0.52315 (19) | 0.38158 (12) | 0.0278 (7) | |
C9 | 0.7943 (3) | 0.34873 (18) | 0.44886 (12) | 0.0263 (6) | |
C10 | 0.9598 (3) | 0.29543 (19) | 0.49366 (13) | 0.0304 (7) | |
C11 | 0.9292 (4) | 0.2049 (2) | 0.54324 (13) | 0.0326 (7) | |
C12 | 0.7312 (4) | 0.16602 (19) | 0.54612 (13) | 0.0308 (7) | |
C13 | 0.5637 (3) | 0.21731 (19) | 0.50239 (13) | 0.0312 (7) | |
C14 | 0.5954 (3) | 0.30931 (19) | 0.45378 (13) | 0.0281 (7) | |
H2 | 1.012127 | 0.551422 | 0.290947 | 0.0333* | |
H5 | 0.531306 | 0.857837 | 0.256922 | 0.035* | |
H6 | 0.490709 | 0.70739 | 0.344094 | 0.0355* | |
H7a | 1.305933 | 0.618817 | 0.14521 | 0.0513* | |
H7b | 1.286592 | 0.587401 | 0.230856 | 0.0513* | |
H7c | 1.12292 | 0.541111 | 0.164378 | 0.0513* | |
H8 | 0.600817 | 0.52848 | 0.408718 | 0.0334* | |
H10 | 1.096928 | 0.321827 | 0.490106 | 0.0365* | |
H11 | 1.043401 | 0.169756 | 0.575023 | 0.0391* | |
H13 | 0.42723 | 0.189582 | 0.505637 | 0.0374* | |
H14 | 0.480191 | 0.345928 | 0.423465 | 0.0337* | |
H2o | 0.930 (2) | 0.882 (2) | 0.1576 (16) | 0.0424* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.04436 (17) | 0.03681 (16) | 0.05028 (18) | 0.00744 (11) | 0.02019 (12) | 0.01743 (12) |
O1 | 0.0363 (9) | 0.0270 (8) | 0.0426 (9) | 0.0074 (6) | 0.0190 (7) | 0.0074 (7) |
O2 | 0.0264 (8) | 0.0245 (8) | 0.0347 (9) | 0.0004 (6) | 0.0066 (6) | 0.0055 (6) |
N1 | 0.0294 (9) | 0.0254 (9) | 0.0235 (9) | −0.0014 (7) | 0.0044 (8) | 0.0003 (7) |
C1 | 0.0314 (11) | 0.0256 (11) | 0.0237 (11) | 0.0006 (9) | 0.0050 (9) | −0.0045 (9) |
C2 | 0.0310 (11) | 0.0240 (11) | 0.0287 (11) | 0.0035 (9) | 0.0054 (9) | −0.0003 (9) |
C3 | 0.0275 (10) | 0.0251 (11) | 0.0261 (11) | −0.0003 (8) | 0.0063 (9) | −0.0029 (9) |
C4 | 0.0264 (10) | 0.0216 (10) | 0.0271 (11) | −0.0035 (8) | 0.0014 (9) | −0.0031 (9) |
C5 | 0.0294 (11) | 0.0259 (11) | 0.0327 (12) | 0.0030 (9) | 0.0062 (9) | −0.0012 (9) |
C6 | 0.0306 (11) | 0.0297 (11) | 0.0299 (12) | 0.0018 (9) | 0.0093 (9) | −0.0022 (9) |
C7 | 0.0317 (12) | 0.0276 (12) | 0.0459 (14) | 0.0044 (9) | 0.0146 (11) | 0.0005 (10) |
C8 | 0.0315 (11) | 0.0288 (12) | 0.0243 (11) | −0.0001 (9) | 0.0075 (9) | −0.0043 (9) |
C9 | 0.0321 (11) | 0.0237 (11) | 0.0237 (11) | 0.0004 (8) | 0.0066 (9) | −0.0037 (9) |
C10 | 0.0255 (11) | 0.0327 (12) | 0.0331 (12) | −0.0009 (9) | 0.0043 (9) | 0.0011 (10) |
C11 | 0.0317 (12) | 0.0339 (13) | 0.0317 (12) | 0.0057 (9) | 0.0025 (10) | 0.0053 (10) |
C12 | 0.0349 (12) | 0.0271 (11) | 0.0318 (12) | 0.0024 (9) | 0.0101 (10) | 0.0035 (9) |
C13 | 0.0276 (11) | 0.0321 (12) | 0.0356 (13) | −0.0005 (9) | 0.0108 (10) | −0.0005 (10) |
C14 | 0.0275 (11) | 0.0302 (12) | 0.0273 (11) | 0.0032 (9) | 0.0060 (9) | 0.0010 (9) |
Br1—C12 | 1.901 (2) | C6—H6 | 0.96 |
O1—C3 | 1.368 (3) | C7—H7a | 0.96 |
O1—C7 | 1.431 (3) | C7—H7b | 0.96 |
O2—C4 | 1.358 (3) | C7—H7c | 0.96 |
O2—H2o | 0.846 (19) | C8—H8 | 0.96 |
N1—C8 | 1.283 (3) | C9—C10 | 1.393 (3) |
N1—C9 | 1.419 (3) | C9—C14 | 1.396 (3) |
C1—C2 | 1.406 (3) | C10—C11 | 1.385 (3) |
C1—C6 | 1.396 (3) | C10—H10 | 0.96 |
C1—C8 | 1.454 (3) | C11—C12 | 1.382 (3) |
C2—C3 | 1.372 (3) | C11—H11 | 0.96 |
C2—H2 | 0.96 | C12—C13 | 1.384 (3) |
C3—C4 | 1.407 (3) | C13—C14 | 1.388 (3) |
C4—C5 | 1.384 (3) | C13—H13 | 0.96 |
C5—C6 | 1.387 (3) | C14—H14 | 0.96 |
C5—H5 | 0.96 | ||
C3—O1—C7 | 117.28 (17) | H7a—C7—H7b | 109.4709 |
C4—O2—H2o | 111.1 (19) | H7a—C7—H7c | 109.4715 |
C8—N1—C9 | 119.6 (2) | H7b—C7—H7c | 109.4709 |
C2—C1—C6 | 118.9 (2) | N1—C8—C1 | 123.8 (2) |
C2—C1—C8 | 122.1 (2) | N1—C8—H8 | 118.1105 |
C6—C1—C8 | 119.0 (2) | C1—C8—H8 | 118.1102 |
C1—C2—C3 | 120.5 (2) | N1—C9—C10 | 117.3 (2) |
C1—C2—H2 | 119.7453 | N1—C9—C14 | 123.25 (18) |
C3—C2—H2 | 119.747 | C10—C9—C14 | 119.3 (2) |
O1—C3—C2 | 125.18 (19) | C9—C10—C11 | 120.9 (2) |
O1—C3—C4 | 114.60 (19) | C9—C10—H10 | 119.5592 |
C2—C3—C4 | 120.2 (2) | C11—C10—H10 | 119.5589 |
O2—C4—C3 | 121.5 (2) | C10—C11—C12 | 118.7 (2) |
O2—C4—C5 | 118.94 (19) | C10—C11—H11 | 120.6272 |
C3—C4—C5 | 119.5 (2) | C12—C11—H11 | 120.6256 |
C4—C5—C6 | 120.3 (2) | Br1—C12—C11 | 119.14 (17) |
C4—C5—H5 | 119.8487 | Br1—C12—C13 | 119.19 (18) |
C6—C5—H5 | 119.849 | C11—C12—C13 | 121.7 (2) |
C1—C6—C5 | 120.5 (2) | C12—C13—C14 | 119.2 (2) |
C1—C6—H6 | 119.7435 | C12—C13—H13 | 120.3851 |
C5—C6—H6 | 119.7433 | C14—C13—H13 | 120.3861 |
O1—C7—H7a | 109.4713 | C9—C14—C13 | 120.15 (19) |
O1—C7—H7b | 109.4714 | C9—C14—H14 | 119.9259 |
O1—C7—H7c | 109.4714 | C13—C14—H14 | 119.925 |
C2—C3—O1—C7 | 13.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O2i | 0.96 | 2.31 | 3.247 (3) | 165 |
C14—H14···O2ii | 0.96 | 2.40 | 3.325 (3) | 163 |
O2—H2o···N1iii | 0.85 (2) | 1.98 (2) | 2.787 (2) | 158 (3) |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C14H12BrNO2 |
Mr | 306.2 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 6.5692 (3), 11.4323 (4), 17.5552 (9) |
β (°) | 97.798 (4) |
V (Å3) | 1306.22 (10) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 4.24 |
Crystal size (mm) | 0.33 × 0.13 × 0.04 |
Data collection | |
Diffractometer | Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.432, 1 |
No. of measured, independent and observed [I > 3σ(I)] reflections | 12474, 2320, 1991 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F > 3σ(F)], wR(F), S | 0.028, 0.067, 1.65 |
No. of reflections | 2320 |
No. of parameters | 166 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.27, −0.37 |
Computer programs: CrysAlis PRO (Agilent, 2011), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O2i | 0.96 | 2.31 | 3.247 (3) | 164.59 |
C14—H14···O2ii | 0.96 | 2.40 | 3.325 (3) | 162.75 |
O2—H2o···N1iii | 0.846 (19) | 1.98 (2) | 2.787 (2) | 158 (3) |
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+2, y+1/2, −z+1/2. |
Acknowledgements
We acknowledge Golestan University for partial support of this work, the Institutional Research Plan No. AVOZ10100521 of the Institute of Physics, Prague, and the Praemium Academiae Project of the Academy of Sciences of the Czech Republic.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England. Google Scholar
Akkurt, M., Jarrahpour, A., Aye, M., Gençaslan, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o2087. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Dalapati, S., Alam, M. A., Jana, S. & Guchhait, N. (2011). J. Fluorine Chem. 132, 536–540. Web of Science CrossRef CAS Google Scholar
Fejfarová, K., Khalaji, A. D. & Dušek, M. (2010a). Acta Cryst. E66, o2062. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fejfarová, K., Khalaji, A. D. & Dušek, M. (2010b). Acta Cryst. E66, o2874. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khalaji, A. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, o4257. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khalaji, A. D., Weil, M., Gotoh, K. & Ishida, H. (2009). Acta Cryst. E65, o436. Web of Science CSD CrossRef IUCr Journals Google Scholar
Özek, A., Albayrak, Ç. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2705. Web of Science CrossRef IUCr Journals Google Scholar
Özek, A., Koşar, B., Albayrak, Ç. & Büyükgüngör, O. (2010). Acta Cryst. E66, o684. Web of Science CSD CrossRef IUCr Journals Google Scholar
Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic. Google Scholar
Silva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M., Martins, C. V. B. & de Fatima, A. (2011). J. Adv. Res. 2, 1–8. Google Scholar
Sun, Y., Wang, Y., Liu, Z., Huang, C. & Yu, C. (2012). Spectrochim. Acta A, 96, 42. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff base compounds exhibit a broad range of biological activities, including antifungal and antibacterial properties (da Silva et al., 2011). They are used as anion sensors (Dalapati et al., 2011) and as non-linear optics compounds (Sun et al., 2012).
The present work is part of a ongoing structural study of Schiff bases (Khalaji et al., 2009; Fejfarová et al., 2010a,b) and we report here the structure of (E)-(4-hydroxy-3-methoxybenzylidene)-4-bromoaniline, (1). In the crystal, the dihedral angle between the two phenyl rings is 37.87 (10)° and the molecule has an E conformation about the central C=N bond. The methoxy group is slightly twisted from the attached benzene ring [C2—C3—O1—C7 = 13.8 (3)°]. The C=N and C—N bond lengths of 1.283 (3) Å and 1.419 (3) Å agree well with the corresponding distances in other Schiff bases (Akkurt et al., 2008; Özek et al., 2009, 2010; Khalaji et al., 2007, 2009; Fejfarová et al., 2010a,b).
The molecules are connected by intermolecular O—H···N hydrogen bonds, forming zigzag chains parallel to the b axis (Fig. 2). The crystal structure is further stabilized by intermolecular C—H···O hydrogen bonds.