organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-[(4-Bromo­phen­yl)imino­meth­yl]-2-meth­­oxy­phenol

aInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic, and bDepartment of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran
*Correspondence e-mail: fejfarov@fzu.cz

(Received 10 July 2012; accepted 11 July 2012; online 18 July 2012)

In the crystal structure of the title compound, C14H12BrNO2, the dihedral angle between the rings is 37.87 (10)° and the mol­ecule has an E conformation about the central C=N bond. In the crystal, mol­ecules are connected by inter­molecular O—H⋯N hydrogen bonds into zigzag chains running parallel to the b axis. The packing also features C—H⋯O inter­actions.

Related literature

For Schiff base derivatives and related structures, see: Fejfarová et al. (2010a[Fejfarová, K., Khalaji, A. D. & Dušek, M. (2010a). Acta Cryst. E66, o2062.],b[Fejfarová, K., Khalaji, A. D. & Dušek, M. (2010b). Acta Cryst. E66, o2874.]); Özek et al. (2009[Özek, A., Albayrak, Ç. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2705.], 2010[Özek, A., Koşar, B., Albayrak, Ç. & Büyükgüngör, O. (2010). Acta Cryst. E66, o684.]); Akkurt et al. (2008[Akkurt, M., Jarrahpour, A., Aye, M., Gençaslan, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o2087.]); Khalaji et al. (2007[Khalaji, A. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, o4257.], 2009[Khalaji, A. D., Weil, M., Gotoh, K. & Ishida, H. (2009). Acta Cryst. E65, o436.]). For applications and properties of Schiff base compounds, see: da Silva et al. (2011[Silva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M., Martins, C. V. B. & de Fatima, A. (2011). J. Adv. Res. 2, 1-8.]); Dalapati et al. (2011[Dalapati, S., Alam, M. A., Jana, S. & Guchhait, N. (2011). J. Fluorine Chem. 132, 536-540.]); Sun et al. (2012[Sun, Y., Wang, Y., Liu, Z., Huang, C. & Yu, C. (2012). Spectrochim. Acta A, 96, 42.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12BrNO2

  • Mr = 306.2

  • Monoclinic, P 21 /c

  • a = 6.5692 (3) Å

  • b = 11.4323 (4) Å

  • c = 17.5552 (9) Å

  • β = 97.798 (4)°

  • V = 1306.22 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.24 mm−1

  • T = 120 K

  • 0.33 × 0.13 × 0.04 mm

Data collection
  • Agilent Xcalibur diffractometer with an Atlas (Gemini ultra Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.432, Tmax = 1

  • 12474 measured reflections

  • 2320 independent reflections

  • 1991 reflections with I > 3σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 3σ(F2)] = 0.028

  • wR(F2) = 0.067

  • S = 1.65

  • 2320 reflections

  • 166 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.96 2.31 3.247 (3) 165
C14—H14⋯O2ii 0.96 2.40 3.325 (3) 163
O2—H2o⋯N1iii 0.85 (2) 1.98 (2) 2.787 (2) 158 (3)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

Schiff base compounds exhibit a broad range of biological activities, including antifungal and antibacterial properties (da Silva et al., 2011). They are used as anion sensors (Dalapati et al., 2011) and as non-linear optics compounds (Sun et al., 2012).

The present work is part of a ongoing structural study of Schiff bases (Khalaji et al., 2009; Fejfarová et al., 2010a,b) and we report here the structure of (E)-(4-hydroxy-3-methoxybenzylidene)-4-bromoaniline, (1). In the crystal, the dihedral angle between the two phenyl rings is 37.87 (10)° and the molecule has an E conformation about the central C=N bond. The methoxy group is slightly twisted from the attached benzene ring [C2—C3—O1—C7 = 13.8 (3)°]. The C=N and C—N bond lengths of 1.283 (3) Å and 1.419 (3) Å agree well with the corresponding distances in other Schiff bases (Akkurt et al., 2008; Özek et al., 2009, 2010; Khalaji et al., 2007, 2009; Fejfarová et al., 2010a,b).

The molecules are connected by intermolecular O—H···N hydrogen bonds, forming zigzag chains parallel to the b axis (Fig. 2). The crystal structure is further stabilized by intermolecular C—H···O hydrogen bonds.

Related literature top

For Schiff base derivatives and related structures, see: Fejfarová et al. (2010a,b); Özek et al. (2009, 2010); Akkurt et al. (2008); Khalaji et al. (2007, 2009). For applications and properties of Schiff base compounds, see: da Silva et al. (2011); Dalapati et al. (2011); Sun et al. (2012).

Experimental top

To a stirring solution of the 4-hydroxy-3-methoxybenzaldehyde (0.2 mmol, in 5 ml of methanol) was added 4-bromoaniline (0.2 mmol) in 10 ml of methanol, and the mixture was stirred for 1 h in air at 323 K and was then left at room temperature for several days without disturbance yielding suitable crystals of (1) that subsequently were filtered off and washed with Et2O. Yield: 91%.

Refinement top

All H atoms bonded to carbon atoms were positioned geometrically and treated as riding on their parent atoms. The methyl H atoms were allowed to rotate freely about the adjacent C—O bonds. The hydroxyl H atoms were found in difference Fourier maps and their coordinates were refined with a restraint on the O—H bond length 0.85 Å with σ of 0.01. All hydrogen atoms were refined with thermal displacement coefficients Uiso(H) set to 1.5Ueq(C, O) for methyl and hydroxyl groups and to 1.2Ueq(C) for the CH and CH2 groups.

Structure description top

Schiff base compounds exhibit a broad range of biological activities, including antifungal and antibacterial properties (da Silva et al., 2011). They are used as anion sensors (Dalapati et al., 2011) and as non-linear optics compounds (Sun et al., 2012).

The present work is part of a ongoing structural study of Schiff bases (Khalaji et al., 2009; Fejfarová et al., 2010a,b) and we report here the structure of (E)-(4-hydroxy-3-methoxybenzylidene)-4-bromoaniline, (1). In the crystal, the dihedral angle between the two phenyl rings is 37.87 (10)° and the molecule has an E conformation about the central C=N bond. The methoxy group is slightly twisted from the attached benzene ring [C2—C3—O1—C7 = 13.8 (3)°]. The C=N and C—N bond lengths of 1.283 (3) Å and 1.419 (3) Å agree well with the corresponding distances in other Schiff bases (Akkurt et al., 2008; Özek et al., 2009, 2010; Khalaji et al., 2007, 2009; Fejfarová et al., 2010a,b).

The molecules are connected by intermolecular O—H···N hydrogen bonds, forming zigzag chains parallel to the b axis (Fig. 2). The crystal structure is further stabilized by intermolecular C—H···O hydrogen bonds.

For Schiff base derivatives and related structures, see: Fejfarová et al. (2010a,b); Özek et al. (2009, 2010); Akkurt et al. (2008); Khalaji et al. (2007, 2009). For applications and properties of Schiff base compounds, see: da Silva et al. (2011); Dalapati et al. (2011); Sun et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. Molecular structure of (1). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of molecules in direction of a axis. Hydrogen bonds are drawn as dashed lines.
(E)-4-[(4-Bromophenyl)iminomethyl]-2-methoxyphenol top
Crystal data top
C14H12BrNO2F(000) = 616
Mr = 306.2Dx = 1.556 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ybcCell parameters from 6414 reflections
a = 6.5692 (3) Åθ = 3.9–66.9°
b = 11.4323 (4) ŵ = 4.24 mm1
c = 17.5552 (9) ÅT = 120 K
β = 97.798 (4)°Plate, colourless
V = 1306.22 (10) Å30.33 × 0.13 × 0.04 mm
Z = 4
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
2320 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source1991 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.044
Detector resolution: 10.3784 pixels mm-1θmax = 67.0°, θmin = 4.6°
Rotation method data acquisition using ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1313
Tmin = 0.432, Tmax = 1l = 1920
12474 measured reflections
Refinement top
Refinement on F245 constraints
R[F > 3σ(F)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F) = 0.067Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
S = 1.65(Δ/σ)max = 0.0003
2320 reflectionsΔρmax = 0.27 e Å3
166 parametersΔρmin = 0.37 e Å3
1 restraint
Crystal data top
C14H12BrNO2V = 1306.22 (10) Å3
Mr = 306.2Z = 4
Monoclinic, P21/cCu Kα radiation
a = 6.5692 (3) ŵ = 4.24 mm1
b = 11.4323 (4) ÅT = 120 K
c = 17.5552 (9) Å0.33 × 0.13 × 0.04 mm
β = 97.798 (4)°
Data collection top
Agilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
2320 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1991 reflections with I > 3σ(I)
Tmin = 0.432, Tmax = 1Rint = 0.044
12474 measured reflections
Refinement top
R[F > 3σ(F)] = 0.0281 restraint
wR(F) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.65Δρmax = 0.27 e Å3
2320 reflectionsΔρmin = 0.37 e Å3
166 parameters
Special details top

Experimental. Absorption correction: CrysAlis PRO (Agilent, 2011) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.68807 (4)0.03813 (2)0.611307 (17)0.04255 (10)
O11.0904 (2)0.70826 (13)0.18744 (10)0.0341 (5)
O20.8114 (2)0.88161 (13)0.17128 (9)0.0283 (5)
N10.8397 (3)0.43584 (16)0.39607 (10)0.0260 (6)
C10.7469 (3)0.61449 (19)0.32641 (12)0.0268 (6)
C20.9135 (3)0.61379 (19)0.28390 (13)0.0278 (7)
C30.9362 (3)0.70156 (18)0.23240 (13)0.0260 (6)
C40.7941 (3)0.79425 (18)0.22238 (13)0.0252 (6)
C50.6294 (3)0.79520 (19)0.26391 (13)0.0292 (7)
C60.6055 (3)0.70607 (19)0.31557 (13)0.0296 (7)
C71.2114 (4)0.6054 (2)0.18148 (15)0.0342 (8)
C80.7179 (3)0.52315 (19)0.38158 (12)0.0278 (7)
C90.7943 (3)0.34873 (18)0.44886 (12)0.0263 (6)
C100.9598 (3)0.29543 (19)0.49366 (13)0.0304 (7)
C110.9292 (4)0.2049 (2)0.54324 (13)0.0326 (7)
C120.7312 (4)0.16602 (19)0.54612 (13)0.0308 (7)
C130.5637 (3)0.21731 (19)0.50239 (13)0.0312 (7)
C140.5954 (3)0.30931 (19)0.45378 (13)0.0281 (7)
H21.0121270.5514220.2909470.0333*
H50.5313060.8578370.2569220.035*
H60.4907090.707390.3440940.0355*
H7a1.3059330.6188170.145210.0513*
H7b1.2865920.5874010.2308560.0513*
H7c1.122920.5411110.1643780.0513*
H80.6008170.528480.4087180.0334*
H101.0969280.3218270.4901060.0365*
H111.0434010.1697560.5750230.0391*
H130.427230.1895820.5056370.0374*
H140.4801910.3459280.4234650.0337*
H2o0.930 (2)0.882 (2)0.1576 (16)0.0424*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04436 (17)0.03681 (16)0.05028 (18)0.00744 (11)0.02019 (12)0.01743 (12)
O10.0363 (9)0.0270 (8)0.0426 (9)0.0074 (6)0.0190 (7)0.0074 (7)
O20.0264 (8)0.0245 (8)0.0347 (9)0.0004 (6)0.0066 (6)0.0055 (6)
N10.0294 (9)0.0254 (9)0.0235 (9)0.0014 (7)0.0044 (8)0.0003 (7)
C10.0314 (11)0.0256 (11)0.0237 (11)0.0006 (9)0.0050 (9)0.0045 (9)
C20.0310 (11)0.0240 (11)0.0287 (11)0.0035 (9)0.0054 (9)0.0003 (9)
C30.0275 (10)0.0251 (11)0.0261 (11)0.0003 (8)0.0063 (9)0.0029 (9)
C40.0264 (10)0.0216 (10)0.0271 (11)0.0035 (8)0.0014 (9)0.0031 (9)
C50.0294 (11)0.0259 (11)0.0327 (12)0.0030 (9)0.0062 (9)0.0012 (9)
C60.0306 (11)0.0297 (11)0.0299 (12)0.0018 (9)0.0093 (9)0.0022 (9)
C70.0317 (12)0.0276 (12)0.0459 (14)0.0044 (9)0.0146 (11)0.0005 (10)
C80.0315 (11)0.0288 (12)0.0243 (11)0.0001 (9)0.0075 (9)0.0043 (9)
C90.0321 (11)0.0237 (11)0.0237 (11)0.0004 (8)0.0066 (9)0.0037 (9)
C100.0255 (11)0.0327 (12)0.0331 (12)0.0009 (9)0.0043 (9)0.0011 (10)
C110.0317 (12)0.0339 (13)0.0317 (12)0.0057 (9)0.0025 (10)0.0053 (10)
C120.0349 (12)0.0271 (11)0.0318 (12)0.0024 (9)0.0101 (10)0.0035 (9)
C130.0276 (11)0.0321 (12)0.0356 (13)0.0005 (9)0.0108 (10)0.0005 (10)
C140.0275 (11)0.0302 (12)0.0273 (11)0.0032 (9)0.0060 (9)0.0010 (9)
Geometric parameters (Å, º) top
Br1—C121.901 (2)C6—H60.96
O1—C31.368 (3)C7—H7a0.96
O1—C71.431 (3)C7—H7b0.96
O2—C41.358 (3)C7—H7c0.96
O2—H2o0.846 (19)C8—H80.96
N1—C81.283 (3)C9—C101.393 (3)
N1—C91.419 (3)C9—C141.396 (3)
C1—C21.406 (3)C10—C111.385 (3)
C1—C61.396 (3)C10—H100.96
C1—C81.454 (3)C11—C121.382 (3)
C2—C31.372 (3)C11—H110.96
C2—H20.96C12—C131.384 (3)
C3—C41.407 (3)C13—C141.388 (3)
C4—C51.384 (3)C13—H130.96
C5—C61.387 (3)C14—H140.96
C5—H50.96
C3—O1—C7117.28 (17)H7a—C7—H7b109.4709
C4—O2—H2o111.1 (19)H7a—C7—H7c109.4715
C8—N1—C9119.6 (2)H7b—C7—H7c109.4709
C2—C1—C6118.9 (2)N1—C8—C1123.8 (2)
C2—C1—C8122.1 (2)N1—C8—H8118.1105
C6—C1—C8119.0 (2)C1—C8—H8118.1102
C1—C2—C3120.5 (2)N1—C9—C10117.3 (2)
C1—C2—H2119.7453N1—C9—C14123.25 (18)
C3—C2—H2119.747C10—C9—C14119.3 (2)
O1—C3—C2125.18 (19)C9—C10—C11120.9 (2)
O1—C3—C4114.60 (19)C9—C10—H10119.5592
C2—C3—C4120.2 (2)C11—C10—H10119.5589
O2—C4—C3121.5 (2)C10—C11—C12118.7 (2)
O2—C4—C5118.94 (19)C10—C11—H11120.6272
C3—C4—C5119.5 (2)C12—C11—H11120.6256
C4—C5—C6120.3 (2)Br1—C12—C11119.14 (17)
C4—C5—H5119.8487Br1—C12—C13119.19 (18)
C6—C5—H5119.849C11—C12—C13121.7 (2)
C1—C6—C5120.5 (2)C12—C13—C14119.2 (2)
C1—C6—H6119.7435C12—C13—H13120.3851
C5—C6—H6119.7433C14—C13—H13120.3861
O1—C7—H7a109.4713C9—C14—C13120.15 (19)
O1—C7—H7b109.4714C9—C14—H14119.9259
O1—C7—H7c109.4714C13—C14—H14119.925
C2—C3—O1—C713.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.962.313.247 (3)165
C14—H14···O2ii0.962.403.325 (3)163
O2—H2o···N1iii0.85 (2)1.98 (2)2.787 (2)158 (3)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H12BrNO2
Mr306.2
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)6.5692 (3), 11.4323 (4), 17.5552 (9)
β (°) 97.798 (4)
V3)1306.22 (10)
Z4
Radiation typeCu Kα
µ (mm1)4.24
Crystal size (mm)0.33 × 0.13 × 0.04
Data collection
DiffractometerAgilent Xcalibur
diffractometer with an Atlas (Gemini ultra Cu) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.432, 1
No. of measured, independent and
observed [I > 3σ(I)] reflections
12474, 2320, 1991
Rint0.044
(sin θ/λ)max1)0.597
Refinement
R[F > 3σ(F)], wR(F), S 0.028, 0.067, 1.65
No. of reflections2320
No. of parameters166
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.37

Computer programs: CrysAlis PRO (Agilent, 2011), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.962.313.247 (3)164.59
C14—H14···O2ii0.962.403.325 (3)162.75
O2—H2o···N1iii0.846 (19)1.98 (2)2.787 (2)158 (3)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+2, y+1/2, z+1/2.
 

Acknowledgements

We acknowledge Golestan University for partial support of this work, the Institutional Research Plan No. AVOZ10100521 of the Institute of Physics, Prague, and the Praemium Academiae Project of the Academy of Sciences of the Czech Republic.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAkkurt, M., Jarrahpour, A., Aye, M., Gençaslan, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o2087.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationDalapati, S., Alam, M. A., Jana, S. & Guchhait, N. (2011). J. Fluorine Chem. 132, 536–540.  Web of Science CrossRef CAS Google Scholar
First citationFejfarová, K., Khalaji, A. D. & Dušek, M. (2010a). Acta Cryst. E66, o2062.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFejfarová, K., Khalaji, A. D. & Dušek, M. (2010b). Acta Cryst. E66, o2874.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalaji, A. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, o4257.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalaji, A. D., Weil, M., Gotoh, K. & Ishida, H. (2009). Acta Cryst. E65, o436.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzek, A., Albayrak, Ç. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2705.  Web of Science CrossRef IUCr Journals Google Scholar
First citationÖzek, A., Koşar, B., Albayrak, Ç. & Büyükgüngör, O. (2010). Acta Cryst. E66, o684.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.  Google Scholar
First citationSilva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M., Martins, C. V. B. & de Fatima, A. (2011). J. Adv. Res. 2, 1–8.  Google Scholar
First citationSun, Y., Wang, Y., Liu, Z., Huang, C. & Yu, C. (2012). Spectrochim. Acta A, 96, 42.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds