organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-[4-(Di­phenyl­amino)­phen­yl]quinoline 1-oxide

aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guan@njut.edu.cn

(Received 29 May 2012; accepted 11 July 2012; online 25 July 2012)

In the title mol­ecule, C27H20N2O, a triphenyl­amine derivative of quinoline, the three benzene rings linked through an N atom form a propeller shape, with dihedral angles between the mean planes of pairs of rings of 75.57 (9), 55.68 (9) and 83.66 (9)°. The quinoline ring is essentially planar, with an r.m.s. deviation of the fitted atoms of 0.0155 Å, and forms a dihedral angle of 33.52 (8)° with the benzene ring to which it is bonded. Weak C—H⋯π inter­actions are also observed in the crystal structure.

Related literature

For background to triphenyl­amine derivatives, see: Lin et al. (2010[Lin, L. Y., Tsai, C. H. & Wong, K. T. (2010). J. Org. Chem. 75, 4778-4785.]). For preparation, see: Liu et al. (2011[Liu, C., Ni, Q. J. & Qiu, J. S. (2011). Eur. J. Org. Chem. pp. 3009-3015.]). For the crystal structure of a related compound, see: Xie et al. (2011[Xie, R.-X., Zhang, X., Huang, B.-L., Yao, J.-S., Meng, X.-L. & Yu, X.-Q. (2011). Chin. J. Struct. Chem. 30, 1609-1613.]).

[Scheme 1]

Experimental

Crystal data
  • C27H20N2O

  • Mr = 388.45

  • Monoclinic, P 21 /c

  • a = 16.774 (3) Å

  • b = 9.6130 (19) Å

  • c = 13.253 (3) Å

  • β = 107.05 (3)°

  • V = 2043.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.977, Tmax = 0.992

  • 3881 measured reflections

  • 3747 independent reflections

  • 2263 reflections with I > 2σ(I)

  • Rint = 0.072

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.156

  • S = 1.00

  • 3747 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C7–C12 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17ACg3i 0.93 2.76 3.640 (3) 158
Symmetry code: (i) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Triphenylamine (TPA) derivatives, are important structural motifs in numerous dye-sensitized solar cells (Lin et al., 2010). As a part of our studies on the synthesis of TPA derivatives, the title compound was synthesized (Liu et al., 2011). We report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the quinoline ring (N2/C19–C27) is essentially planar with rmsd of the fitted atoms 0.0155 Å. The benzene rings bonded to the central N1 atom form a propeller with dihedral angles between the mean planes being 75.57 (9), 55.68 (9) and 83.66 (9)° between the pairs of rings: C1–C6/C7–C12, C7–C12/C13–C18 and C1–C6/C13–C18, respectively. The dihedral angle between the mean planes of quinoloine and benzene ring (C13–C18) is 33.52 (8)°. The bond lengths and bond angles in the title compound agree with the corresponding bond lengths and angles reported for a closely related compound (Xie et al., 2011).

The crystal structure is consolidated by weak C—H···π interactions C7—H17A···Cg3; Cg3 is the centroid of the C7–C12 ring (Fig. 2 and Table 1).

Related literature top

For background to triphenylamine derivatives, see: Lin et al. (2010). For preparation, see: Liu et al. (2011). For the crystal structure of a related compound, see: Xie et al. (2011).

Experimental top

A mixture of 6-bromoquinoline (0.25 mmol), [4-(diphenylamino)phenyl]boronic acid (0.375 mmol), Pd(OAc)2 (0.5 mol-%), K3PO4.7H2O (0.5 mmol), distilled water (0.65 ml) and iPrOH (1.35 ml) was stirred at room temperature in air for 1 h. The mixture was added to brine (15 ml) and extracted four times with ethyl acetate (415 ml). The solvent was evaporated under vacuum, and then subjected to short-column chromatography on silica gel (200–300 mesh) to get N,N-diphenyl-4-(quinolin-6-yl)aniline (yield = 88.4%, m.p. 413–414 K). N,N-diphenyl-4-(quinolin-6-yl)aniline (6.55 g, 22.3 mmol) was reacted with 3-chloroperoxybenzoic acid (mCPBA) (4.92 g, 24.5 mmol) in dichloromethane (80 ml). After 12 h stirring at room temperature, the reaction mixture was concentrated and the solid thus obtained was filtered and recrystallized from ethyl acetate to get the title compound (yield = 92.5%, m.p. 461–463 K).

Refinement top

All H atoms were placed geometrically with C—H = 0.93 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Structure description top

Triphenylamine (TPA) derivatives, are important structural motifs in numerous dye-sensitized solar cells (Lin et al., 2010). As a part of our studies on the synthesis of TPA derivatives, the title compound was synthesized (Liu et al., 2011). We report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the quinoline ring (N2/C19–C27) is essentially planar with rmsd of the fitted atoms 0.0155 Å. The benzene rings bonded to the central N1 atom form a propeller with dihedral angles between the mean planes being 75.57 (9), 55.68 (9) and 83.66 (9)° between the pairs of rings: C1–C6/C7–C12, C7–C12/C13–C18 and C1–C6/C13–C18, respectively. The dihedral angle between the mean planes of quinoloine and benzene ring (C13–C18) is 33.52 (8)°. The bond lengths and bond angles in the title compound agree with the corresponding bond lengths and angles reported for a closely related compound (Xie et al., 2011).

The crystal structure is consolidated by weak C—H···π interactions C7—H17A···Cg3; Cg3 is the centroid of the C7–C12 ring (Fig. 2 and Table 1).

For background to triphenylamine derivatives, see: Lin et al. (2010). For preparation, see: Liu et al. (2011). For the crystal structure of a related compound, see: Xie et al. (2011).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. The weak C—H···π interactions are shown as dashed lines.
6-[4-(Diphenylamino)phenyl]quinoline 1-oxide top
Crystal data top
C27H20N2OF(000) = 816
Mr = 388.45Dx = 1.263 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 16.774 (3) Åθ = 9–13°
b = 9.6130 (19) ŵ = 0.08 mm1
c = 13.253 (3) ÅT = 293 K
β = 107.05 (3)°Block, colourless
V = 2043.1 (7) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2263 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.072
Graphite monochromatorθmax = 25.4°, θmin = 1.3°
ω/2θ scansh = 200
Absorption correction: ψ scan
(North et al., 1968)
k = 011
Tmin = 0.977, Tmax = 0.992l = 1515
3881 measured reflections3 standard reflections every 200 reflections
3747 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.078P)2]
where P = (Fo2 + 2Fc2)/3
3747 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C27H20N2OV = 2043.1 (7) Å3
Mr = 388.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.774 (3) ŵ = 0.08 mm1
b = 9.6130 (19) ÅT = 293 K
c = 13.253 (3) Å0.30 × 0.20 × 0.10 mm
β = 107.05 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2263 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.072
Tmin = 0.977, Tmax = 0.9923 standard reflections every 200 reflections
3881 measured reflections intensity decay: 1%
3747 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.00Δρmax = 0.20 e Å3
3747 reflectionsΔρmin = 0.16 e Å3
271 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.46148 (12)0.0633 (2)0.26382 (13)0.0624 (5)
N10.17381 (14)0.1024 (2)0.34131 (16)0.0563 (6)
C10.22097 (18)0.0401 (3)0.5285 (2)0.0637 (8)
H1A0.24120.12980.54520.076*
N20.47292 (13)0.1387 (2)0.17945 (15)0.0471 (5)
C20.2295 (2)0.0578 (4)0.6077 (2)0.0727 (9)
H2A0.25560.03330.67750.087*
C30.1999 (2)0.1898 (3)0.5843 (3)0.0747 (9)
H3A0.20550.25510.63780.090*
C40.1622 (2)0.2248 (3)0.4821 (3)0.0796 (9)
H4A0.14200.31460.46570.096*
C50.1536 (2)0.1290 (3)0.4029 (2)0.0670 (8)
H5A0.12790.15490.33330.080*
C60.18249 (16)0.0043 (3)0.42509 (19)0.0497 (7)
C70.12495 (15)0.2234 (3)0.33659 (18)0.0471 (6)
C80.13847 (16)0.3420 (3)0.2849 (2)0.0538 (7)
H8A0.18000.34220.25140.065*
C90.09116 (19)0.4601 (3)0.2823 (2)0.0653 (8)
H9A0.10020.53840.24590.078*
C100.0310 (2)0.4622 (3)0.3332 (2)0.0721 (9)
H10A0.00010.54260.33250.086*
C110.01655 (17)0.3467 (3)0.3850 (2)0.0667 (8)
H11A0.02460.34870.41910.080*
C120.06248 (16)0.2266 (3)0.3871 (2)0.0572 (7)
H12A0.05190.14810.42210.069*
C130.21718 (15)0.0743 (3)0.26611 (19)0.0475 (6)
C140.29592 (17)0.0150 (3)0.29892 (19)0.0558 (7)
H14A0.32030.00340.37020.067*
C150.33867 (16)0.0169 (3)0.22768 (19)0.0539 (7)
H15A0.39170.05540.25190.065*
C160.30402 (15)0.0074 (3)0.12001 (18)0.0429 (6)
C170.22541 (15)0.0677 (2)0.08783 (19)0.0452 (6)
H17A0.20120.08690.01660.054*
C180.18226 (15)0.0998 (3)0.15911 (19)0.0485 (6)
H18A0.12930.13890.13510.058*
C190.34862 (14)0.0321 (2)0.04275 (18)0.0426 (6)
C200.39816 (15)0.1491 (2)0.05721 (18)0.0454 (6)
H20A0.40310.20460.11620.054*
C210.44174 (14)0.1874 (2)0.01543 (18)0.0420 (6)
C220.43129 (14)0.1041 (2)0.10499 (17)0.0411 (6)
C230.38061 (15)0.0147 (3)0.12111 (18)0.0463 (6)
H23A0.37420.06960.18070.056*
C240.34094 (15)0.0486 (3)0.04859 (18)0.0464 (6)
H24A0.30760.12770.05950.056*
C250.49522 (16)0.3042 (2)0.0002 (2)0.0498 (6)
H25A0.50290.36060.05930.060*
C260.53503 (16)0.3321 (3)0.0729 (2)0.0521 (7)
H26A0.57070.40820.06340.062*
C270.52346 (16)0.2490 (3)0.1614 (2)0.0522 (7)
H27A0.55190.27080.21000.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0795 (13)0.0698 (13)0.0483 (11)0.0007 (11)0.0350 (10)0.0082 (9)
N10.0731 (15)0.0497 (13)0.0605 (14)0.0173 (11)0.0418 (12)0.0101 (11)
C10.076 (2)0.0584 (18)0.0597 (18)0.0005 (15)0.0241 (16)0.0076 (14)
N20.0530 (13)0.0484 (13)0.0458 (12)0.0104 (11)0.0237 (10)0.0059 (10)
C20.089 (2)0.080 (2)0.0463 (16)0.0161 (19)0.0160 (16)0.0009 (16)
C30.094 (2)0.068 (2)0.070 (2)0.0229 (19)0.0360 (19)0.0199 (17)
C40.109 (3)0.0521 (18)0.076 (2)0.0056 (18)0.024 (2)0.0076 (16)
C50.088 (2)0.0549 (19)0.0540 (17)0.0036 (16)0.0154 (16)0.0014 (14)
C60.0578 (16)0.0510 (16)0.0478 (15)0.0084 (13)0.0272 (13)0.0023 (13)
C70.0494 (15)0.0502 (15)0.0437 (14)0.0035 (13)0.0169 (12)0.0062 (12)
C80.0576 (17)0.0519 (16)0.0567 (16)0.0043 (13)0.0243 (13)0.0005 (13)
C90.075 (2)0.0537 (18)0.0669 (19)0.0112 (16)0.0198 (16)0.0018 (14)
C100.068 (2)0.070 (2)0.077 (2)0.0271 (17)0.0189 (17)0.0024 (17)
C110.0471 (16)0.086 (2)0.073 (2)0.0103 (16)0.0255 (15)0.0120 (17)
C120.0529 (16)0.0635 (18)0.0618 (17)0.0021 (14)0.0272 (14)0.0056 (14)
C130.0518 (15)0.0479 (15)0.0495 (15)0.0058 (13)0.0250 (12)0.0010 (12)
C140.0594 (17)0.0701 (18)0.0408 (14)0.0126 (15)0.0190 (13)0.0014 (13)
C150.0465 (15)0.0670 (18)0.0503 (15)0.0106 (13)0.0174 (12)0.0012 (13)
C160.0466 (14)0.0422 (13)0.0429 (13)0.0006 (12)0.0178 (11)0.0025 (11)
C170.0473 (14)0.0470 (14)0.0427 (13)0.0035 (12)0.0154 (11)0.0027 (11)
C180.0459 (14)0.0528 (15)0.0522 (15)0.0081 (12)0.0227 (12)0.0028 (12)
C190.0398 (13)0.0449 (14)0.0448 (14)0.0029 (11)0.0151 (11)0.0030 (11)
C200.0495 (14)0.0486 (15)0.0407 (13)0.0009 (13)0.0175 (11)0.0047 (11)
C210.0432 (13)0.0398 (14)0.0459 (14)0.0055 (11)0.0175 (11)0.0028 (11)
C220.0441 (13)0.0425 (14)0.0394 (13)0.0085 (11)0.0168 (11)0.0066 (11)
C230.0470 (14)0.0505 (15)0.0427 (13)0.0033 (12)0.0153 (11)0.0069 (11)
C240.0446 (14)0.0460 (15)0.0513 (14)0.0036 (12)0.0181 (12)0.0026 (12)
C250.0589 (16)0.0408 (14)0.0541 (15)0.0003 (13)0.0232 (13)0.0004 (12)
C260.0572 (16)0.0432 (15)0.0604 (17)0.0019 (13)0.0246 (14)0.0075 (13)
C270.0579 (16)0.0487 (16)0.0585 (16)0.0062 (14)0.0305 (13)0.0136 (13)
Geometric parameters (Å, º) top
O—N21.299 (2)C12—H12A0.9300
N1—C71.414 (3)C13—C141.386 (3)
N1—C131.421 (3)C13—C181.388 (3)
N1—C61.431 (3)C14—C151.377 (3)
C1—C61.377 (4)C14—H14A0.9300
C1—C21.385 (4)C15—C161.394 (3)
C1—H1A0.9300C15—H15A0.9300
N2—C271.334 (3)C16—C171.388 (3)
N2—C221.406 (3)C16—C191.484 (3)
C2—C31.365 (4)C17—C181.383 (3)
C2—H2A0.9300C17—H17A0.9300
C3—C41.359 (4)C18—H18A0.9300
C3—H3A0.9300C19—C201.379 (3)
C4—C51.371 (4)C19—C241.411 (3)
C4—H4A0.9300C20—C211.417 (3)
C5—C61.371 (4)C20—H20A0.9300
C5—H5A0.9300C21—C221.399 (3)
C7—C81.383 (3)C21—C251.414 (3)
C7—C121.400 (3)C22—C231.402 (3)
C8—C91.380 (4)C23—C241.359 (3)
C8—H8A0.9300C23—H23A0.9300
C9—C101.369 (4)C24—H24A0.9300
C9—H9A0.9300C25—C261.355 (3)
C10—C111.363 (4)C25—H25A0.9300
C10—H10A0.9300C26—C271.386 (4)
C11—C121.384 (4)C26—H26A0.9300
C11—H11A0.9300C27—H27A0.9300
C7—N1—C13122.3 (2)C18—C13—N1122.2 (2)
C7—N1—C6120.13 (19)C15—C14—C13121.1 (2)
C13—N1—C6117.5 (2)C15—C14—H14A119.5
C6—C1—C2119.9 (3)C13—C14—H14A119.5
C6—C1—H1A120.0C14—C15—C16121.3 (2)
C2—C1—H1A120.0C14—C15—H15A119.3
O—N2—C27121.6 (2)C16—C15—H15A119.3
O—N2—C22119.6 (2)C17—C16—C15117.3 (2)
C27—N2—C22118.9 (2)C17—C16—C19121.4 (2)
C3—C2—C1120.7 (3)C15—C16—C19121.4 (2)
C3—C2—H2A119.7C18—C17—C16121.6 (2)
C1—C2—H2A119.7C18—C17—H17A119.2
C4—C3—C2119.2 (3)C16—C17—H17A119.2
C4—C3—H3A120.4C17—C18—C13120.6 (2)
C2—C3—H3A120.4C17—C18—H18A119.7
C3—C4—C5120.7 (3)C13—C18—H18A119.7
C3—C4—H4A119.6C20—C19—C24117.9 (2)
C5—C4—H4A119.6C20—C19—C16121.2 (2)
C4—C5—C6120.8 (3)C24—C19—C16120.9 (2)
C4—C5—H5A119.6C19—C20—C21121.8 (2)
C6—C5—H5A119.6C19—C20—H20A119.1
C5—C6—C1118.7 (3)C21—C20—H20A119.1
C5—C6—N1120.0 (2)C22—C21—C25119.7 (2)
C1—C6—N1121.3 (3)C22—C21—C20117.8 (2)
C8—C7—C12118.3 (2)C25—C21—C20122.5 (2)
C8—C7—N1121.5 (2)C21—C22—C23121.0 (2)
C12—C7—N1120.2 (2)C21—C22—N2119.7 (2)
C9—C8—C7120.9 (2)C23—C22—N2119.3 (2)
C9—C8—H8A119.5C24—C23—C22119.2 (2)
C7—C8—H8A119.5C24—C23—H23A120.4
C10—C9—C8120.1 (3)C22—C23—H23A120.4
C10—C9—H9A119.9C23—C24—C19122.3 (2)
C8—C9—H9A119.9C23—C24—H24A118.9
C11—C10—C9120.1 (3)C19—C24—H24A118.9
C11—C10—H10A120.0C26—C25—C21118.5 (2)
C9—C10—H10A120.0C26—C25—H25A120.8
C10—C11—C12120.7 (3)C21—C25—H25A120.8
C10—C11—H11A119.7C25—C26—C27121.0 (2)
C12—C11—H11A119.7C25—C26—H26A119.5
C11—C12—C7119.9 (3)C27—C26—H26A119.5
C11—C12—H12A120.0N2—C27—C26122.2 (2)
C7—C12—H12A120.0N2—C27—H27A118.9
C14—C13—C18118.1 (2)C26—C27—H27A118.9
C14—C13—N1119.6 (2)
C6—C1—C2—C30.1 (4)C15—C16—C17—C181.3 (4)
C1—C2—C3—C40.3 (5)C19—C16—C17—C18177.5 (2)
C2—C3—C4—C50.1 (5)C16—C17—C18—C130.9 (4)
C3—C4—C5—C60.4 (5)C14—C13—C18—C170.4 (4)
C4—C5—C6—C10.5 (4)N1—C13—C18—C17178.2 (2)
C4—C5—C6—N1179.3 (3)C17—C16—C19—C20144.3 (2)
C2—C1—C6—C50.3 (4)C15—C16—C19—C2034.5 (4)
C2—C1—C6—N1179.1 (2)C17—C16—C19—C2435.0 (3)
C7—N1—C6—C5117.4 (3)C15—C16—C19—C24146.2 (2)
C13—N1—C6—C563.9 (3)C24—C19—C20—C211.2 (3)
C7—N1—C6—C163.8 (3)C16—C19—C20—C21179.4 (2)
C13—N1—C6—C1114.9 (3)C19—C20—C21—C221.7 (3)
C13—N1—C7—C823.1 (4)C19—C20—C21—C25177.6 (2)
C6—N1—C7—C8155.5 (2)C25—C21—C22—C23178.1 (2)
C13—N1—C7—C12158.5 (2)C20—C21—C22—C231.2 (3)
C6—N1—C7—C1222.9 (4)C25—C21—C22—N21.1 (3)
C12—C7—C8—C90.6 (4)C20—C21—C22—N2179.6 (2)
N1—C7—C8—C9179.0 (2)O—N2—C22—C21178.3 (2)
C7—C8—C9—C101.4 (4)C27—N2—C22—C211.7 (3)
C8—C9—C10—C111.2 (5)O—N2—C22—C232.5 (3)
C9—C10—C11—C120.3 (5)C27—N2—C22—C23177.5 (2)
C10—C11—C12—C70.5 (4)C21—C22—C23—C240.3 (4)
C8—C7—C12—C110.4 (4)N2—C22—C23—C24179.5 (2)
N1—C7—C12—C11178.0 (2)C22—C23—C24—C190.3 (4)
C7—N1—C13—C14141.4 (3)C20—C19—C24—C230.2 (3)
C6—N1—C13—C1437.3 (4)C16—C19—C24—C23179.6 (2)
C7—N1—C13—C1840.8 (4)C22—C21—C25—C260.0 (3)
C6—N1—C13—C18140.5 (3)C20—C21—C25—C26179.3 (2)
C18—C13—C14—C150.4 (4)C21—C25—C26—C270.4 (4)
N1—C13—C14—C15178.3 (2)O—N2—C27—C26178.7 (2)
C13—C14—C15—C160.8 (4)C22—N2—C27—C261.3 (4)
C14—C15—C16—C171.3 (4)C25—C26—C27—N20.2 (4)
C14—C15—C16—C19177.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C7–C12 benzene ring.
D—H···AD—HH···AD···AD—H···A
C17—H17A···Cg3i0.932.763.640 (3)158
Symmetry code: (i) x, y1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC27H20N2O
Mr388.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)16.774 (3), 9.6130 (19), 13.253 (3)
β (°) 107.05 (3)
V3)2043.1 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.977, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
3881, 3747, 2263
Rint0.072
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.156, 1.00
No. of reflections3747
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.16

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C7–C12 benzene ring.
D—H···AD—HH···AD···AD—H···A
C17—H17A···Cg3i0.932.7623.640 (3)158
Symmetry code: (i) x, y1/2, z3/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLin, L. Y., Tsai, C. H. & Wong, K. T. (2010). J. Org. Chem. 75, 4778–4785.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiu, C., Ni, Q. J. & Qiu, J. S. (2011). Eur. J. Org. Chem. pp. 3009–3015.  Web of Science CrossRef Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, R.-X., Zhang, X., Huang, B.-L., Yao, J.-S., Meng, X.-L. & Yu, X.-Q. (2011). Chin. J. Struct. Chem. 30, 1609–1613.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds