organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Fluoro­benz­yl­oxy)-1,3,5-tri­methyl-2,6-di­phenyl­piperidin-4-imine

aCentre for Nanotechnology, Department of Chemistry, Kalasalingam University, Krishnankoil 626 126, Tamilnadu, India, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department and Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 25 June 2012; accepted 27 June 2012; online 4 July 2012)

In the title compound, C27H29FN2O, the piperidine ring has a twisted boat conformation and all ring substituents occupy equatorial positions. The dihedral angle formed between the phenyl rings is 66.71 (12)°, and the phenyl rings form dihedral angles of 46.60 (13) and 43.75 (13)° with the fluoro­benzene ring, which occupies a position coplanar to the meth­oxy(methyl­idene)amine residue [N—O—C—C torsion angle = −179.5 (2)°]. In the crystal, a complex network of C—H⋯π inter­actions connects the mol­ecules into a three-dimensional architecture.

Related literature

For the biological activity of mol­ecules having a 2,6-diaryl­piperidine core, see: Ramachandran et al. (2011[Ramachandran, R., Rani, M., Senthan, S., Jeong, Y.-T. & Kabilan, S. (2011). Eur. J. Med. Chem. 46, 1926-1934.]); Ramalingan et al. (2004[Ramalingan, C., Balasubramanian, S., Kabilan, S. & Vasudevan, M. (2004). Eur. J. Med. Chem. 39, 527-533.]). For the structures of related chloro and bromo derivatives, see: Ramalingan et al. (2012a[Ramalingan, C., Ng, S. W. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, o2267.],b[Ramalingan, C., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o2268.]). For the synthesis, see: Ramalingan et al. (2006[Ramalingan, C., Park, Y.-T. & Kabilan, S. (2006). Eur. J. Med. Chem. 41, 683-696.]).

[Scheme 1]

Experimental

Crystal data
  • C27H29FN2O

  • Mr = 416.52

  • Orthorhombic, P n a 21

  • a = 7.4004 (3) Å

  • b = 22.4857 (9) Å

  • c = 13.4465 (5) Å

  • V = 2237.54 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.930, Tmax = 1.000

  • 14812 measured reflections

  • 2693 independent reflections

  • 2311 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.101

  • S = 1.03

  • 2693 reflections

  • 280 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1–Cg3 are the centroids of the C1–C6, C16–C21 and C22–C27 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7ACg1i 0.99 2.96 3.721 (3) 135
C13—H13ACg2ii 0.98 2.91 3.577 (3) 127
C18—H18⋯Cg3iii 0.95 2.90 3.700 (3) 143
C21—H21⋯Cg2iv 0.95 2.51 3.446 (3) 167
C25—H25⋯Cg3v 0.95 2.74 3.654 (3) 160
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) x+1, y, z; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (iv) [-x, -y+2, z+{\script{1\over 2}}]; (v) [-x-1, -y+2, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In a program aimed towards synthesizing efficient biological agents, the title compound, (I), was generated (Ramalingan et al., 2006) as molecules with a 2,6-diarylpiperidine core are known to exhibit potent biological activities (Ramachandran et al., 2011; Ramalingan et al., 2004). Herein, the crystal and molecular structure of the title compound is described.

In the title molecule (Fig. 1), the piperidine ring adopts a twist-boat conformation and all ring-substituents occupy equatorial positions. In the chloro (Ramalingan et al., 2012b) and bromo (Ramalingan et al., 2012b) analogues of the title compound, which lack a C-bound methyl substituent and where the piperidine ring adopts a chair conformation, all C-bound substituents are found in equatorial positions and the N-bound methyl group is in a bisectional position (Ramalingan et al., 2012a, 2012b). The dihedral angle formed between the C15–C20 and C21–C26 benzene rings in the title compound is 66.71 (12)°, and each forms a dihedral angle of 46.60 (13) and 43.75 (13)°, respectively, with the fluorobenzene ring, which occupies a position co-planar to the methoxy(methylidene)amine residue, as seen in the N1—O1—C7—C6 torsion angle of -179.5 (2)°. In the aforementioned chloro and bromo derivatives, orthogonal and co-planar orientations were observed in this region of the respective molecule, respectively. The conformation about the imine C8N1 bond [1.278 (3) Å] is E.

A complex network of C—H···π interactions connects the molecules into a three-dimensional architecture (Table 1 and Fig. 2).

Related literature top

For the biological activity of molecules having a 2,6-diarylpiperidine core, see: Ramachandran et al. (2011); Ramalingan et al. (2004). For the structures of related chloro and bromo derivatives, see: Ramalingan et al. (2012a,b). For the synthesis, see: Ramalingan et al. (2006).

Experimental top

For full details of the synthesis, refer to Ramalingan et al. (2006). Re-crystallization was performed by slow evaporation of an ethanolic solution of (I) which afforded colourless crystals. M.pt: 378–379 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–1.00 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. In the absence of significant anomalous scattering effects, 2345 Friedel pairs were averaged in the final refinement.

Structure description top

In a program aimed towards synthesizing efficient biological agents, the title compound, (I), was generated (Ramalingan et al., 2006) as molecules with a 2,6-diarylpiperidine core are known to exhibit potent biological activities (Ramachandran et al., 2011; Ramalingan et al., 2004). Herein, the crystal and molecular structure of the title compound is described.

In the title molecule (Fig. 1), the piperidine ring adopts a twist-boat conformation and all ring-substituents occupy equatorial positions. In the chloro (Ramalingan et al., 2012b) and bromo (Ramalingan et al., 2012b) analogues of the title compound, which lack a C-bound methyl substituent and where the piperidine ring adopts a chair conformation, all C-bound substituents are found in equatorial positions and the N-bound methyl group is in a bisectional position (Ramalingan et al., 2012a, 2012b). The dihedral angle formed between the C15–C20 and C21–C26 benzene rings in the title compound is 66.71 (12)°, and each forms a dihedral angle of 46.60 (13) and 43.75 (13)°, respectively, with the fluorobenzene ring, which occupies a position co-planar to the methoxy(methylidene)amine residue, as seen in the N1—O1—C7—C6 torsion angle of -179.5 (2)°. In the aforementioned chloro and bromo derivatives, orthogonal and co-planar orientations were observed in this region of the respective molecule, respectively. The conformation about the imine C8N1 bond [1.278 (3) Å] is E.

A complex network of C—H···π interactions connects the molecules into a three-dimensional architecture (Table 1 and Fig. 2).

For the biological activity of molecules having a 2,6-diarylpiperidine core, see: Ramachandran et al. (2011); Ramalingan et al. (2004). For the structures of related chloro and bromo derivatives, see: Ramalingan et al. (2012a,b). For the synthesis, see: Ramalingan et al. (2006).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the unit-cell contents for the title compound, the C—H···π interactions are shown as purple dashed lines.
N-(2-Fluorobenzyloxy)-1,3,5-trimethyl-2,6-diphenylpiperidin-4-imine top
Crystal data top
C27H29FN2OF(000) = 888
Mr = 416.52Dx = 1.236 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4254 reflections
a = 7.4004 (3) Åθ = 2.4–27.5°
b = 22.4857 (9) ŵ = 0.08 mm1
c = 13.4465 (5) ÅT = 100 K
V = 2237.54 (15) Å3Prism, colourless
Z = 40.30 × 0.20 × 0.15 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2693 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2311 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.058
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.9°
ω scanh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 2129
Tmin = 0.930, Tmax = 1.000l = 1716
14812 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.573P]
where P = (Fo2 + 2Fc2)/3
2693 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C27H29FN2OV = 2237.54 (15) Å3
Mr = 416.52Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 7.4004 (3) ŵ = 0.08 mm1
b = 22.4857 (9) ÅT = 100 K
c = 13.4465 (5) Å0.30 × 0.20 × 0.15 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2693 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2311 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 1.000Rint = 0.058
14812 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.101H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
2693 reflectionsΔρmin = 0.23 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.1682 (3)0.76313 (8)0.25008 (12)0.0369 (5)
O10.1493 (2)0.83790 (8)0.03234 (14)0.0210 (4)
N10.1480 (3)0.90124 (9)0.03729 (17)0.0177 (5)
N20.1331 (3)0.95190 (9)0.25393 (16)0.0142 (4)
C10.1633 (4)0.72749 (12)0.1681 (2)0.0222 (6)
C20.1639 (4)0.66675 (13)0.1813 (2)0.0282 (6)
H20.16810.64990.24610.034*
C30.1585 (4)0.63103 (13)0.0983 (2)0.0295 (7)
H30.15830.58900.10540.035*
C40.1533 (4)0.65620 (14)0.0041 (2)0.0329 (7)
H40.14980.63150.05310.040*
C50.1534 (4)0.71756 (12)0.0062 (2)0.0259 (6)
H50.15030.73450.07090.031*
C60.1578 (4)0.75462 (12)0.0761 (2)0.0191 (5)
C70.1582 (4)0.82144 (11)0.06990 (19)0.0209 (6)
H7A0.26990.83750.10030.025*
H7B0.05310.83780.10630.025*
C80.1264 (3)0.91809 (11)0.12724 (19)0.0154 (5)
C90.1013 (3)0.87766 (11)0.21545 (18)0.0156 (5)
H90.02460.84350.19330.019*
C100.0016 (3)0.90997 (10)0.29954 (19)0.0153 (5)
H100.08680.93320.34020.018*
C110.0404 (3)1.00355 (11)0.20744 (18)0.0147 (5)
H110.00101.03080.26160.018*
C120.1286 (3)0.98411 (11)0.14558 (18)0.0149 (5)
H120.12261.00460.07960.018*
C130.3042 (3)1.00342 (12)0.1971 (2)0.0207 (6)
H13A0.40800.99080.15710.031*
H13B0.31120.98500.26310.031*
H13C0.30551.04680.20420.031*
C140.2820 (4)0.85183 (12)0.2516 (2)0.0227 (6)
H14A0.34200.83130.19650.034*
H14B0.25960.82360.30580.034*
H14C0.35940.88410.27560.034*
C150.2592 (4)0.97521 (12)0.3285 (2)0.0212 (5)
H15A0.34371.00280.29660.032*
H15B0.19150.99620.38040.032*
H15C0.32670.94220.35830.032*
C160.0951 (3)0.86507 (11)0.36609 (19)0.0146 (5)
C170.2307 (3)0.82735 (11)0.3303 (2)0.0173 (5)
H170.26650.82970.26260.021*
C180.3132 (4)0.78652 (11)0.3928 (2)0.0200 (6)
H180.40600.76140.36780.024*
C190.2608 (4)0.78218 (12)0.4915 (2)0.0222 (6)
H190.31620.75370.53380.027*
C200.1280 (3)0.81934 (11)0.5284 (2)0.0202 (6)
H200.09240.81670.59610.024*
C210.0465 (3)0.86073 (11)0.46574 (19)0.0169 (5)
H210.04390.88650.49150.020*
C220.1760 (3)1.03673 (11)0.14343 (18)0.0149 (5)
C230.2317 (4)1.09396 (11)0.16686 (19)0.0178 (5)
H230.18371.11330.22390.021*
C240.3578 (4)1.12344 (12)0.1073 (2)0.0197 (6)
H240.39471.16270.12390.024*
C250.4290 (4)1.09576 (11)0.0244 (2)0.0210 (6)
H250.51521.11570.01600.025*
C260.3732 (3)1.03838 (12)0.0005 (2)0.0193 (5)
H260.42191.01910.05640.023*
C270.2472 (3)1.00917 (11)0.05908 (18)0.0163 (5)
H270.20900.97020.04170.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0700 (14)0.0239 (9)0.0167 (8)0.0023 (9)0.0004 (8)0.0001 (7)
O10.0322 (10)0.0142 (9)0.0167 (9)0.0021 (7)0.0041 (8)0.0017 (8)
N10.0206 (11)0.0131 (10)0.0193 (11)0.0022 (8)0.0011 (9)0.0004 (9)
N20.0139 (10)0.0147 (10)0.0140 (10)0.0006 (8)0.0016 (8)0.0014 (8)
C10.0282 (14)0.0208 (14)0.0178 (13)0.0010 (11)0.0016 (12)0.0011 (11)
C20.0357 (16)0.0258 (15)0.0232 (15)0.0015 (12)0.0042 (13)0.0069 (12)
C30.0397 (18)0.0186 (14)0.0301 (16)0.0014 (12)0.0004 (14)0.0046 (12)
C40.0461 (18)0.0248 (16)0.0279 (16)0.0032 (14)0.0007 (14)0.0069 (13)
C50.0372 (17)0.0217 (14)0.0189 (14)0.0021 (12)0.0022 (12)0.0044 (11)
C60.0182 (13)0.0200 (13)0.0192 (12)0.0039 (10)0.0001 (10)0.0017 (11)
C70.0320 (15)0.0170 (13)0.0137 (12)0.0016 (11)0.0044 (11)0.0012 (11)
C80.0104 (11)0.0172 (13)0.0186 (12)0.0018 (9)0.0002 (10)0.0008 (10)
C90.0159 (12)0.0149 (12)0.0160 (12)0.0006 (9)0.0029 (10)0.0008 (10)
C100.0146 (12)0.0159 (12)0.0152 (11)0.0000 (9)0.0006 (9)0.0005 (10)
C110.0169 (12)0.0136 (12)0.0136 (11)0.0004 (9)0.0008 (10)0.0014 (10)
C120.0166 (12)0.0135 (12)0.0146 (12)0.0008 (10)0.0004 (10)0.0026 (10)
C130.0172 (12)0.0217 (14)0.0233 (14)0.0043 (10)0.0018 (12)0.0005 (12)
C140.0210 (13)0.0249 (14)0.0220 (13)0.0073 (11)0.0010 (11)0.0037 (12)
C150.0219 (13)0.0211 (13)0.0206 (13)0.0044 (11)0.0074 (11)0.0033 (11)
C160.0146 (12)0.0132 (12)0.0161 (12)0.0022 (9)0.0025 (10)0.0009 (10)
C170.0186 (12)0.0172 (12)0.0161 (11)0.0014 (10)0.0001 (10)0.0010 (10)
C180.0153 (12)0.0168 (13)0.0278 (14)0.0022 (10)0.0014 (11)0.0007 (11)
C190.0219 (14)0.0174 (13)0.0271 (15)0.0019 (11)0.0072 (12)0.0063 (11)
C200.0220 (13)0.0225 (13)0.0162 (12)0.0050 (10)0.0017 (11)0.0014 (11)
C210.0163 (12)0.0170 (13)0.0173 (12)0.0003 (10)0.0001 (10)0.0001 (10)
C220.0160 (12)0.0153 (12)0.0135 (12)0.0015 (9)0.0050 (10)0.0017 (10)
C230.0206 (13)0.0168 (13)0.0160 (12)0.0027 (10)0.0029 (10)0.0004 (10)
C240.0234 (14)0.0135 (13)0.0223 (14)0.0037 (10)0.0064 (11)0.0029 (11)
C250.0180 (13)0.0249 (14)0.0200 (13)0.0048 (11)0.0025 (11)0.0056 (11)
C260.0189 (13)0.0228 (13)0.0162 (12)0.0001 (10)0.0035 (11)0.0006 (11)
C270.0177 (12)0.0148 (12)0.0164 (12)0.0020 (10)0.0013 (10)0.0011 (10)
Geometric parameters (Å, º) top
F1—C11.363 (3)C13—H13A0.9800
O1—C71.425 (3)C13—H13B0.9800
O1—N11.426 (3)C13—H13C0.9800
N1—C81.278 (3)C14—H14A0.9800
N2—C151.467 (3)C14—H14B0.9800
N2—C111.487 (3)C14—H14C0.9800
N2—C101.487 (3)C15—H15A0.9800
C1—C21.377 (4)C15—H15B0.9800
C1—C61.381 (4)C15—H15C0.9800
C2—C31.376 (4)C16—C211.391 (3)
C2—H20.9500C16—C171.399 (4)
C3—C41.388 (4)C17—C181.386 (4)
C3—H30.9500C17—H170.9500
C4—C51.387 (4)C18—C191.387 (4)
C4—H40.9500C18—H180.9500
C5—C61.386 (4)C19—C201.382 (4)
C5—H50.9500C19—H190.9500
C6—C71.505 (4)C20—C211.392 (4)
C7—H7A0.9900C20—H200.9500
C7—H7B0.9900C21—H210.9500
C8—C91.506 (4)C22—C231.388 (3)
C8—C121.505 (3)C22—C271.396 (4)
C9—C141.536 (4)C23—C241.397 (4)
C9—C101.545 (3)C23—H230.9500
C9—H91.0000C24—C251.381 (4)
C10—C161.516 (3)C24—H240.9500
C10—H101.0000C25—C261.392 (4)
C11—C221.518 (3)C25—H250.9500
C11—C121.564 (3)C26—C271.386 (4)
C11—H111.0000C26—H260.9500
C12—C131.536 (3)C27—H270.9500
C12—H121.0000
C7—O1—N1107.75 (18)C11—C12—H12107.9
C8—N1—O1110.0 (2)C12—C13—H13A109.5
C15—N2—C11107.57 (18)C12—C13—H13B109.5
C15—N2—C10111.1 (2)H13A—C13—H13B109.5
C11—N2—C10111.54 (18)C12—C13—H13C109.5
F1—C1—C2118.6 (2)H13A—C13—H13C109.5
F1—C1—C6117.8 (2)H13B—C13—H13C109.5
C2—C1—C6123.6 (3)C9—C14—H14A109.5
C3—C2—C1118.3 (3)C9—C14—H14B109.5
C3—C2—H2120.9H14A—C14—H14B109.5
C1—C2—H2120.9C9—C14—H14C109.5
C2—C3—C4120.2 (3)H14A—C14—H14C109.5
C2—C3—H3119.9H14B—C14—H14C109.5
C4—C3—H3119.9N2—C15—H15A109.5
C5—C4—C3119.8 (3)N2—C15—H15B109.5
C5—C4—H4120.1H15A—C15—H15B109.5
C3—C4—H4120.1N2—C15—H15C109.5
C6—C5—C4121.2 (3)H15A—C15—H15C109.5
C6—C5—H5119.4H15B—C15—H15C109.5
C4—C5—H5119.4C21—C16—C17118.3 (2)
C1—C6—C5116.8 (2)C21—C16—C10119.8 (2)
C1—C6—C7119.4 (2)C17—C16—C10121.9 (2)
C5—C6—C7123.8 (2)C18—C17—C16120.6 (2)
O1—C7—C6108.2 (2)C18—C17—H17119.7
O1—C7—H7A110.1C16—C17—H17119.7
C6—C7—H7A110.1C19—C18—C17120.2 (3)
O1—C7—H7B110.1C19—C18—H18119.9
C6—C7—H7B110.1C17—C18—H18119.9
H7A—C7—H7B108.4C20—C19—C18120.0 (2)
N1—C8—C9125.6 (2)C20—C19—H19120.0
N1—C8—C12116.5 (2)C18—C19—H19120.0
C9—C8—C12117.9 (2)C19—C20—C21119.7 (3)
C8—C9—C14111.7 (2)C19—C20—H20120.2
C8—C9—C10110.7 (2)C21—C20—H20120.2
C14—C9—C10112.0 (2)C16—C21—C20121.2 (2)
C8—C9—H9107.4C16—C21—H21119.4
C14—C9—H9107.4C20—C21—H21119.4
C10—C9—H9107.4C23—C22—C27119.0 (2)
N2—C10—C16111.5 (2)C23—C22—C11121.6 (2)
N2—C10—C9108.59 (19)C27—C22—C11119.5 (2)
C16—C10—C9110.12 (19)C22—C23—C24120.6 (2)
N2—C10—H10108.8C22—C23—H23119.7
C16—C10—H10108.8C24—C23—H23119.7
C9—C10—H10108.8C25—C24—C23120.2 (2)
N2—C11—C22108.50 (19)C25—C24—H24119.9
N2—C11—C12111.97 (18)C23—C24—H24119.9
C22—C11—C12111.37 (19)C24—C25—C26119.4 (2)
N2—C11—H11108.3C24—C25—H25120.3
C22—C11—H11108.3C26—C25—H25120.3
C12—C11—H11108.3C27—C26—C25120.5 (2)
C8—C12—C13111.2 (2)C27—C26—H26119.7
C8—C12—C11110.75 (19)C25—C26—H26119.7
C13—C12—C11110.9 (2)C26—C27—C22120.4 (2)
C8—C12—H12107.9C26—C27—H27119.8
C13—C12—H12107.9C22—C27—H27119.8
C7—O1—N1—C8175.2 (2)N1—C8—C12—C13107.0 (3)
F1—C1—C2—C3179.8 (3)C9—C8—C12—C1372.4 (3)
C6—C1—C2—C30.2 (4)N1—C8—C12—C11129.2 (2)
C1—C2—C3—C40.3 (4)C9—C8—C12—C1151.5 (3)
C2—C3—C4—C50.1 (5)N2—C11—C12—C814.6 (3)
C3—C4—C5—C60.2 (5)C22—C11—C12—C8107.1 (2)
F1—C1—C6—C5179.8 (3)N2—C11—C12—C13109.4 (2)
C2—C1—C6—C50.2 (4)C22—C11—C12—C13128.9 (2)
F1—C1—C6—C70.2 (4)N2—C10—C16—C21122.1 (2)
C2—C1—C6—C7179.8 (3)C9—C10—C16—C21117.3 (2)
C4—C5—C6—C10.4 (4)N2—C10—C16—C1757.9 (3)
C4—C5—C6—C7180.0 (3)C9—C10—C16—C1762.8 (3)
N1—O1—C7—C6179.5 (2)C21—C16—C17—C180.4 (4)
C1—C6—C7—O1179.1 (2)C10—C16—C17—C18179.7 (2)
C5—C6—C7—O11.3 (4)C16—C17—C18—C190.7 (4)
O1—N1—C8—C91.4 (3)C17—C18—C19—C201.1 (4)
O1—N1—C8—C12177.92 (18)C18—C19—C20—C210.4 (4)
N1—C8—C9—C1479.6 (3)C17—C16—C21—C201.0 (4)
C12—C8—C9—C1499.7 (3)C10—C16—C21—C20179.0 (2)
N1—C8—C9—C10154.8 (2)C19—C20—C21—C160.6 (4)
C12—C8—C9—C1025.9 (3)N2—C11—C22—C23113.8 (2)
C15—N2—C10—C1647.3 (3)C12—C11—C22—C23122.5 (2)
C11—N2—C10—C16167.3 (2)N2—C11—C22—C2766.0 (3)
C15—N2—C10—C9168.8 (2)C12—C11—C22—C2757.7 (3)
C11—N2—C10—C971.1 (2)C27—C22—C23—C240.3 (4)
C8—C9—C10—N233.5 (3)C11—C22—C23—C24179.5 (2)
C14—C9—C10—N2158.9 (2)C22—C23—C24—C250.2 (4)
C8—C9—C10—C16155.9 (2)C23—C24—C25—C260.3 (4)
C14—C9—C10—C1678.7 (3)C24—C25—C26—C270.1 (4)
C15—N2—C11—C2270.3 (2)C25—C26—C27—C220.7 (4)
C10—N2—C11—C22167.55 (19)C23—C22—C27—C260.8 (4)
C15—N2—C11—C12166.4 (2)C11—C22—C27—C26179.0 (2)
C10—N2—C11—C1244.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1–Cg3 are the centroids of the C1–C6, C16–C21 and C22–C27 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cg1i0.992.963.721 (3)135
C13—H13A···Cg2ii0.982.913.577 (3)127
C18—H18···Cg3iii0.952.903.700 (3)143
C21—H21···Cg2iv0.952.513.446 (3)167
C25—H25···Cg3v0.952.743.654 (3)160
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1, y, z; (iii) x1/2, y+3/2, z; (iv) x, y+2, z+1/2; (v) x1, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC27H29FN2O
Mr416.52
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)7.4004 (3), 22.4857 (9), 13.4465 (5)
V3)2237.54 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.930, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14812, 2693, 2311
Rint0.058
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.101, 1.03
No. of reflections2693
No. of parameters280
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.23

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1–Cg3 are the centroids of the C1–C6, C16–C21 and C22–C27 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cg1i0.992.963.721 (3)135
C13—H13A···Cg2ii0.982.913.577 (3)127
C18—H18···Cg3iii0.952.903.700 (3)143
C21—H21···Cg2iv0.952.513.446 (3)167
C25—H25···Cg3v0.952.743.654 (3)160
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1, y, z; (iii) x1/2, y+3/2, z; (iv) x, y+2, z+1/2; (v) x1, y+2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: ramalinganc@gmail.com.

Acknowledgements

The authors are grateful for facilities provided by the Chairman/Management of Kalasalingam University, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRamachandran, R., Rani, M., Senthan, S., Jeong, Y.-T. & Kabilan, S. (2011). Eur. J. Med. Chem. 46, 1926–1934.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRamalingan, C., Balasubramanian, S., Kabilan, S. & Vasudevan, M. (2004). Eur. J. Med. Chem. 39, 527–533.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRamalingan, C., Ng, S. W. & Tiekink, E. R. T. (2012a). Acta Cryst. E68, o2267.  CSD CrossRef IUCr Journals Google Scholar
First citationRamalingan, C., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o2268.  CSD CrossRef IUCr Journals Google Scholar
First citationRamalingan, C., Park, Y.-T. & Kabilan, S. (2006). Eur. J. Med. Chem. 41, 683–696.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds