metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido{2-[(4-fluoro­phen­yl)imino­meth­yl]pyridine-κ2N,N′}zinc

aDepartment of Chemistry, Islamic Azad University, Karaj, Iran
*Correspondence e-mail: Dehganpour_farasha@yahoo.com

(Received 30 June 2012; accepted 8 July 2012; online 25 July 2012)

In the title complex, [ZnBr2(C12H9FN2)], the ZnII atom has a distorted tetra­hedral Br2N2 coordination sphere. The organic ligand is bidentate, coordinating the ZnII atom via two imine N atoms. The benzene and pyridine rings are oriented at a dihedral angle of 10.49 (1)°. In the crystal, weak C—H⋯F and C—H⋯Br hydrogen bonds are observed.

Related literature

For background information, see: Dehghanpour et al. (2009[Dehghanpour, S., Khalaj, M. & Mahmoudi, A. (2009). Polyhedron, 28, 1205-1210.]). For related structures, see: Dehghanpour et al. (2007[Dehghanpour, S., Mahmoudi, A., Khalaj, M. & Salmanpour, S. (2007). Acta Cryst. E63, m2840.]); Salehzadeh et al. (2011[Salehzadeh, S., Khalaj, M., Dehghanpour, S. & Tarmoradi, I. (2011). Acta Cryst. E67, m1556.]); Khalaj et al. (2009[Khalaj, M., Dehghanpour, S., Mahmoudi, A. & Seyedidarzam, S. (2009). Acta Cryst. E65, m890.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnBr2(C12H9FN2)]

  • Mr = 425.40

  • Monoclinic, P 21 /c

  • a = 7.7351 (10) Å

  • b = 9.5372 (13) Å

  • c = 18.501 (2) Å

  • β = 96.052 (3)°

  • V = 1357.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.69 mm−1

  • T = 100 K

  • 0.17 × 0.06 × 0.04 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconcin, USA.]) Tmin = 0.435, Tmax = 0.734

  • 18332 measured reflections

  • 2956 independent reflections

  • 2469 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.072

  • S = 1.00

  • 2956 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 2.44 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯Br1 0.93 3.04 3.866 (4) 148
C2—H2A⋯F1i 0.93 2.50 3.081 (4) 121
C5—H5A⋯Br1ii 0.93 3.01 3.767 (4) 140
C6—H6A⋯Br1iii 0.93 3.05 3.756 (4) 134
C3—H3A⋯Br2iv 0.93 2.90 3.810 (4) 166
Symmetry codes: (i) [x, -y+{\script{5\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) -x, -y+2, -z; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconcin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconcin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In continuation of our research on the synthesis and characterization of metal complexes containing bidentate Schiff base ligands (Dehghanpour et al. (2009)), we now report the synthesis and crystal structure of a zinc complex of the Schiff base, (4-fluorophenyl)pyridin-2-ylmethyleneamine.

The metal centre in the title complex (Fig. 1) has a tetrahedral coordination which shows signficant distortion, mainly due to the presence of the five-membered chelate ring. The endocyclic N1—Zn1—N2 angle (81.13 (12)°) is much narrower than the ideal tetrahedral angle of 109.5°, whereas the opposite Br1—Zn1—Br2 angle (116.72 (2)°) is much wider than the ideal tetrahedral angle. The Zn—Br and Zn—N bond distances compare well with the values found in other tetrahedral Schiff base adducts of zinc bromide (Salehzadeh et al., 2011; Dehghanpour et al., 2007; Khalaj et al., 2009). The interplanar angles between the benzene and pyridine rings in the title structure is 10.49 (1)°. In the crystal, weak C—H···F and C—H···Br hydrogen bonds are also observed (Tab. 1 & Fig. 2).

Related literature top

For background information, see: Dehghanpour et al. (2009). For related structures, see: Dehghanpour et al. (2007); Salehzadeh et al. (2011); Khalaj et al. (2009).

Experimental top

The title complex was prepared by the reaction of ZnBr2 (22.5 mg, 0.1 mmol) and (4-fluorophenyl)pyridin-2-ylmethyleneamine (20 mg, 0.1 mmol) in 10 ml of methanol at room temperature. The solution was allowed to stand at room temperature and crystals of the title compound suitable for X-ray analysis formed within a few days.

Refinement top

Though the H-atoms were observable in the difference electron density maps they were included at geometrically idealized positions with C—H distances = 0.93 Å and Uiso = 1.2 times Ueq of the atoms to which they were bonded. There is a high positive residual density of 2.44 e Å-3 near the Zn1 center due to considerable absorption effects which could not be completely corrected.

Structure description top

In continuation of our research on the synthesis and characterization of metal complexes containing bidentate Schiff base ligands (Dehghanpour et al. (2009)), we now report the synthesis and crystal structure of a zinc complex of the Schiff base, (4-fluorophenyl)pyridin-2-ylmethyleneamine.

The metal centre in the title complex (Fig. 1) has a tetrahedral coordination which shows signficant distortion, mainly due to the presence of the five-membered chelate ring. The endocyclic N1—Zn1—N2 angle (81.13 (12)°) is much narrower than the ideal tetrahedral angle of 109.5°, whereas the opposite Br1—Zn1—Br2 angle (116.72 (2)°) is much wider than the ideal tetrahedral angle. The Zn—Br and Zn—N bond distances compare well with the values found in other tetrahedral Schiff base adducts of zinc bromide (Salehzadeh et al., 2011; Dehghanpour et al., 2007; Khalaj et al., 2009). The interplanar angles between the benzene and pyridine rings in the title structure is 10.49 (1)°. In the crystal, weak C—H···F and C—H···Br hydrogen bonds are also observed (Tab. 1 & Fig. 2).

For background information, see: Dehghanpour et al. (2009). For related structures, see: Dehghanpour et al. (2007); Salehzadeh et al. (2011); Khalaj et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···F and C—H···Br hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.
Dibromido{2-[(4-fluorophenyl)iminomethyl]pyridine-κ2N,N'}zinc top
Crystal data top
[ZnBr2(C12H9FN2)]F(000) = 816
Mr = 425.40Dx = 2.082 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3858 reflections
a = 7.7351 (10) Åθ = 2.2–29.7°
b = 9.5372 (13) ŵ = 7.69 mm1
c = 18.501 (2) ÅT = 100 K
β = 96.052 (3)°Prism, colourless
V = 1357.2 (3) Å30.17 × 0.06 × 0.04 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
2956 independent reflections
Radiation source: fine-focus sealed tube2469 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
h = 99
Tmin = 0.435, Tmax = 0.734k = 1212
18332 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0358P)2 + 2.3621P]
where P = (Fo2 + 2Fc2)/3
2956 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 2.44 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
[ZnBr2(C12H9FN2)]V = 1357.2 (3) Å3
Mr = 425.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7351 (10) ŵ = 7.69 mm1
b = 9.5372 (13) ÅT = 100 K
c = 18.501 (2) Å0.17 × 0.06 × 0.04 mm
β = 96.052 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
2956 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
2469 reflections with I > 2σ(I)
Tmin = 0.435, Tmax = 0.734Rint = 0.049
18332 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.00Δρmax = 2.44 e Å3
2956 reflectionsΔρmin = 0.77 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.00870 (4)0.67594 (4)0.09661 (2)0.01923 (10)
Br20.50834 (4)0.69666 (4)0.11656 (2)0.02040 (10)
Zn10.24082 (5)0.76510 (4)0.05390 (2)0.01606 (11)
N20.2404 (4)0.9803 (3)0.03443 (16)0.0159 (6)
C10.2874 (4)0.8917 (4)0.08143 (19)0.0166 (7)
F10.1273 (3)1.3856 (3)0.23727 (12)0.0320 (6)
C80.2592 (5)1.2286 (4)0.0745 (2)0.0193 (8)
H8A0.30691.25460.03240.023*
C90.2290 (5)1.3290 (4)0.1259 (2)0.0227 (8)
H9A0.25471.42290.11870.027*
C20.3253 (5)0.9156 (4)0.1518 (2)0.0223 (8)
H2A0.34111.00630.16830.027*
C100.1598 (5)1.2862 (4)0.1881 (2)0.0232 (8)
C60.2678 (4)1.0072 (4)0.03110 (19)0.0180 (7)
H6A0.27531.09960.04660.022*
C120.1525 (5)1.0492 (4)0.1500 (2)0.0205 (8)
H12A0.12900.95520.15820.025*
C40.3159 (5)0.6678 (4)0.1709 (2)0.0259 (9)
H4A0.32370.59000.20060.031*
C70.2183 (4)1.0901 (4)0.08600 (19)0.0160 (7)
C30.3393 (5)0.8013 (5)0.1973 (2)0.0264 (9)
H3A0.36420.81440.24500.032*
C50.2804 (5)0.6514 (4)0.0995 (2)0.0232 (8)
H5A0.26620.56150.08170.028*
C110.1222 (5)1.1492 (4)0.2015 (2)0.0240 (8)
H11A0.07711.12370.24430.029*
N10.2661 (4)0.7613 (3)0.05549 (16)0.0176 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01582 (18)0.01869 (19)0.0241 (2)0.00193 (13)0.00645 (13)0.00462 (15)
Br20.01554 (18)0.0241 (2)0.0222 (2)0.00173 (14)0.00489 (13)0.00680 (15)
Zn10.0172 (2)0.0141 (2)0.0177 (2)0.00006 (16)0.00594 (15)0.00254 (16)
N20.0161 (15)0.0135 (15)0.0183 (15)0.0001 (12)0.0029 (11)0.0010 (12)
C10.0130 (16)0.0193 (19)0.0175 (17)0.0004 (14)0.0011 (13)0.0007 (15)
F10.0414 (14)0.0251 (13)0.0298 (13)0.0036 (11)0.0046 (10)0.0122 (10)
C80.0170 (17)0.0229 (19)0.0182 (18)0.0014 (15)0.0020 (14)0.0022 (15)
C90.026 (2)0.0112 (18)0.030 (2)0.0010 (14)0.0023 (16)0.0023 (16)
C20.0223 (19)0.022 (2)0.023 (2)0.0031 (15)0.0046 (15)0.0059 (16)
C100.0210 (19)0.025 (2)0.0231 (19)0.0029 (16)0.0008 (15)0.0089 (17)
C60.0142 (17)0.0202 (19)0.0198 (18)0.0021 (14)0.0026 (13)0.0039 (15)
C120.0218 (19)0.0165 (18)0.0238 (19)0.0012 (15)0.0058 (15)0.0024 (15)
C40.028 (2)0.027 (2)0.023 (2)0.0038 (17)0.0005 (16)0.0125 (17)
C70.0113 (16)0.0175 (18)0.0192 (18)0.0041 (13)0.0016 (13)0.0037 (14)
C30.028 (2)0.036 (2)0.0157 (18)0.0081 (18)0.0056 (15)0.0008 (17)
C50.0207 (19)0.020 (2)0.030 (2)0.0019 (15)0.0052 (16)0.0001 (16)
C110.026 (2)0.028 (2)0.0185 (19)0.0001 (16)0.0077 (15)0.0019 (16)
N10.0155 (15)0.0181 (16)0.0198 (15)0.0003 (12)0.0045 (12)0.0007 (13)
Geometric parameters (Å, º) top
Br1—Zn12.3225 (6)C2—C31.389 (6)
Br2—Zn12.3550 (6)C2—H2A0.9300
Zn1—N12.054 (3)C10—C111.366 (6)
Zn1—N22.084 (3)C6—H6A0.9300
N2—C61.279 (5)C12—C111.385 (5)
N2—C71.439 (4)C12—C71.393 (5)
C1—N11.350 (5)C12—H12A0.9300
C1—C21.383 (5)C4—C31.383 (6)
C1—C61.461 (5)C4—C51.385 (6)
F1—C101.356 (4)C4—H4A0.9300
C8—C71.380 (5)C3—H3A0.9300
C8—C91.386 (5)C5—N11.339 (5)
C8—H8A0.9300C5—H5A0.9300
C9—C101.381 (6)C11—H11A0.9300
C9—H9A0.9300
N1—Zn1—N281.13 (12)N2—C6—C1119.4 (3)
N1—Zn1—Br1119.84 (8)N2—C6—H6A120.3
N2—Zn1—Br1115.66 (8)C1—C6—H6A120.3
N1—Zn1—Br2108.07 (8)C11—C12—C7119.7 (4)
N2—Zn1—Br2110.09 (8)C11—C12—H12A120.1
Br1—Zn1—Br2116.72 (2)C7—C12—H12A120.1
C6—N2—C7121.7 (3)C3—C4—C5119.2 (4)
C6—N2—Zn1111.4 (3)C3—C4—H4A120.4
C7—N2—Zn1126.9 (2)C5—C4—H4A120.4
N1—C1—C2122.1 (3)C8—C7—C12120.6 (3)
N1—C1—C6116.3 (3)C8—C7—N2123.3 (3)
C2—C1—C6121.5 (3)C12—C7—N2116.1 (3)
C7—C8—C9119.8 (3)C4—C3—C2119.1 (4)
C7—C8—H8A120.1C4—C3—H3A120.5
C9—C8—H8A120.1C2—C3—H3A120.5
C10—C9—C8118.4 (4)N1—C5—C4121.9 (4)
C10—C9—H9A120.8N1—C5—H5A119.0
C8—C9—H9A120.8C4—C5—H5A119.0
C1—C2—C3118.7 (4)C10—C11—C12118.6 (4)
C1—C2—H2A120.7C10—C11—H11A120.7
C3—C2—H2A120.7C12—C11—H11A120.7
F1—C10—C11119.3 (4)C5—N1—C1118.9 (3)
F1—C10—C9117.9 (3)C5—N1—Zn1129.5 (3)
C11—C10—C9122.8 (4)C1—N1—Zn1111.2 (2)
N1—Zn1—N2—C64.7 (3)C6—N2—C7—C12166.6 (3)
Br1—Zn1—N2—C6123.7 (2)Zn1—N2—C7—C1215.4 (4)
Br2—Zn1—N2—C6101.4 (2)C5—C4—C3—C20.6 (6)
N1—Zn1—N2—C7177.1 (3)C1—C2—C3—C40.3 (6)
Br1—Zn1—N2—C758.2 (3)C3—C4—C5—N10.8 (6)
Br2—Zn1—N2—C776.8 (3)F1—C10—C11—C12178.6 (3)
C7—C8—C9—C100.7 (5)C9—C10—C11—C120.9 (6)
N1—C1—C2—C30.9 (5)C7—C12—C11—C100.7 (6)
C6—C1—C2—C3178.9 (3)C4—C5—N1—C10.2 (5)
C8—C9—C10—F1178.6 (3)C4—C5—N1—Zn1172.7 (3)
C8—C9—C10—C110.9 (6)C2—C1—N1—C50.7 (5)
C7—N2—C6—C1179.3 (3)C6—C1—N1—C5179.2 (3)
Zn1—N2—C6—C12.4 (4)C2—C1—N1—Zn1173.1 (3)
N1—C1—C6—N23.2 (5)C6—C1—N1—Zn17.0 (4)
C2—C1—C6—N2176.9 (3)N2—Zn1—N1—C5179.3 (3)
C9—C8—C7—C122.3 (5)Br1—Zn1—N1—C566.1 (3)
C9—C8—C7—N2178.0 (3)Br2—Zn1—N1—C571.0 (3)
C11—C12—C7—C82.3 (5)N2—Zn1—N1—C16.3 (2)
C11—C12—C7—N2178.0 (3)Br1—Zn1—N1—C1120.9 (2)
C6—N2—C7—C813.7 (5)Br2—Zn1—N1—C1102.0 (2)
Zn1—N2—C7—C8164.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···Br10.933.043.866 (4)148
C2—H2A···F1i0.932.503.081 (4)121
C5—H5A···Br1ii0.933.013.767 (4)140
C6—H6A···Br1iii0.933.053.756 (4)134
C3—H3A···Br2iv0.932.903.810 (4)166
Symmetry codes: (i) x, y+5/2, z1/2; (ii) x, y+1, z; (iii) x, y+2, z; (iv) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[ZnBr2(C12H9FN2)]
Mr425.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.7351 (10), 9.5372 (13), 18.501 (2)
β (°) 96.052 (3)
V3)1357.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)7.69
Crystal size (mm)0.17 × 0.06 × 0.04
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(APEX2; Bruker, 2005)
Tmin, Tmax0.435, 0.734
No. of measured, independent and
observed [I > 2σ(I)] reflections
18332, 2956, 2469
Rint0.049
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.072, 1.00
No. of reflections2956
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.44, 0.77

Computer programs: APEX2 (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···Br10.933.043.866 (4)148
C2—H2A···F1i0.932.503.081 (4)121
C5—H5A···Br1ii0.933.013.767 (4)140
C6—H6A···Br1iii0.933.053.756 (4)134
C3—H3A···Br2iv0.932.903.810 (4)166
Symmetry codes: (i) x, y+5/2, z1/2; (ii) x, y+1, z; (iii) x, y+2, z; (iv) x, y+3/2, z1/2.
 

Acknowledgements

The authors would like to acknowledge the Islamic Azad University Research Councils for partial support of this work.

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconcin, USA.  Google Scholar
First citationDehghanpour, S., Khalaj, M. & Mahmoudi, A. (2009). Polyhedron, 28, 1205–1210.  Web of Science CSD CrossRef CAS Google Scholar
First citationDehghanpour, S., Mahmoudi, A., Khalaj, M. & Salmanpour, S. (2007). Acta Cryst. E63, m2840.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalaj, M., Dehghanpour, S., Mahmoudi, A. & Seyedidarzam, S. (2009). Acta Cryst. E65, m890.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSalehzadeh, S., Khalaj, M., Dehghanpour, S. & Tarmoradi, I. (2011). Acta Cryst. E67, m1556.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds