organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 7′-(6-benz­yl­oxy-2,2-di­methyl­tetra­hydro­furo[3,2-d][1,3]dioxol-5-yl)-2-oxo-5′,6′,7′,7a'-tetra­hydro-1′H,2H-spiro­[ace­naphthyl­ene-1,5′-pyrrolo­[1,2-c][1,3]thia­zole]-6′-carboxyl­ate

aDepartment of Physics, Dr MGR Educational and Research Institute, Dr MGR University, Chennai 600 095, India, bDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and cDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 2 July 2012; accepted 16 July 2012; online 21 July 2012)

In the title compound, C34H35NO7S, the acenaphthyl­ene unit is essentially planar (r.m.s. deviation = 0.0335 Å). The pyrrolo­thia­zole ring system is folded about the bridging N—C bond; the thia­zolidine and pyrrolidine rings adopt S- and C-envelope conformations, respectively, with a `butterfly' angle between the mean planes of 51.38 (10)°. The dioxolane and tetra­hydro­furan rings adopt O- and a C-envelope conformations, respectively, with a `butterfly' angle between the mean planes of 57.12 (10)°. Two C atoms are each disordered over two positions with site-occupancy factors of 0.450 (7) and 0.550 (7). The crystal packing is stabilized by C—H⋯O inter­actions, generating an R22(14) graph-set ring motif.

Related literature

For the biological properties of spiro­heterocycles, see: Kilonda et al. (1995[Kilonda, A., Compernolle, F. & Hoornaert, G. J. (1995). J. Org. Chem. 60, 5820-5824.]); Ferguson et al. (2005[Ferguson, N. M., Cummings, D. A. T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iamsirithaworn, S. & Burke, D. S. (2005). Nature (London), 437, 209-214.]). For a related structure, see: Jagadeesan et al. (2012[Jagadeesan, G., Sethusankar, K., Prasanna, R. & Raghunathan, R. (2012). Acta Cryst. E68, o382-o383.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C34H35NO7S

  • Mr = 601.69

  • Monoclinic, P 21

  • a = 8.588 (5) Å

  • b = 20.446 (5) Å

  • c = 8.851 (5) Å

  • β = 93.282 (5)°

  • V = 1551.6 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Goöttingen, Germany.]) Tmin = 0.955, Tmax = 0.970

  • 13521 measured reflections

  • 5470 independent reflections

  • 4678 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.083

  • S = 1.03

  • 5470 reflections

  • 400 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2630 Friedel pairs

  • Flack parameter: 0.04 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O3i 0.93 2.51 3.375 (4) 155
C17—H17A⋯O7ii 0.97 2.44 3.309 (3) 148
C23—H23F⋯O4iii 0.96 2.57 3.497 (9) 163
C31—H31⋯O5iv 0.93 2.47 3.393 (4) 173
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z]; (ii) x+1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z]; (iv) x, y, z-1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The design and novel synthesis of glycospiroheterocycles are interesting because of the synthetic challenge they present and their biological profile against viruses, bacteria, and cancer cells (Ferguson et al., 2005). Pyrrolidines and pyrroles are common structural motifs in drugs and drug candidates owing to their ability to act as selective glycosidase inhibitors, which are used in the treatment of diabetes, cancer, malaria and viral infections, including AIDS (Kilonda et al., 1995).

In the title molecule (Fig. 1), the acenaphthylene moiety (C19/C24–C34) is essentially planar (rmsd = 0.0335 Å) with O3 deviating from the acenaphthylene moiety by 0.209 (3) Å. The pyrrolothiazole ring (C15–C20/N1/S1) system is folded about the bridging N1–C16 bond, as observed in another structurally similar compound (Jagadeesan et al., 2012). The thiazolidine ring (C16–C18/N1/S1) adopts an S1-envelope conformation with S1 deviating from the mean plane of the remaining ring atoms by 0.815 (3) Å while the pyrrolidine ring (C15/C16/C19/C20/N1) adopt adopts a C20-envelope conformation with C20 deviating from the mean plane of the remaining ring atoms by 0.538 (3) Å; the "butter-fly" angle between the mean planes C16-C18/N1 and C15/C16/C19/N1 being 51.38 (10) °. The dioxolane ring (C9–C11/O6/O7) adopts an O7-envelope conformation with the atom O7 deviating from the mean plane of the remaining ring atoms by 0.299 (4) Å. The tetrahydrofuran ring (O5/C8/C9/C11/C12) adopts a C12-envelope conformation with C12 deviating from the mean plane of the remaining ring atoms by 0.607 (3) Å; the "butter-fly" angle between the mean planes O5/C8/C9/C11 and O6/C9–C11 is 57.12 (10) °.

The crystal packing is stabilized by C—H···O intermolecular interactions; C5—H5···O3 and C23—H23F···O4 hydrogen bonds generate R22(14) graphset ring motif (Bernstein, et al., 1995) (Table 1 and Fig. 2).

Related literature top

For the biological properties of spiroheterocycles, see: Kilonda et al. (1995); Ferguson et al. (2005). For a related structure, see: Jagadeesan et al. (2012). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A mixture of α-D-xylo-hept-5-enofuranuronic acid, 5,6-dideoxy-1,2-O-(1-methylethylidene)-3-O- (phenylmethyl)-, ethyl ester (0.300 g, 0.86 mmol), acenaphthenequinone (0.156 g, 0.86 mmol) and 4-thiazolidinecarboxyli cacid (0.137 g, 1.0 mmol) was refluxed in toluene for about 5 h under Dean stark reaction condition to yield the title compound. After the completion of reaction as indicated by TLC, solvent was evaporated under reduced pressure. The crude product was purified by column chromatography using hexane: EtOAc (4:1) as eluent. The block shaped single crystals of the title compound suitable for X-ray diffraction were obtained from solution of hexane: EtOAc (4:1) by slow evaportion at room temperature.

Refinement top

An absolute structure was determined by the Flack method (Flack, 1983) using 2630 Friedel pairs of reflections which were not merged. The hydrogen atoms were placed in calculated positions with C–H = 0.93 - 0.97 Å refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5 Ueq(C) for methyl group and Uiso(H) = 1.2 Ueq(C) for other groups. The bond distances of the disordered components were restrained using standard similarity restraint SADI [SHELXL97, Sheldrick, 2008] with s.u. of 0.01 Å. The atomic displacement parameter of the major and minor components were made similar using the constraint EADP. The rigid bond restraint DELU is applied between the disordered atoms C22, C23 and C22', C23' with s.u. of 0.01.

Structure description top

The design and novel synthesis of glycospiroheterocycles are interesting because of the synthetic challenge they present and their biological profile against viruses, bacteria, and cancer cells (Ferguson et al., 2005). Pyrrolidines and pyrroles are common structural motifs in drugs and drug candidates owing to their ability to act as selective glycosidase inhibitors, which are used in the treatment of diabetes, cancer, malaria and viral infections, including AIDS (Kilonda et al., 1995).

In the title molecule (Fig. 1), the acenaphthylene moiety (C19/C24–C34) is essentially planar (rmsd = 0.0335 Å) with O3 deviating from the acenaphthylene moiety by 0.209 (3) Å. The pyrrolothiazole ring (C15–C20/N1/S1) system is folded about the bridging N1–C16 bond, as observed in another structurally similar compound (Jagadeesan et al., 2012). The thiazolidine ring (C16–C18/N1/S1) adopts an S1-envelope conformation with S1 deviating from the mean plane of the remaining ring atoms by 0.815 (3) Å while the pyrrolidine ring (C15/C16/C19/C20/N1) adopt adopts a C20-envelope conformation with C20 deviating from the mean plane of the remaining ring atoms by 0.538 (3) Å; the "butter-fly" angle between the mean planes C16-C18/N1 and C15/C16/C19/N1 being 51.38 (10) °. The dioxolane ring (C9–C11/O6/O7) adopts an O7-envelope conformation with the atom O7 deviating from the mean plane of the remaining ring atoms by 0.299 (4) Å. The tetrahydrofuran ring (O5/C8/C9/C11/C12) adopts a C12-envelope conformation with C12 deviating from the mean plane of the remaining ring atoms by 0.607 (3) Å; the "butter-fly" angle between the mean planes O5/C8/C9/C11 and O6/C9–C11 is 57.12 (10) °.

The crystal packing is stabilized by C—H···O intermolecular interactions; C5—H5···O3 and C23—H23F···O4 hydrogen bonds generate R22(14) graphset ring motif (Bernstein, et al., 1995) (Table 1 and Fig. 2).

For the biological properties of spiroheterocycles, see: Kilonda et al. (1995); Ferguson et al. (2005). For a related structure, see: Jagadeesan et al. (2012). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme, displacement ellipsoids are drawn at 30% probability level. H–atoms are present as small spheres of arbitary radius. The minor fractions of the disordered carbon atoms have been represented by broken bonds.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down c axis, showing the hydrogen bonds resulting in R22(14) graph-set ring motif. H–atoms not involved in hydrogen bonds have been excluded for clarity.
Ethyl 7'-(6-benzyloxy-2,2-dimethyltetrahydrofuro[3,2-d][1,3]dioxol- 5-yl)-2-oxo-5',6',7',7a'-tetrahydro-1'H,2H-spiro[acenaphthylene- 1,5'-pyrrolo[1,2-c][1,3]thiazole]-6'-carboxylate top
Crystal data top
C34H35NO7SF(000) = 636
Mr = 601.69Dx = 1.288 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5470 reflections
a = 8.588 (5) Åθ = 2.3–25.0°
b = 20.446 (5) ŵ = 0.15 mm1
c = 8.851 (5) ÅT = 293 K
β = 93.282 (5)°Block, colourless
V = 1551.6 (13) Å30.30 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5470 independent reflections
Radiation source: fine-focus sealed tube4678 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 910
Tmin = 0.955, Tmax = 0.970k = 2424
13521 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0365P)2 + 0.1903P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
5470 reflectionsΔρmax = 0.17 e Å3
400 parametersΔρmin = 0.16 e Å3
5 restraintsAbsolute structure: Flack (1983), 2630 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (7)
Crystal data top
C34H35NO7SV = 1551.6 (13) Å3
Mr = 601.69Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.588 (5) ŵ = 0.15 mm1
b = 20.446 (5) ÅT = 293 K
c = 8.851 (5) Å0.30 × 0.20 × 0.20 mm
β = 93.282 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5470 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4678 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.970Rint = 0.031
13521 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.083Δρmax = 0.17 e Å3
S = 1.03Δρmin = 0.16 e Å3
5470 reflectionsAbsolute structure: Flack (1983), 2630 Friedel pairs
400 parametersAbsolute structure parameter: 0.04 (7)
5 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6985 (4)1.0180 (2)0.1860 (4)0.0964 (12)
H10.74390.97910.15170.116*
C20.7881 (4)1.0639 (3)0.2530 (5)0.1233 (17)
H20.89461.05690.25920.148*
C30.7226 (6)1.1190 (2)0.3098 (5)0.1204 (15)
H30.78371.15030.35440.145*
C40.5673 (7)1.12883 (19)0.3019 (5)0.1210 (16)
H40.52131.16620.34420.145*
C50.4768 (4)1.08343 (17)0.2310 (4)0.0861 (10)
H50.37031.09060.22590.103*
C60.5424 (3)1.02855 (15)0.1686 (3)0.0598 (7)
C70.4478 (3)0.97918 (18)0.0920 (3)0.0767 (9)
H7A0.34420.99650.07880.092*
H7B0.43730.94010.15400.092*
C80.4389 (2)0.91510 (11)0.1311 (2)0.0385 (5)
H80.35680.89410.06670.046*
C90.3749 (2)0.94455 (12)0.2722 (2)0.0444 (5)
H90.33820.98960.25760.053*
C100.2888 (3)0.89133 (16)0.4821 (2)0.0579 (7)
C110.5109 (2)0.93842 (12)0.3919 (2)0.0448 (5)
H110.55120.98150.42270.054*
C120.5534 (2)0.86545 (11)0.2003 (2)0.0371 (5)
H120.49460.82870.23940.045*
C130.1895 (4)0.9367 (2)0.5694 (3)0.0944 (12)
H13A0.20720.92850.67580.142*
H13B0.08160.92950.54010.142*
H13C0.21650.98120.54810.142*
C140.2592 (5)0.8205 (2)0.5147 (5)0.1105 (13)
H14A0.33150.79400.46300.166*
H14B0.15460.80940.48020.166*
H14C0.27270.81290.62170.166*
C150.6747 (2)0.83868 (11)0.0969 (2)0.0348 (5)
H150.66420.86260.00090.042*
C160.8441 (2)0.84394 (11)0.1576 (2)0.0358 (5)
H160.84970.83580.26690.043*
C170.9220 (2)0.90903 (12)0.1268 (3)0.0475 (6)
H17A0.99870.91960.20780.057*
H17B0.84510.94380.11900.057*
C181.0597 (3)0.81554 (12)0.0079 (3)0.0522 (6)
H18A1.07950.78910.07990.063*
H18B1.15150.81450.07700.063*
C190.8148 (2)0.74831 (11)0.0048 (2)0.0346 (5)
C200.6583 (2)0.76627 (10)0.0622 (2)0.0361 (5)
H200.65200.74290.15830.043*
C210.5169 (3)0.74830 (13)0.0381 (3)0.0469 (6)
C240.8642 (2)0.67578 (11)0.0284 (2)0.0402 (5)
C250.9027 (3)0.64571 (11)0.1152 (3)0.0447 (5)
C260.9563 (3)0.58507 (13)0.1508 (3)0.0633 (7)
H260.98070.55430.07580.076*
C270.9734 (4)0.57065 (14)0.3031 (3)0.0784 (9)
H271.01130.52970.32860.094*
C280.9366 (4)0.61442 (15)0.4160 (3)0.0701 (8)
H280.94890.60260.51600.084*
C290.8805 (3)0.67706 (13)0.3835 (3)0.0501 (6)
C300.8345 (3)0.72664 (15)0.4870 (3)0.0603 (7)
H300.84280.72010.59020.072*
C310.7775 (3)0.78419 (14)0.4354 (3)0.0606 (7)
H310.74480.81600.50540.073*
C320.7663 (3)0.79738 (13)0.2803 (2)0.0505 (6)
H320.72730.83730.24900.061*
C330.8127 (2)0.75142 (11)0.1771 (2)0.0371 (5)
C340.8683 (2)0.69111 (11)0.2306 (2)0.0411 (5)
N10.92549 (18)0.79087 (9)0.08164 (18)0.0381 (4)
O10.4185 (2)0.78642 (10)0.0821 (2)0.0725 (6)
O30.8674 (2)0.65153 (8)0.15251 (18)0.0547 (4)
O40.52013 (16)0.96312 (8)0.05080 (16)0.0437 (4)
O50.62621 (14)0.90082 (8)0.32626 (14)0.0443 (4)
O60.44787 (17)0.90588 (11)0.51319 (16)0.0641 (5)
O70.26019 (15)0.90235 (10)0.32494 (15)0.0540 (4)
S11.01420 (7)0.89962 (4)0.04894 (7)0.05884 (19)
O20.5175 (2)0.68557 (9)0.0717 (2)0.0714 (5)
C22'0.3864 (13)0.6486 (8)0.1444 (12)0.086 (3)0.450 (7)
H22A0.28760.67030.13190.103*0.450 (7)
H22B0.38180.60440.10520.103*0.450 (7)
C23'0.4283 (13)0.6493 (6)0.3035 (11)0.1009 (19)0.450 (7)
H23A0.43920.69370.33660.151*0.450 (7)
H23B0.34780.62810.36530.151*0.450 (7)
H23C0.52510.62650.31240.151*0.450 (7)
C220.3883 (11)0.6700 (5)0.1829 (12)0.086 (3)0.550 (7)
H22C0.29160.66510.13260.103*0.550 (7)
H22D0.37540.70470.25720.103*0.550 (7)
C230.4290 (11)0.6083 (4)0.2567 (10)0.1009 (19)0.550 (7)
H23D0.52750.61310.30160.151*0.550 (7)
H23E0.34990.59770.33380.151*0.550 (7)
H23F0.43620.57390.18280.151*0.550 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0573 (19)0.134 (3)0.098 (2)0.0049 (18)0.0028 (16)0.065 (2)
C20.079 (2)0.175 (5)0.117 (3)0.009 (3)0.015 (2)0.080 (3)
C30.129 (4)0.115 (4)0.122 (3)0.018 (3)0.051 (3)0.036 (3)
C40.175 (5)0.071 (2)0.125 (3)0.031 (3)0.077 (3)0.037 (2)
C50.092 (2)0.084 (2)0.087 (2)0.0304 (19)0.0397 (19)0.0205 (19)
C60.0566 (15)0.079 (2)0.0437 (14)0.0024 (14)0.0009 (11)0.0184 (14)
C70.0585 (17)0.111 (3)0.0592 (17)0.0106 (17)0.0081 (13)0.0336 (17)
C80.0280 (9)0.0504 (15)0.0372 (11)0.0020 (9)0.0039 (8)0.0018 (10)
C90.0380 (12)0.0514 (14)0.0445 (13)0.0096 (10)0.0072 (10)0.0016 (11)
C100.0417 (12)0.090 (2)0.0424 (12)0.0033 (14)0.0073 (10)0.0081 (14)
C110.0417 (12)0.0520 (14)0.0411 (12)0.0047 (10)0.0071 (10)0.0068 (11)
C120.0296 (10)0.0476 (14)0.0345 (11)0.0010 (9)0.0036 (9)0.0028 (9)
C130.0661 (18)0.170 (4)0.0487 (16)0.029 (2)0.0149 (14)0.0141 (19)
C140.119 (3)0.109 (3)0.105 (3)0.024 (2)0.013 (2)0.036 (2)
C150.0286 (10)0.0455 (13)0.0305 (10)0.0004 (9)0.0021 (8)0.0014 (9)
C160.0313 (10)0.0418 (12)0.0345 (11)0.0003 (9)0.0028 (9)0.0012 (9)
C170.0340 (10)0.0476 (15)0.0608 (14)0.0032 (11)0.0013 (9)0.0043 (12)
C180.0345 (12)0.0582 (16)0.0648 (15)0.0015 (11)0.0107 (10)0.0054 (13)
C190.0321 (10)0.0377 (11)0.0346 (11)0.0023 (9)0.0052 (8)0.0009 (9)
C200.0321 (10)0.0452 (13)0.0317 (11)0.0022 (9)0.0065 (8)0.0009 (9)
C210.0345 (12)0.0538 (15)0.0527 (14)0.0048 (11)0.0055 (10)0.0127 (12)
C240.0371 (11)0.0436 (13)0.0401 (12)0.0022 (10)0.0035 (9)0.0069 (10)
C250.0463 (13)0.0412 (13)0.0468 (13)0.0013 (10)0.0054 (10)0.0007 (10)
C260.089 (2)0.0420 (15)0.0600 (17)0.0096 (14)0.0137 (14)0.0007 (12)
C270.117 (2)0.0443 (16)0.076 (2)0.0183 (17)0.0216 (18)0.0119 (15)
C280.094 (2)0.0634 (19)0.0549 (16)0.0003 (16)0.0226 (15)0.0207 (15)
C290.0542 (14)0.0567 (16)0.0404 (13)0.0010 (12)0.0104 (10)0.0077 (12)
C300.0706 (17)0.078 (2)0.0330 (13)0.0014 (15)0.0098 (12)0.0029 (13)
C310.0716 (17)0.0724 (19)0.0383 (13)0.0173 (15)0.0068 (11)0.0142 (13)
C320.0549 (14)0.0560 (16)0.0416 (13)0.0129 (12)0.0100 (10)0.0027 (12)
C330.0342 (11)0.0409 (12)0.0367 (11)0.0032 (9)0.0061 (8)0.0009 (10)
C340.0391 (11)0.0434 (14)0.0414 (12)0.0023 (10)0.0073 (9)0.0011 (10)
N10.0274 (8)0.0453 (11)0.0420 (10)0.0013 (8)0.0058 (7)0.0026 (9)
O10.0433 (10)0.0815 (14)0.0902 (14)0.0097 (10)0.0177 (9)0.0275 (12)
O30.0681 (11)0.0518 (10)0.0443 (10)0.0055 (8)0.0057 (8)0.0112 (8)
O40.0403 (8)0.0511 (10)0.0394 (8)0.0005 (7)0.0001 (6)0.0072 (7)
O50.0342 (7)0.0624 (10)0.0358 (7)0.0096 (8)0.0017 (6)0.0075 (8)
O60.0459 (9)0.1101 (15)0.0364 (8)0.0056 (10)0.0033 (6)0.0089 (10)
O70.0340 (7)0.0880 (12)0.0405 (8)0.0025 (9)0.0080 (6)0.0014 (9)
S10.0471 (3)0.0637 (4)0.0672 (4)0.0115 (3)0.0167 (3)0.0101 (4)
O20.0556 (11)0.0612 (13)0.0963 (14)0.0141 (9)0.0061 (10)0.0252 (11)
C22'0.079 (2)0.057 (7)0.119 (5)0.017 (3)0.024 (3)0.027 (5)
C23'0.121 (4)0.081 (5)0.096 (4)0.002 (5)0.032 (4)0.024 (4)
C220.079 (2)0.057 (7)0.119 (5)0.017 (3)0.024 (3)0.027 (5)
C230.121 (4)0.081 (5)0.096 (4)0.002 (5)0.032 (4)0.024 (4)
Geometric parameters (Å, º) top
C1—C21.370 (5)C17—H17B0.9700
C1—C61.375 (4)C18—N11.447 (3)
C1—H10.9300C18—S11.827 (3)
C2—C31.344 (6)C18—H18A0.9700
C2—H20.9300C18—H18B0.9700
C3—C41.354 (6)C19—N11.471 (3)
C3—H30.9300C19—C331.525 (3)
C4—C51.384 (5)C19—C201.544 (3)
C4—H40.9300C19—C241.566 (3)
C5—C61.359 (4)C20—C211.508 (3)
C5—H50.9300C20—H200.9800
C6—C71.484 (4)C21—O11.198 (3)
C7—O41.415 (3)C21—O21.317 (3)
C7—H7A0.9700C24—O31.204 (3)
C7—H7B0.9700C24—C251.466 (3)
C8—O41.419 (3)C25—C261.366 (3)
C8—C91.517 (3)C25—C341.399 (3)
C8—C121.518 (3)C26—C271.396 (4)
C8—H80.9800C26—H260.9300
C9—O71.409 (3)C27—C281.365 (4)
C9—C111.537 (3)C27—H270.9300
C9—H90.9800C28—C291.404 (4)
C10—O61.410 (3)C28—H280.9300
C10—O71.417 (3)C29—C341.393 (3)
C10—C141.501 (4)C29—C301.408 (4)
C10—C131.503 (4)C30—C311.363 (4)
C11—O61.398 (3)C30—H300.9300
C11—O51.406 (3)C31—C321.408 (3)
C11—H110.9800C31—H310.9300
C12—O51.441 (2)C32—C331.355 (3)
C12—C151.526 (3)C32—H320.9300
C12—H120.9800C33—C341.414 (3)
C13—H13A0.9600O2—C22'1.473 (7)
C13—H13B0.9600O2—C221.475 (6)
C13—H13C0.9600C22'—C23'1.474 (10)
C14—H14A0.9600C22'—H22A0.9700
C14—H14B0.9600C22'—H22B0.9700
C14—H14C0.9600C23'—H23A0.9600
C15—C201.517 (3)C23'—H23B0.9600
C15—C161.526 (3)C23'—H23C0.9600
C15—H150.9800C22—C231.471 (9)
C16—N11.474 (3)C22—H22C0.9700
C16—C171.521 (3)C22—H22D0.9700
C16—H160.9800C23—H23D0.9600
C17—S11.795 (2)C23—H23E0.9600
C17—H17A0.9700C23—H23F0.9600
C2—C1—C6121.1 (4)H17A—C17—H17B108.6
C2—C1—H1119.4N1—C18—S1106.80 (15)
C6—C1—H1119.4N1—C18—H18A110.4
C3—C2—C1120.1 (4)S1—C18—H18A110.4
C3—C2—H2119.9N1—C18—H18B110.4
C1—C2—H2119.9S1—C18—H18B110.4
C2—C3—C4119.9 (4)H18A—C18—H18B108.6
C2—C3—H3120.1N1—C19—C33117.75 (17)
C4—C3—H3120.1N1—C19—C20102.15 (16)
C3—C4—C5120.3 (4)C33—C19—C20114.44 (16)
C3—C4—H4119.9N1—C19—C24107.62 (16)
C5—C4—H4119.9C33—C19—C24102.38 (16)
C6—C5—C4120.5 (3)C20—C19—C24112.68 (17)
C6—C5—H5119.8C21—C20—C15114.78 (18)
C4—C5—H5119.8C21—C20—C19113.89 (17)
C5—C6—C1117.9 (3)C15—C20—C19103.72 (16)
C5—C6—C7121.5 (3)C21—C20—H20108.0
C1—C6—C7120.5 (3)C15—C20—H20108.0
O4—C7—C6110.0 (2)C19—C20—H20108.0
O4—C7—H7A109.7O1—C21—O2124.9 (2)
C6—C7—H7A109.7O1—C21—C20124.2 (2)
O4—C7—H7B109.7O2—C21—C20110.9 (2)
C6—C7—H7B109.7O3—C24—C25128.6 (2)
H7A—C7—H7B108.2O3—C24—C19123.6 (2)
O4—C8—C9110.44 (18)C25—C24—C19107.87 (18)
O4—C8—C12109.82 (16)C26—C25—C34119.6 (2)
C9—C8—C12100.97 (16)C26—C25—C24132.6 (2)
O4—C8—H8111.7C34—C25—C24107.80 (19)
C9—C8—H8111.7C25—C26—C27118.0 (3)
C12—C8—H8111.7C25—C26—H26121.0
O7—C9—C8108.83 (19)C27—C26—H26121.0
O7—C9—C11103.87 (17)C28—C27—C26122.4 (3)
C8—C9—C11103.81 (17)C28—C27—H27118.8
O7—C9—H9113.2C26—C27—H27118.8
C8—C9—H9113.2C27—C28—C29121.1 (2)
C11—C9—H9113.2C27—C28—H28119.5
O6—C10—O7105.64 (17)C29—C28—H28119.5
O6—C10—C14109.8 (3)C34—C29—C28115.6 (2)
O7—C10—C14108.7 (3)C34—C29—C30116.7 (2)
O6—C10—C13110.0 (2)C28—C29—C30127.6 (2)
O7—C10—C13109.6 (2)C31—C30—C29119.8 (2)
C14—C10—C13112.9 (3)C31—C30—H30120.1
O6—C11—O5111.7 (2)C29—C30—H30120.1
O6—C11—C9104.83 (17)C30—C31—C32122.5 (2)
O5—C11—C9106.55 (16)C30—C31—H31118.7
O6—C11—H11111.2C32—C31—H31118.7
O5—C11—H11111.2C33—C32—C31119.4 (2)
C9—C11—H11111.2C33—C32—H32120.3
O5—C12—C8102.65 (17)C31—C32—H32120.3
O5—C12—C15111.29 (15)C32—C33—C34118.1 (2)
C8—C12—C15116.53 (17)C32—C33—C19133.6 (2)
O5—C12—H12108.7C34—C33—C19108.30 (18)
C8—C12—H12108.7C29—C34—C25123.2 (2)
C15—C12—H12108.7C29—C34—C33123.4 (2)
C10—C13—H13A109.5C25—C34—C33113.27 (19)
C10—C13—H13B109.5C18—N1—C19118.65 (18)
H13A—C13—H13B109.5C18—N1—C16111.09 (18)
C10—C13—H13C109.5C19—N1—C16111.32 (15)
H13A—C13—H13C109.5C7—O4—C8113.87 (18)
H13B—C13—H13C109.5C11—O5—C12108.05 (15)
C10—C14—H14A109.5C11—O6—C10111.37 (16)
C10—C14—H14B109.5C9—O7—C10109.72 (17)
H14A—C14—H14B109.5C17—S1—C1887.71 (11)
C10—C14—H14C109.5C21—O2—C22'125.8 (7)
H14A—C14—H14C109.5C21—O2—C22110.4 (4)
H14B—C14—H14C109.5O2—C22'—C23'101.0 (8)
C20—C15—C16102.45 (16)O2—C22'—H22A111.6
C20—C15—C12114.38 (17)C23'—C22'—H22A111.6
C16—C15—C12115.66 (16)O2—C22'—H22B111.6
C20—C15—H15108.0C23'—C22'—H22B111.6
C16—C15—H15108.0H22A—C22'—H22B109.4
C12—C15—H15108.0C23—C22—O2107.0 (7)
N1—C16—C17109.70 (16)C23—C22—H22C110.3
N1—C16—C15104.77 (16)O2—C22—H22C110.3
C17—C16—C15114.75 (18)C23—C22—H22D110.3
N1—C16—H16109.1O2—C22—H22D110.3
C17—C16—H16109.1H22C—C22—H22D108.6
C15—C16—H16109.1C22—C23—H23D109.5
C16—C17—S1106.38 (15)C22—C23—H23E109.5
C16—C17—H17A110.5H23D—C23—H23E109.5
S1—C17—H17A110.5C22—C23—H23F109.5
C16—C17—H17B110.5H23D—C23—H23F109.5
S1—C17—H17B110.5H23E—C23—H23F109.5
C6—C1—C2—C33.2 (7)C28—C29—C30—C31177.8 (3)
C1—C2—C3—C40.6 (8)C29—C30—C31—C321.8 (4)
C2—C3—C4—C52.2 (8)C30—C31—C32—C330.3 (4)
C3—C4—C5—C60.0 (7)C31—C32—C33—C341.2 (3)
C4—C5—C6—C13.6 (5)C31—C32—C33—C19178.8 (2)
C4—C5—C6—C7180.0 (4)N1—C19—C33—C3269.6 (3)
C2—C1—C6—C55.3 (6)C20—C19—C33—C3250.4 (3)
C2—C1—C6—C7178.3 (4)C24—C19—C33—C32172.7 (2)
C5—C6—C7—O4131.1 (3)N1—C19—C33—C34112.6 (2)
C1—C6—C7—O452.6 (4)C20—C19—C33—C34127.35 (19)
O4—C8—C9—O7163.47 (15)C24—C19—C33—C345.1 (2)
C12—C8—C9—O780.38 (19)C28—C29—C34—C252.6 (3)
O4—C8—C9—C1186.4 (2)C30—C29—C34—C25176.9 (2)
C12—C8—C9—C1129.8 (2)C28—C29—C34—C33179.3 (2)
O7—C9—C11—O612.6 (2)C30—C29—C34—C330.1 (3)
C8—C9—C11—O6126.3 (2)C26—C25—C34—C292.4 (4)
O7—C9—C11—O5105.99 (19)C24—C25—C34—C29175.3 (2)
C8—C9—C11—O57.8 (2)C26—C25—C34—C33179.4 (2)
O4—C8—C12—O574.99 (18)C24—C25—C34—C331.7 (3)
C9—C8—C12—O541.62 (19)C32—C33—C34—C291.3 (3)
O4—C8—C12—C1546.9 (2)C19—C33—C34—C29179.4 (2)
C9—C8—C12—C15163.49 (18)C32—C33—C34—C25175.8 (2)
O5—C12—C15—C20128.42 (18)C19—C33—C34—C252.4 (3)
C8—C12—C15—C20114.4 (2)S1—C18—N1—C19100.49 (19)
O5—C12—C15—C169.7 (3)S1—C18—N1—C1630.4 (2)
C8—C12—C15—C16126.9 (2)C33—C19—N1—C1821.1 (3)
C20—C15—C16—N129.11 (19)C20—C19—N1—C18147.37 (18)
C12—C15—C16—N1154.21 (17)C24—C19—N1—C1893.8 (2)
C20—C15—C16—C17149.47 (18)C33—C19—N1—C16109.69 (19)
C12—C15—C16—C1785.4 (2)C20—C19—N1—C1616.6 (2)
N1—C16—C17—S125.76 (19)C24—C19—N1—C16135.40 (17)
C15—C16—C17—S191.84 (18)C17—C16—N1—C183.3 (2)
C16—C15—C20—C21164.34 (17)C15—C16—N1—C18126.92 (18)
C12—C15—C20—C2169.7 (2)C17—C16—N1—C19131.35 (17)
C16—C15—C20—C1939.46 (19)C15—C16—N1—C197.7 (2)
C12—C15—C20—C19165.40 (15)C6—C7—O4—C8178.8 (2)
N1—C19—C20—C21160.00 (19)C9—C8—O4—C7113.4 (2)
C33—C19—C20—C2131.6 (3)C12—C8—O4—C7136.1 (2)
C24—C19—C20—C2184.8 (2)O6—C11—O5—C1294.59 (19)
N1—C19—C20—C1534.54 (19)C9—C11—O5—C1219.3 (2)
C33—C19—C20—C1593.84 (19)C8—C12—O5—C1138.9 (2)
C24—C19—C20—C15149.72 (17)C15—C12—O5—C11164.21 (18)
C15—C20—C21—O14.0 (3)O5—C11—O6—C10115.1 (2)
C19—C20—C21—O1123.3 (3)C9—C11—O6—C100.1 (3)
C15—C20—C21—O2175.35 (19)O7—C10—O6—C1112.7 (3)
C19—C20—C21—O256.0 (3)C14—C10—O6—C11129.8 (3)
N1—C19—C24—O361.5 (3)C13—C10—O6—C11105.4 (3)
C33—C19—C24—O3173.8 (2)C8—C9—O7—C10131.1 (2)
C20—C19—C24—O350.3 (3)C11—C9—O7—C1021.0 (2)
N1—C19—C24—C25118.61 (18)O6—C10—O7—C921.5 (3)
C33—C19—C24—C256.1 (2)C14—C10—O7—C9139.2 (2)
C20—C19—C24—C25129.55 (18)C13—C10—O7—C997.0 (3)
O3—C24—C25—C262.4 (4)C16—C17—S1—C1836.36 (15)
C19—C24—C25—C26177.7 (3)N1—C18—S1—C1738.98 (17)
O3—C24—C25—C34174.8 (2)O1—C21—O2—C22'11.9 (7)
C19—C24—C25—C345.0 (2)C20—C21—O2—C22'168.8 (6)
C34—C25—C26—C270.5 (4)O1—C21—O2—C225.5 (6)
C24—C25—C26—C27176.5 (3)C20—C21—O2—C22173.8 (6)
C25—C26—C27—C280.9 (5)C21—O2—C22'—C23'97.2 (11)
C26—C27—C28—C290.7 (5)C22—O2—C22'—C23'47.9 (17)
C27—C28—C29—C341.1 (4)C21—O2—C22—C23159.1 (8)
C27—C28—C29—C30178.4 (3)C22'—O2—C22—C2362 (2)
C34—C29—C30—C311.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O3i0.932.513.375 (4)155
C17—H17A···O7ii0.972.443.309 (3)148
C23—H23F···O4iii0.962.573.497 (9)163
C31—H31···O5iv0.932.473.393 (4)173
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+1, y, z; (iii) x+1, y1/2, z; (iv) x, y, z1.

Experimental details

Crystal data
Chemical formulaC34H35NO7S
Mr601.69
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)8.588 (5), 20.446 (5), 8.851 (5)
β (°) 93.282 (5)
V3)1551.6 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.955, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
13521, 5470, 4678
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.083, 1.03
No. of reflections5470
No. of parameters400
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16
Absolute structureFlack (1983), 2630 Friedel pairs
Absolute structure parameter0.04 (7)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O3i0.932.513.375 (4)155
C17—H17A···O7ii0.972.443.309 (3)148
C23—H23F···O4iii0.962.573.497 (9)163
C31—H31···O5iv0.932.473.393 (4)173
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+1, y, z; (iii) x+1, y1/2, z; (iv) x, y, z1.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerguson, N. M., Cummings, D. A. T., Cauchemez, S., Fraser, C., Riley, S., Meeyai, A., Iamsirithaworn, S. & Burke, D. S. (2005). Nature (London), 437, 209–214.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJagadeesan, G., Sethusankar, K., Prasanna, R. & Raghunathan, R. (2012). Acta Cryst. E68, o382–o383.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKilonda, A., Compernolle, F. & Hoornaert, G. J. (1995). J. Org. Chem. 60, 5820–5824.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Goöttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds