organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Imino-2,7-di­methyl-5,6,7,8-tetra­hydro-4H-1-benzothieno[2,3-d]pyrimidin-3-amine

aDepartment of Chemistry, Karnatak University, Dharwad 580 003, India, and bDepartment of Studies in Chemistry, Bangalore University, Bangalore 560 001, India
*Correspondence e-mail: dr_imk@yahoo.com

(Received 5 July 2012; accepted 12 July 2012; online 18 July 2012)

In the title compound, C12H16N4S, the fused benzothio­phene and the pyrimidine rings are coplanar [dihedral angle = 1.61 (6)°]. Three C atoms of the cyclohexene ring (at positions 3, 6 and 7) are disordered over two sites with an occupancy ratio of 0.702 (8):0.298 (8). The cyclo­hexene ring in both the major and minor components adopts a half-chair conformation. The crystal structure is stabilized by N—H⋯N and C—H⋯N inter­actions, resulting in the formation of inversion dimers with R22(10) and R22(12) graph-set motifs.

Related literature

For the biological activity of thio­phenes, benzothio­phenes and pyrimidines, see: Pathak et al. (1991[Pathak, U. S., Singh, S. & Padh, J. (1991). Indian J. Chem. Sect. B, 30, 618-619.]); Shishoo & Jain (1992[Shishoo, C. J. & Jain, K. S. J. (1992). J. Heterocycl. Chem. 29, 883—893.]). For a related crystal structure, see: Panchamukhi et al. (2011[Panchamukhi, S. I., Fathima, N., Khazi, I. M. & Begum, N. S. (2011). Acta Cryst. E67, o777-o778.]). For graph-set notations, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16N4S

  • Mr = 248.35

  • Triclinic, [P \overline 1]

  • a = 6.7514 (5) Å

  • b = 8.7139 (6) Å

  • c = 11.8309 (9) Å

  • α = 97.221 (4)°

  • β = 102.820 (4)°

  • γ = 112.482 (3)°

  • V = 609.73 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.18 × 0.16 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.961

  • 11883 measured reflections

  • 2641 independent reflections

  • 2378 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.112

  • S = 1.08

  • 2641 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯N4i 0.89 2.40 3.117 (2) 137
C5—H5B⋯N4ii 0.96 2.67 3.587 (2) 160
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y, -z.

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Thienopyrimidine derivatives are reported to have a wide range of biological and medicinal applications (Pathak et al., 1991). The chemistry of thieophenes and benzothiophenes is well documented in the literature as they possess wide spectrum of biological activities (Shishoo & Jain, 1992).

In the title compound the pyrimidine ring is substituted with the benzothiophene moiety at one end and the methyl and imino groups at the other end. The carbon atoms C6 and C7 are disordered over two sites (C6/C6' and C7/C7') with site occupancy factors 0.7022 (6) and 0.2071 (5) resulting in a major and a minor conformers. The H-atoms of the NH2 group are also disordered over three sites with each H-atom having a site occupancy factor of 0.6667. The cyclohexene ring in both the conformers is in the half chair conformation with C6 and C7 atoms being deviated from the rest of the ring atoms by 0.376 (3) and -0.345 (2)° A for the major conformer. The C6' and C7' atoms are deviated by -0.515 (8) and -0.409 (7)° A for the minor conformer respectively. The fused benzothiophene and the pyrimidine ring are coplanar with the dihedral angle 1.609 (6)°. The N(2) atom of the pyrimidine ring is in the planar trigonal configuration. The crystal structure is stabilized by intermolecular N—H···N and C—H···N interactions resulting in centrosymmetric head-to-head dimers (Fig. 2 and Tab. 1) corresponding to the graph set of R22(10) and R22(12) motifs (Bernstein et al., 1995). The bond distances and angles in the title compound agree very well with the corresponding bond distances and angles reported in a closely related compound (Panchamukhi et al., 2011).

Related literature top

For the biological activity of thiophenes, benzothiophenes and pyrimidines, see: Pathak et al. (1991); Shishoo & Jain (1992). For a related crystal structure, see: Panchamukhi et al. (2011). For graph-set notations, see: Bernstein et al. (1995).

Experimental top

A mixture of N-(3-cyano-6-methyl-4,5,6,7-tetrahydro-benzo[b] thiophen-2-yl)-acetimidic acid ethyl ester (1.5 g 5.7 mmol) and hydrazine hydrate (10 ml) was stirred at room temperature for 3 h. The solid separated was filtered, washed with water and recrystallized from ethanol to yield crystals of the title compound suitable for X-ray crystallographic analysis; yield 1.12 g (79%), melting point 430–431 K.

Refinement top

The H atoms were placed at calculated positions in the riding model approximation with N—H = 0.89 and 0.75° A for amine and imine H-atoms, respectively, and C—H = 0.96, 0.97 and 0.98 Å for methyl, methylene and methyne H-atoms, respectively, with Uiso(H) = 1.5Ueq(methyl C) and 1.2Ueq(non-methyl C/N).

Structure description top

Thienopyrimidine derivatives are reported to have a wide range of biological and medicinal applications (Pathak et al., 1991). The chemistry of thieophenes and benzothiophenes is well documented in the literature as they possess wide spectrum of biological activities (Shishoo & Jain, 1992).

In the title compound the pyrimidine ring is substituted with the benzothiophene moiety at one end and the methyl and imino groups at the other end. The carbon atoms C6 and C7 are disordered over two sites (C6/C6' and C7/C7') with site occupancy factors 0.7022 (6) and 0.2071 (5) resulting in a major and a minor conformers. The H-atoms of the NH2 group are also disordered over three sites with each H-atom having a site occupancy factor of 0.6667. The cyclohexene ring in both the conformers is in the half chair conformation with C6 and C7 atoms being deviated from the rest of the ring atoms by 0.376 (3) and -0.345 (2)° A for the major conformer. The C6' and C7' atoms are deviated by -0.515 (8) and -0.409 (7)° A for the minor conformer respectively. The fused benzothiophene and the pyrimidine ring are coplanar with the dihedral angle 1.609 (6)°. The N(2) atom of the pyrimidine ring is in the planar trigonal configuration. The crystal structure is stabilized by intermolecular N—H···N and C—H···N interactions resulting in centrosymmetric head-to-head dimers (Fig. 2 and Tab. 1) corresponding to the graph set of R22(10) and R22(12) motifs (Bernstein et al., 1995). The bond distances and angles in the title compound agree very well with the corresponding bond distances and angles reported in a closely related compound (Panchamukhi et al., 2011).

For the biological activity of thiophenes, benzothiophenes and pyrimidines, see: Pathak et al. (1991); Shishoo & Jain (1992). For a related crystal structure, see: Panchamukhi et al. (2011). For graph-set notations, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. C6 and C7 are disordered over sites C6/C6' and C7/C7', respectively. The H-atoms of the NH2 group are disordered over three sites with s.o.f 0.667.
[Figure 2] Fig. 2. A view of the intermolecular hydrogen bonds(dotted lines) in the crystal structure of the title compound. H atoms non participating in H-bonding were ommitted for clarity.
4-Imino-2,7-dimethyl-5,6,7,8-tetrahydro-4H- 1-benzothieno[2,3-d]pyrimidin-3-amine top
Crystal data top
C12H16N4SZ = 2
Mr = 248.35F(000) = 264
Triclinic, P1Dx = 1.353 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7514 (5) ÅCell parameters from 2641 reflections
b = 8.7139 (6) Åθ = 1.8–27.0°
c = 11.8309 (9) ŵ = 0.25 mm1
α = 97.221 (4)°T = 296 K
β = 102.820 (4)°Block, yellow
γ = 112.482 (3)°0.18 × 0.16 × 0.16 mm
V = 609.73 (8) Å3
Data collection top
Bruker SMART APEX CCD detector
diffractometer
2641 independent reflections
Radiation source: fine-focus sealed tube2378 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 88
Tmin = 0.957, Tmax = 0.961k = 1111
11883 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0684P)2 + 0.0963P]
where P = (Fo2 + 2Fc2)/3
2641 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C12H16N4Sγ = 112.482 (3)°
Mr = 248.35V = 609.73 (8) Å3
Triclinic, P1Z = 2
a = 6.7514 (5) ÅMo Kα radiation
b = 8.7139 (6) ŵ = 0.25 mm1
c = 11.8309 (9) ÅT = 296 K
α = 97.221 (4)°0.18 × 0.16 × 0.16 mm
β = 102.820 (4)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
2641 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2378 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.961Rint = 0.018
11883 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.08Δρmax = 0.23 e Å3
2641 reflectionsΔρmin = 0.31 e Å3
184 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S11.01003 (6)0.58317 (4)0.33947 (3)0.04948 (15)
N10.6333 (2)0.59256 (15)0.20955 (11)0.0467 (3)
N20.33573 (19)0.33614 (14)0.09087 (10)0.0423 (3)
N30.1200 (2)0.26296 (17)0.00579 (13)0.0562 (4)
H3A0.05890.33710.00810.084*0.667
H3B0.03300.16800.02280.084*0.667
H3C0.13280.23800.06670.084*0.667
N40.3265 (2)0.06821 (16)0.06949 (12)0.0537 (3)
H40.39220.01960.09110.064*
C10.2976 (3)0.6054 (2)0.09622 (16)0.0554 (4)
H1A0.38290.72460.13420.083*
H1B0.16120.56280.11810.083*
H1C0.26240.59080.01130.083*
C20.4318 (2)0.50924 (17)0.13533 (13)0.0424 (3)
C40.4389 (2)0.22735 (17)0.12130 (12)0.0396 (3)
C50.7837 (3)0.07178 (18)0.24560 (14)0.0497 (4)
H5A0.68000.01600.28720.060*
H5B0.71920.01460.16270.060*
C31.3585 (14)0.1498 (15)0.4674 (10)0.0689 (15)0.702 (8)
H3D1.31590.03090.46580.103*0.702 (8)
H3E1.43080.21560.54820.103*0.702 (8)
H3F1.46000.18560.42060.103*0.702 (8)
C61.0074 (5)0.0565 (3)0.2941 (3)0.0509 (8)0.702 (8)
H6A0.97440.05990.30100.061*0.702 (8)
H6B1.09370.08130.23790.061*0.702 (8)
C71.1470 (4)0.1779 (3)0.4152 (3)0.0477 (8)0.702 (8)
H7A1.05520.15740.47010.057*0.702 (8)
C3'1.355 (4)0.150 (4)0.435 (2)0.093 (8)0.298 (8)
H3AA1.50120.23460.44100.140*0.298 (8)
H3AB1.34360.03860.40570.140*0.298 (8)
H3AC1.33230.15760.51270.140*0.298 (8)
C6'0.9513 (13)0.0591 (8)0.3484 (8)0.057 (2)0.298 (8)
H6AA0.92040.08730.42260.068*0.298 (8)
H6AB0.93930.05670.33710.068*0.298 (8)
C7'1.1840 (11)0.1812 (8)0.3536 (8)0.0525 (18)0.298 (8)
H7AA1.20310.16970.27370.063*0.298 (8)
C81.2128 (2)0.3636 (2)0.40058 (14)0.0492 (3)
H8A1.32510.39250.35950.059*
H8B1.27560.44020.47800.059*
C90.7411 (2)0.49320 (17)0.24249 (12)0.0405 (3)
C100.6592 (2)0.31806 (16)0.20678 (11)0.0384 (3)
C110.8178 (2)0.25520 (17)0.25982 (12)0.0392 (3)
C121.0128 (2)0.38438 (18)0.33207 (12)0.0422 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0383 (2)0.0365 (2)0.0568 (2)0.01117 (15)0.00373 (15)0.00092 (15)
N10.0416 (6)0.0355 (6)0.0558 (7)0.0156 (5)0.0042 (5)0.0066 (5)
N20.0323 (6)0.0381 (6)0.0484 (6)0.0129 (5)0.0015 (5)0.0078 (5)
N30.0367 (7)0.0479 (7)0.0693 (8)0.0171 (6)0.0077 (6)0.0087 (6)
N40.0418 (7)0.0370 (6)0.0655 (8)0.0139 (5)0.0062 (6)0.0039 (5)
C10.0487 (9)0.0457 (8)0.0701 (10)0.0244 (7)0.0065 (7)0.0138 (7)
C20.0394 (7)0.0385 (7)0.0481 (7)0.0165 (6)0.0100 (6)0.0113 (6)
C40.0341 (6)0.0369 (6)0.0422 (6)0.0131 (5)0.0046 (5)0.0085 (5)
C50.0458 (8)0.0382 (7)0.0546 (8)0.0165 (6)0.0012 (6)0.0078 (6)
C30.045 (2)0.067 (3)0.088 (4)0.0301 (18)0.0069 (19)0.022 (2)
C60.0469 (13)0.0476 (12)0.0571 (18)0.0251 (11)0.0064 (11)0.0077 (11)
C70.0400 (12)0.0492 (12)0.0517 (17)0.0210 (9)0.0043 (10)0.0140 (11)
C3'0.078 (8)0.068 (7)0.115 (17)0.028 (6)0.012 (8)0.037 (9)
C6'0.058 (4)0.053 (3)0.058 (4)0.026 (3)0.006 (3)0.021 (3)
C7'0.051 (3)0.057 (3)0.055 (4)0.031 (3)0.010 (3)0.016 (3)
C80.0351 (7)0.0485 (8)0.0543 (8)0.0154 (6)0.0010 (6)0.0085 (6)
C90.0356 (7)0.0367 (6)0.0418 (6)0.0129 (5)0.0041 (5)0.0056 (5)
C100.0352 (7)0.0359 (7)0.0383 (6)0.0127 (5)0.0053 (5)0.0071 (5)
C110.0365 (6)0.0384 (7)0.0380 (6)0.0147 (5)0.0051 (5)0.0076 (5)
C120.0358 (7)0.0413 (7)0.0436 (7)0.0149 (6)0.0046 (5)0.0077 (5)
Geometric parameters (Å, º) top
S1—C91.7288 (14)C3—H3D0.9600
S1—C121.7308 (14)C3—H3E0.9600
N1—C21.3051 (18)C3—H3F0.9600
N1—C91.3682 (18)C6—C71.523 (5)
N2—C21.3688 (18)C6—H6A0.9700
N2—C41.4118 (17)C6—H6B0.9700
N2—N31.4211 (16)C7—C81.549 (3)
N3—H3A0.8900C7—H7A0.9800
N3—H3B0.8900C3'—C7'1.47 (2)
N3—H3C0.8900C3'—H3AA0.9600
N4—C41.2844 (18)C3'—H3AB0.9600
N4—H40.7500C3'—H3AC0.9600
C1—C21.4933 (19)C6'—C7'1.506 (13)
C1—H1A0.9600C6'—H6AA0.9700
C1—H1B0.9600C6'—H6AB0.9700
C1—H1C0.9600C7'—C81.538 (6)
C4—C101.4465 (17)C7'—H7AA0.9800
C5—C111.5067 (19)C8—C121.5008 (19)
C5—C6'1.513 (6)C8—H8A0.9599
C5—C61.554 (3)C8—H8B0.9600
C5—H5A0.9600C9—C101.3793 (19)
C5—H5B0.9601C10—C111.4410 (18)
C3—C71.548 (8)C11—C121.3624 (19)
C9—S1—C1291.18 (6)C6—C7—H7A108.7
C2—N1—C9114.93 (12)C3—C7—H7A108.7
C2—N2—C4124.49 (12)C8—C7—H7A108.7
C2—N2—N3117.21 (11)C7'—C3'—H3AA109.5
C4—N2—N3118.27 (11)C7'—C3'—H3AB109.5
N2—N3—H3A109.5H3AA—C3'—H3AB109.5
N2—N3—H3B109.5C7'—C3'—H3AC109.5
H3A—N3—H3B109.5H3AA—C3'—H3AC109.5
N2—N3—H3C109.5H3AB—C3'—H3AC109.5
H3A—N3—H3C109.5C7'—C6'—C5109.0 (7)
H3B—N3—H3C109.5C7'—C6'—H6AA109.9
C4—N4—H4109.5C5—C6'—H6AA109.9
C2—C1—H1A109.5C7'—C6'—H6AB109.9
C2—C1—H1B109.5C5—C6'—H6AB109.9
H1A—C1—H1B109.5H6AA—C6'—H6AB108.3
C2—C1—H1C109.5C3'—C7'—C6'111.2 (13)
H1A—C1—H1C109.5C3'—C7'—C8108.3 (13)
H1B—C1—H1C109.5C6'—C7'—C8108.0 (7)
N1—C2—N2123.07 (13)C3'—C7'—H7AA109.8
N1—C2—C1119.13 (13)C6'—C7'—H7AA109.8
N2—C2—C1117.80 (13)C8—C7'—H7AA109.8
N4—C4—N2116.33 (12)C12—C8—C7'108.5 (2)
N4—C4—C10130.93 (12)C12—C8—C7111.03 (14)
N2—C4—C10112.74 (11)C12—C8—H8A109.5
C11—C5—C6'108.9 (3)C7'—C8—H8A82.4
C11—C5—C6112.04 (14)C7—C8—H8A109.6
C11—C5—H5A109.1C12—C8—H8B109.5
C6'—C5—H5A82.6C7'—C8—H8B133.9
C6—C5—H5A109.5C7—C8—H8B109.2
C11—C5—H5B109.2H8A—C8—H8B108.1
C6'—C5—H5B133.9N1—C9—C10127.20 (13)
C6—C5—H5B109.0N1—C9—S1120.97 (10)
H5A—C5—H5B108.0C10—C9—S1111.83 (10)
C7—C6—C5112.0 (3)C9—C10—C11112.38 (12)
C7—C6—H6A109.2C9—C10—C4117.49 (12)
C5—C6—H6A109.2C11—C10—C4130.08 (12)
C7—C6—H6B109.2C12—C11—C10111.76 (12)
C5—C6—H6B109.2C12—C11—C5120.89 (13)
H6A—C6—H6B107.9C10—C11—C5127.32 (12)
C6—C7—C3111.4 (5)C11—C12—C8125.54 (13)
C6—C7—C8108.5 (3)C11—C12—S1112.85 (11)
C3—C7—C8110.7 (5)C8—C12—S1121.60 (11)
C9—N1—C2—N21.5 (2)C12—S1—C9—N1179.87 (12)
C9—N1—C2—C1178.47 (13)C12—S1—C9—C100.01 (11)
C4—N2—C2—N11.5 (2)N1—C9—C10—C11179.52 (13)
N3—N2—C2—N1176.67 (13)S1—C9—C10—C110.34 (15)
C4—N2—C2—C1178.53 (13)N1—C9—C10—C42.7 (2)
N3—N2—C2—C13.3 (2)S1—C9—C10—C4177.40 (10)
C2—N2—C4—N4178.75 (14)N4—C4—C10—C9176.81 (15)
N3—N2—C4—N40.62 (19)N2—C4—C10—C92.54 (18)
C2—N2—C4—C100.71 (19)N4—C4—C10—C110.5 (3)
N3—N2—C4—C10178.83 (12)N2—C4—C10—C11179.81 (13)
C11—C5—C6—C745.4 (4)C9—C10—C11—C120.62 (17)
C6'—C5—C6—C745.0 (5)C4—C10—C11—C12176.76 (13)
C5—C6—C7—C3174.9 (5)C9—C10—C11—C5177.34 (13)
C5—C6—C7—C863.1 (4)C4—C10—C11—C55.3 (2)
C11—C5—C6'—C7'55.1 (9)C6'—C5—C11—C1218.5 (5)
C6—C5—C6'—C7'46.4 (7)C6—C5—C11—C1214.3 (3)
C5—C6'—C7'—C3'168.6 (14)C6'—C5—C11—C10159.3 (5)
C5—C6'—C7'—C872.8 (10)C6—C5—C11—C10167.9 (2)
C3'—C7'—C8—C12169.0 (12)C10—C11—C12—C8179.79 (13)
C6'—C7'—C8—C1248.4 (8)C5—C11—C12—C82.1 (2)
C3'—C7'—C8—C768.8 (13)C10—C11—C12—S10.63 (16)
C6'—C7'—C8—C751.8 (7)C5—C11—C12—S1177.49 (11)
C6—C7—C8—C1248.3 (3)C7'—C8—C12—C1113.1 (5)
C3—C7—C8—C12170.8 (5)C7—C8—C12—C1119.6 (3)
C6—C7—C8—C7'42.9 (5)C7'—C8—C12—S1167.3 (4)
C3—C7—C8—C7'79.6 (7)C7—C8—C12—S1159.94 (19)
C2—N1—C9—C100.6 (2)C9—S1—C12—C110.37 (11)
C2—N1—C9—S1179.55 (10)C9—S1—C12—C8179.97 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···N4i0.892.403.117 (2)137
C5—H5B···N4ii0.962.673.587 (2)160
Symmetry codes: (i) x, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H16N4S
Mr248.35
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.7514 (5), 8.7139 (6), 11.8309 (9)
α, β, γ (°)97.221 (4), 102.820 (4), 112.482 (3)
V3)609.73 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.18 × 0.16 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.957, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
11883, 2641, 2378
Rint0.018
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.112, 1.08
No. of reflections2641
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.31

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···N4i0.8902.4003.117 (2)137
C5—H5B···N4ii0.9602.6683.587 (2)160
Symmetry codes: (i) x, y, z; (ii) x+1, y, z.
 

Acknowledgements

IMK is thankful to the University Grants Commission, India, for financial assistance.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationPanchamukhi, S. I., Fathima, N., Khazi, I. M. & Begum, N. S. (2011). Acta Cryst. E67, o777–o778.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPathak, U. S., Singh, S. & Padh, J. (1991). Indian J. Chem. Sect. B, 30, 618–619.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShishoo, C. J. & Jain, K. S. J. (1992). J. Heterocycl. Chem. 29, 883—893.  CrossRef Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds