organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Anilinium 3,4-dihy­dr­oxy­benzoate

aSchool of Light Industry and Food Science, South China University of Technology, Guangzhou 510641, People's Republic of China
*Correspondence e-mail: simingzhu76@yahoo.com.cn

(Received 11 July 2012; accepted 19 July 2012; online 28 July 2012)

The asymmetric unit of the title salt, C6H8N+·C7H5O4, contains two anilinium cations and two 3,4-dihy­droxy­benzoate anions. An intra­moleculer O—H⋯O hydrogen bond occurs in each anion. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link the cations and anions into a three-dimensional array. The structure is further consolidated by weak C—H⋯O inter­actions.

Related literature

For the pharmacological activity of 3,4-dihy­droxy­benzoic acid derivatives, see: An et al. (2006[An, L. J., Guan, S., Shi, G. F., Bao, Y. M., Duan, Y. L. & Jiang, B. (2006). Food Chem. Toxicol. 44, 436-443.]); Lin et al. (2009[Lin, C. Y., Huang, C. S., Huang, C. Y. & Yin, M. C. (2009). J. Agric. Food Chem. 57, 6661-6667.]). For related structures, see: Mazurek et al. (2007[Mazurek, J., Dova, E. & Helmond, R. (2007). Acta Cryst. E63, o3289.]); Zhu (2010[Zhu, L.-C. (2010). Acta Cryst. E66, o3008.]).

[Scheme 1]

Experimental

Crystal data
  • C6H8N+·C7H5O4

  • Mr = 247.24

  • Triclinic, [P \overline 1]

  • a = 6.8638 (16) Å

  • b = 11.566 (3) Å

  • c = 15.400 (3) Å

  • α = 88.980 (3)°

  • β = 87.517 (2)°

  • γ = 76.302 (2)°

  • V = 1186.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.30 × 0.27 × 0.27 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • 6128 measured reflections

  • 4202 independent reflections

  • 3317 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.05

  • 4202 reflections

  • 332 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O6i 0.89 1.99 2.856 (2) 165
N1—H1B⋯O4ii 0.89 2.44 2.824 (2) 107
N1—H1B⋯O6 0.89 2.06 2.912 (2) 161
N1—H1C⋯O5iii 0.89 1.95 2.831 (2) 170
N2—H2A⋯O1iv 0.89 2.13 2.937 (2) 150
N2—H2A⋯O7 0.89 2.33 2.821 (2) 115
N2—H2B⋯O1v 0.89 2.00 2.842 (2) 159
N2—H2C⋯O2 0.89 1.94 2.816 (2) 168
O3—H3A⋯O4 0.82 2.30 2.717 (2) 112
O3—H3A⋯O6vi 0.82 2.02 2.797 (2) 157
O4—H4A⋯O5vii 0.82 1.83 2.639 (2) 170
O7—H7⋯O2v 0.82 1.82 2.632 (2) 169
O8—H8⋯O1iv 0.82 2.00 2.776 (2) 158
O8—H8⋯O7 0.82 2.30 2.735 (2) 114
C25—H25⋯O3viii 0.93 2.53 3.385 (3) 153
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x-1, y, z; (v) -x+1, -y+1, -z; (vi) x, y-1, z; (vii) -x+1, -y+1, -z+1; (viii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Protocatechuic acid (3,4-dihydroxybenzoic acid) and its derivatives possess diverse pharmacological activities (An et al., 2006; Lin et al., 2009). The molecular and crystal structure of the title compound is presented in this article.

The asymmetric unit of the title compound (Fig. 1) contains two anilinium cations and two singly deprotonated 3,4-dihydroxybenzoate anions. The bond distances and angles in the title compound agree very well with the corresponding bond distances and angles reported in closely related compounds (Mazurek et al., 2007; Zhu, 2010). In the crystal the cations and anions are self-assembled by various O—H···O and N—H···O hydrogen bonds (Table 1 and Fig. 2) to form a superamolecular network. The structure is further consolidated by weak intermolecular interactions of the type C—H···O (Table 1).

Related literature top

For the pharmacological activity of 3,4-dihydroxybenzoic acid derivatives, see: An et al. (2006); Lin et al. (2009). For related structures, see: Mazurek et al. (2007); Zhu (2010).

Experimental top

A mixture of protocatechuic acid (0.31 g, 2 mmol) and aniline (0.19 ml, 2 mmol) was stirred in methanol (20 ml) for 0.5 h at room temperature. After several days colorless block-like crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of the solution.

Refinement top

All H atoms were placed at calculated positions and were treated as riding, with C—H = 0.93 Å, O—H = 0.82 Å, and N—H = 0.89 Å, and Uiso(H) = 1.2 or 1.5 Ueq(C, O, N).

Structure description top

Protocatechuic acid (3,4-dihydroxybenzoic acid) and its derivatives possess diverse pharmacological activities (An et al., 2006; Lin et al., 2009). The molecular and crystal structure of the title compound is presented in this article.

The asymmetric unit of the title compound (Fig. 1) contains two anilinium cations and two singly deprotonated 3,4-dihydroxybenzoate anions. The bond distances and angles in the title compound agree very well with the corresponding bond distances and angles reported in closely related compounds (Mazurek et al., 2007; Zhu, 2010). In the crystal the cations and anions are self-assembled by various O—H···O and N—H···O hydrogen bonds (Table 1 and Fig. 2) to form a superamolecular network. The structure is further consolidated by weak intermolecular interactions of the type C—H···O (Table 1).

For the pharmacological activity of 3,4-dihydroxybenzoic acid derivatives, see: An et al. (2006); Lin et al. (2009). For related structures, see: Mazurek et al. (2007); Zhu (2010).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atomic-numbering scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing showing the hydrogen bonding interactions as broken lines.
Anilinium 3,4-dihydroxybenzoate top
Crystal data top
C6H8N+·C7H5O4Z = 4
Mr = 247.24F(000) = 520
Triclinic, P1Dx = 1.384 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8638 (16) ÅCell parameters from 2457 reflections
b = 11.566 (3) Åθ = 2.2–27.3°
c = 15.400 (3) ŵ = 0.10 mm1
α = 88.980 (3)°T = 296 K
β = 87.517 (2)°Block, colorless
γ = 76.302 (2)°0.30 × 0.27 × 0.27 mm
V = 1186.6 (5) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
3317 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 25.2°, θmin = 1.8°
φ and ω scanh = 88
6128 measured reflectionsk = 1311
4202 independent reflectionsl = 1817
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.1856P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4202 reflectionsΔρmax = 0.18 e Å3
332 parametersΔρmin = 0.19 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.077 (4)
Crystal data top
C6H8N+·C7H5O4γ = 76.302 (2)°
Mr = 247.24V = 1186.6 (5) Å3
Triclinic, P1Z = 4
a = 6.8638 (16) ÅMo Kα radiation
b = 11.566 (3) ŵ = 0.10 mm1
c = 15.400 (3) ÅT = 296 K
α = 88.980 (3)°0.30 × 0.27 × 0.27 mm
β = 87.517 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
3317 reflections with I > 2σ(I)
6128 measured reflectionsRint = 0.024
4202 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.109H-atom parameters constrained
S = 1.05Δρmax = 0.18 e Å3
4202 reflectionsΔρmin = 0.19 e Å3
332 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7332 (2)0.75230 (15)0.52005 (12)0.0372 (4)
C20.7644 (3)0.71776 (19)0.60497 (14)0.0546 (5)
H20.78400.77140.64610.065*
C30.7662 (3)0.6010 (3)0.6283 (2)0.0825 (9)
H30.78690.57600.68560.099*
C40.7375 (4)0.5222 (2)0.5672 (3)0.0927 (10)
H40.73890.44410.58310.111*
C50.7070 (3)0.5584 (2)0.4830 (2)0.0780 (8)
H50.68870.50450.44190.094*
C60.7028 (3)0.67478 (17)0.45810 (15)0.0518 (5)
H60.68010.69980.40090.062*
C70.7273 (2)0.39504 (14)0.11410 (10)0.0289 (4)
C80.7123 (2)0.32018 (14)0.19329 (10)0.0302 (4)
C90.7779 (3)0.34600 (15)0.27309 (10)0.0367 (4)
H90.82730.41360.27900.044*
C100.7701 (2)0.27142 (15)0.34417 (10)0.0363 (4)
H100.81320.28990.39750.044*
C110.6993 (2)0.17023 (14)0.33649 (10)0.0309 (4)
C120.6287 (2)0.14519 (14)0.25711 (10)0.0343 (4)
C130.6371 (2)0.21926 (14)0.18642 (10)0.0328 (4)
H130.59170.20140.13340.039*
C140.2555 (2)0.87609 (14)0.38609 (10)0.0295 (4)
C150.2338 (2)0.80700 (14)0.30781 (10)0.0294 (4)
C160.3636 (3)0.79873 (16)0.23537 (11)0.0432 (5)
H160.46600.83890.23410.052*
C170.3413 (3)0.73098 (17)0.16494 (12)0.0465 (5)
H170.42900.72650.11670.056*
C180.1917 (2)0.67006 (14)0.16508 (10)0.0322 (4)
C190.0601 (2)0.67786 (14)0.23739 (10)0.0329 (4)
C200.0831 (2)0.74530 (15)0.30705 (10)0.0349 (4)
H200.00490.74980.35520.042*
C210.2207 (2)0.24550 (15)0.02540 (12)0.0368 (4)
C220.1956 (3)0.18707 (18)0.10200 (14)0.0498 (5)
H220.17880.22700.15470.060*
C230.1959 (3)0.0664 (2)0.09909 (18)0.0691 (7)
H230.17860.02520.15010.083*
C240.2217 (3)0.0089 (2)0.0209 (2)0.0729 (7)
H240.22530.07190.01930.087*
C250.2423 (3)0.0690 (2)0.05475 (18)0.0655 (6)
H250.25720.02920.10750.079*
C260.2411 (3)0.18871 (17)0.05349 (13)0.0474 (5)
H260.25380.23010.10490.057*
O10.83712 (17)0.46884 (10)0.11452 (7)0.0371 (3)
O20.63288 (17)0.37944 (10)0.04814 (7)0.0381 (3)
O30.5524 (2)0.04784 (12)0.24703 (8)0.0576 (4)
H3A0.52880.02090.29490.086*
O40.68868 (18)0.09263 (10)0.40301 (7)0.0392 (3)
H4A0.74550.11020.44490.059*
O50.14211 (17)0.87197 (11)0.45229 (7)0.0383 (3)
O60.38799 (17)0.93671 (10)0.38500 (7)0.0372 (3)
O70.16366 (18)0.60121 (11)0.09808 (7)0.0410 (3)
H70.23820.60960.05660.062*
O80.0916 (2)0.61981 (14)0.24128 (8)0.0564 (4)
H80.08560.57980.19740.085*
N10.7354 (2)0.87382 (11)0.49340 (9)0.0347 (3)
H1A0.69960.92210.53870.052*
H1B0.64960.89720.45130.052*
H1C0.85850.87630.47400.052*
N20.2307 (2)0.37032 (12)0.02875 (9)0.0370 (3)
H2A0.14060.40820.06820.055*
H2B0.20460.40420.02310.055*
H2C0.35290.37450.04320.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0258 (8)0.0358 (9)0.0509 (11)0.0102 (7)0.0022 (7)0.0026 (8)
C20.0380 (10)0.0650 (13)0.0617 (13)0.0145 (9)0.0075 (9)0.0171 (11)
C30.0515 (13)0.0844 (19)0.110 (2)0.0161 (13)0.0126 (13)0.0570 (17)
C40.0596 (15)0.0493 (15)0.170 (3)0.0166 (12)0.0026 (18)0.0349 (19)
C50.0568 (14)0.0410 (13)0.140 (3)0.0210 (11)0.0147 (15)0.0136 (15)
C60.0416 (10)0.0434 (11)0.0739 (14)0.0179 (9)0.0088 (10)0.0121 (10)
C70.0303 (8)0.0346 (9)0.0250 (8)0.0139 (7)0.0005 (6)0.0022 (7)
C80.0292 (8)0.0353 (9)0.0290 (9)0.0132 (7)0.0003 (6)0.0009 (7)
C90.0468 (10)0.0388 (9)0.0323 (9)0.0250 (8)0.0057 (7)0.0009 (7)
C100.0451 (10)0.0438 (10)0.0269 (9)0.0229 (8)0.0073 (7)0.0020 (7)
C110.0337 (8)0.0351 (9)0.0265 (8)0.0140 (7)0.0010 (6)0.0026 (7)
C120.0437 (9)0.0360 (9)0.0294 (9)0.0216 (8)0.0024 (7)0.0010 (7)
C130.0399 (9)0.0392 (9)0.0248 (8)0.0196 (7)0.0042 (7)0.0016 (7)
C140.0329 (8)0.0316 (8)0.0273 (8)0.0140 (7)0.0031 (7)0.0000 (6)
C150.0334 (8)0.0314 (8)0.0258 (8)0.0122 (7)0.0023 (6)0.0007 (6)
C160.0464 (10)0.0548 (11)0.0395 (10)0.0347 (9)0.0064 (8)0.0117 (8)
C170.0532 (11)0.0617 (12)0.0349 (10)0.0360 (10)0.0161 (8)0.0164 (9)
C180.0410 (9)0.0333 (9)0.0262 (8)0.0164 (7)0.0000 (7)0.0051 (7)
C190.0358 (9)0.0391 (9)0.0298 (9)0.0212 (7)0.0009 (7)0.0030 (7)
C200.0389 (9)0.0458 (10)0.0258 (8)0.0225 (8)0.0063 (7)0.0079 (7)
C210.0274 (8)0.0359 (9)0.0493 (11)0.0110 (7)0.0035 (7)0.0008 (8)
C220.0452 (11)0.0515 (12)0.0556 (12)0.0172 (9)0.0061 (9)0.0093 (9)
C230.0564 (13)0.0617 (15)0.0955 (19)0.0266 (11)0.0168 (13)0.0341 (14)
C240.0565 (14)0.0427 (13)0.123 (2)0.0174 (11)0.0112 (14)0.0040 (14)
C250.0547 (13)0.0544 (14)0.0902 (18)0.0177 (11)0.0034 (12)0.0263 (13)
C260.0394 (10)0.0504 (12)0.0551 (12)0.0160 (9)0.0021 (8)0.0113 (9)
O10.0453 (7)0.0425 (7)0.0315 (6)0.0267 (6)0.0009 (5)0.0008 (5)
O20.0431 (7)0.0504 (7)0.0280 (6)0.0251 (6)0.0055 (5)0.0041 (5)
O30.1055 (11)0.0573 (8)0.0308 (7)0.0590 (8)0.0125 (7)0.0049 (6)
O40.0561 (8)0.0426 (7)0.0276 (6)0.0279 (6)0.0103 (5)0.0056 (5)
O50.0409 (6)0.0545 (8)0.0262 (6)0.0248 (6)0.0026 (5)0.0082 (5)
O60.0449 (7)0.0436 (7)0.0317 (6)0.0269 (6)0.0016 (5)0.0054 (5)
O70.0540 (8)0.0497 (7)0.0290 (6)0.0322 (6)0.0094 (5)0.0139 (5)
O80.0646 (9)0.0825 (10)0.0408 (8)0.0562 (8)0.0168 (6)0.0242 (7)
N10.0354 (7)0.0357 (8)0.0353 (8)0.0127 (6)0.0002 (6)0.0032 (6)
N20.0379 (8)0.0379 (8)0.0373 (8)0.0132 (6)0.0005 (6)0.0023 (6)
Geometric parameters (Å, º) top
C1—C21.371 (3)C16—C171.384 (2)
C1—C61.376 (3)C16—H160.9300
C1—N11.460 (2)C17—C181.376 (2)
C2—C31.389 (3)C17—H170.9300
C2—H20.9300C18—O71.3619 (18)
C3—C41.374 (4)C18—C191.394 (2)
C3—H30.9300C19—O81.3646 (18)
C4—C51.364 (4)C19—C201.374 (2)
C4—H40.9300C20—H200.9300
C5—C61.387 (3)C21—C221.374 (3)
C5—H50.9300C21—C261.377 (3)
C6—H60.9300C21—N21.463 (2)
C7—O11.2655 (17)C22—C231.396 (3)
C7—O21.2663 (18)C22—H220.9300
C7—C81.497 (2)C23—C241.371 (4)
C8—C91.388 (2)C23—H230.9300
C8—C131.391 (2)C24—C251.364 (3)
C9—C101.389 (2)C24—H240.9300
C9—H90.9300C25—C261.383 (3)
C10—C111.378 (2)C25—H250.9300
C10—H100.9300C26—H260.9300
C11—O41.3609 (18)O3—H3A0.8200
C11—C121.394 (2)O4—H4A0.8200
C12—O31.3635 (18)O7—H70.8200
C12—C131.381 (2)O8—H80.8200
C13—H130.9300N1—H1A0.8900
C14—O51.2628 (19)N1—H1B0.8900
C14—O61.2722 (18)N1—H1C0.8900
C14—C151.490 (2)N2—H2A0.8900
C15—C161.387 (2)N2—H2B0.8900
C15—C201.389 (2)N2—H2C0.8900
C2—C1—C6121.80 (18)C15—C16—H16119.8
C2—C1—N1119.70 (17)C18—C17—C16121.12 (15)
C6—C1—N1118.49 (16)C18—C17—H17119.4
C1—C2—C3118.6 (2)C16—C17—H17119.4
C1—C2—H2120.7O7—C18—C17123.75 (15)
C3—C2—H2120.7O7—C18—C19117.17 (13)
C4—C3—C2120.3 (3)C17—C18—C19119.08 (15)
C4—C3—H3119.8O8—C19—C20118.75 (14)
C2—C3—H3119.8O8—C19—C18121.81 (14)
C5—C4—C3120.1 (2)C20—C19—C18119.44 (14)
C5—C4—H4120.0C19—C20—C15122.05 (14)
C3—C4—H4120.0C19—C20—H20119.0
C4—C5—C6120.8 (3)C15—C20—H20119.0
C4—C5—H5119.6C22—C21—C26121.61 (17)
C6—C5—H5119.6C22—C21—N2118.65 (16)
C1—C6—C5118.4 (2)C26—C21—N2119.72 (16)
C1—C6—H6120.8C21—C22—C23118.6 (2)
C5—C6—H6120.8C21—C22—H22120.7
O1—C7—O2122.50 (13)C23—C22—H22120.7
O1—C7—C8119.26 (13)C24—C23—C22119.9 (2)
O2—C7—C8118.21 (13)C24—C23—H23120.1
C9—C8—C13118.72 (14)C22—C23—H23120.1
C9—C8—C7121.95 (14)C25—C24—C23120.7 (2)
C13—C8—C7119.29 (14)C25—C24—H24119.6
C8—C9—C10120.33 (15)C23—C24—H24119.6
C8—C9—H9119.8C24—C25—C26120.4 (2)
C10—C9—H9119.8C24—C25—H25119.8
C11—C10—C9120.67 (15)C26—C25—H25119.8
C11—C10—H10119.7C21—C26—C25118.8 (2)
C9—C10—H10119.7C21—C26—H26120.6
O4—C11—C10123.95 (14)C25—C26—H26120.6
O4—C11—C12116.70 (13)C12—O3—H3A109.5
C10—C11—C12119.33 (14)C11—O4—H4A109.5
O3—C12—C13118.67 (14)C18—O7—H7109.5
O3—C12—C11121.43 (14)C19—O8—H8109.5
C13—C12—C11119.90 (14)C1—N1—H1A109.5
C12—C13—C8121.02 (14)C1—N1—H1B109.5
C12—C13—H13119.5H1A—N1—H1B109.5
C8—C13—H13119.5C1—N1—H1C109.5
O5—C14—O6121.70 (14)H1A—N1—H1C109.5
O5—C14—C15118.76 (13)H1B—N1—H1C109.5
O6—C14—C15119.54 (13)C21—N2—H2A109.5
C16—C15—C20117.95 (14)C21—N2—H2B109.5
C16—C15—C14122.22 (14)H2A—N2—H2B109.5
C20—C15—C14119.81 (14)C21—N2—H2C109.5
C17—C16—C15120.36 (15)H2A—N2—H2C109.5
C17—C16—H16119.8H2B—N2—H2C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6i0.891.992.856 (2)165
N1—H1B···O4ii0.892.442.824 (2)107
N1—H1B···O60.892.062.912 (2)161
N1—H1C···O5iii0.891.952.831 (2)170
N2—H2A···O1iv0.892.132.937 (2)150
N2—H2A···O70.892.332.821 (2)115
N2—H2B···O1v0.892.002.842 (2)159
N2—H2C···O20.891.942.816 (2)168
O3—H3A···O40.822.302.717 (2)112
O3—H3A···O6vi0.822.022.797 (2)157
O4—H4A···O5vii0.821.832.639 (2)170
O7—H7···O2v0.821.822.632 (2)169
O8—H8···O1iv0.822.002.776 (2)158
O8—H8···O70.822.302.735 (2)114
C20—H20···O50.932.482.791 (2)100
C25—H25···O3viii0.932.533.385 (3)153
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x1, y, z; (v) x+1, y+1, z; (vi) x, y1, z; (vii) x+1, y+1, z+1; (viii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC6H8N+·C7H5O4
Mr247.24
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.8638 (16), 11.566 (3), 15.400 (3)
α, β, γ (°)88.980 (3), 87.517 (2), 76.302 (2)
V3)1186.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.27 × 0.27
Data collection
DiffractometerBruker APEXII area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6128, 4202, 3317
Rint0.024
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.05
No. of reflections4202
No. of parameters332
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6i0.89001.99002.856 (2)165
N1—H1B···O4ii0.89002.44002.824 (2)107
N1—H1B···O60.89002.06002.912 (2)161
N1—H1C···O5iii0.89001.95002.831 (2)170
N2—H2A···O1iv0.89002.13002.937 (2)150
N2—H2A···O70.89002.33002.821 (2)115
N2—H2B···O1v0.89002.00002.842 (2)159
N2—H2C···O20.89001.94002.816 (2)168
O3—H3A···O40.82002.30002.717 (2)112
O3—H3A···O6vi0.82002.02002.797 (2)157
O4—H4A···O5vii0.82001.83002.639 (2)170
O7—H7···O2v0.82001.82002.632 (2)169
O8—H8···O1iv0.82002.00002.776 (2)158
O8—H8···O70.82002.30002.735 (2)114
C25—H25···O3viii0.93002.53003.385 (3)153
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x1, y, z; (v) x+1, y+1, z; (vi) x, y1, z; (vii) x+1, y+1, z+1; (viii) x+1, y, z.
 

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities of South China University of Technology (grant No. 2012ZM0072).

References

First citationAn, L. J., Guan, S., Shi, G. F., Bao, Y. M., Duan, Y. L. & Jiang, B. (2006). Food Chem. Toxicol. 44, 436–443.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationLin, C. Y., Huang, C. S., Huang, C. Y. & Yin, M. C. (2009). J. Agric. Food Chem. 57, 6661–6667.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMazurek, J., Dova, E. & Helmond, R. (2007). Acta Cryst. E63, o3289.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, L.-C. (2010). Acta Cryst. E66, o3008.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds