organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­methyl anthracene-2,3,6,7-tetra­carboxyl­ate–tetra­methyl 9,10-di­hydro-9,10-dioxoanthracene-2,3,6,7-tetra­carboxyl­ate (1/1)1

aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA, bGEO Specialty Chemicals, WTC Process Technology Laboratory, Louisiana Business and Technology Center, 8000 GSRI Avenue, Building 3100, Baton Rouge, LA 70820, USA, and cDepartment of Chemistry, 4202 E. Fowler Avenue, CHE 205, University of South Florida, Tampa, Florida 33620, USA
*Correspondence e-mail: ffroncz@lsu.edu

(Received 11 July 2012; accepted 16 July 2012; online 25 July 2012)

In the title co-crystal, C22H16O10·C22H18O8, the independent tetra­methyl 9,10-dihydro-9,10-dioxoanthracene-2,3,6,7-tetra­carboxyl­ate, (I), and tetra­methyl anthracene-2,3,6,7-tetra­carboxyl­ate, (II), components occupy separate crystallographic inversion centers. In (II), the dihedral angles between the mean aromatic plane and the two independent carboxyl­ate planes are 41.32 (10) and −38.35 (10)°. The methyl­carboxyl­ate groups of (I) are disordered, with each resolvable into two groups. In the least disordered carboxyl­ate, the apparent angles between the mean aromatic plane and the two partial carboxyl­ate planes [site occupations = 0.510 (3) and 0.490 (3)] are 16.8 (3) and 23.3 (3)°. In the highly disordered group, the apparent angles between the mean aromatic plane and the two partial carboxyl­ate planes [site occupations = 0.510 (3) and 0.490 (3)] are 78.3 (3) and −74.1 (3)°. In addition, this extreme disorder leads to an artificially elongated C(aromatic)—C(carbox­yl) bond.

Related literature

For (I)[link], see: Tarnchompoo et al. (1987[Tarnchompoo, B., Thebtaranonth, C. & Thebtaranonth, Y. (1987). Tetrahedron Lett. 28, 6671-6674.]). For (II), see: Luo & Hart (1988[Luo, J. & Hart, H. (1988). J. Org. Chem. 53, 1341-1343.]); Morris et al. (1994[Morris, J. L., Becker, C. L., Fronczek, F. R., Daly, W. H. & McLaughlin, M. L. (1994). J. Org. Chem. 59, 6484-6486.]); Yanagimoto et al. (2006[Yanagimoto, Y., Takaguchi, Y., Tsuboi, S., Ichihara, M. & Ohta, K. (2006). Bull. Chem. Soc. Jpn, 79, 1265-1270.]).

[Scheme 1]

Experimental

Crystal data
  • C22H16O10·C22H18O8

  • Mr = 850.71

  • Triclinic, [P \overline 1]

  • a = 8.2110 (3) Å

  • b = 9.5965 (3) Å

  • c = 12.0886 (5) Å

  • α = 86.281 (2)°

  • β = 81.514 (2)°

  • γ = 81.705 (2)°

  • V = 931.34 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 90 K

  • 0.40 × 0.24 × 0.14 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.954, Tmax = 0.984

  • 12654 measured reflections

  • 7048 independent reflections

  • 4579 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.154

  • S = 1.03

  • 7048 reflections

  • 326 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The room temperature crystal structure of anthracene dedrivative (II) was determined by Morris et al. (1994). Along with pure crystals of (II), they obtained the co-crystalled product reported here. It is presumed that the anthraquinone derivative ((I)) was formed as an air oxidation product of (II).

The structure exhibits little aromatic ring stacking, with closest contacts C4···C18(at -x, -y, -z) 3.486 (2) and C2···C16(at -x, -y, -z) 3.575 (2) Å.

Related literature top

For (I), see: Tarnchompoo et al. (1987). For (II), see: Luo & Hart (1988); Morris et al. (1994); Yanagimoto et al. (2006).

Experimental top

The synthesis of (II) was reported by Morris et al. (1994). It is presumed that the anthraquinone derivative ((I)) was formed as an air oxidation product of (II).

Refinement top

All H atoms were placed in calculated positions, guided by difference maps, with C—H bond distances 0.95 (aromatic-H) and 0.98 (methyl-H), displacement parameters Uiso=1.2Ueq (aromatic C) and 1.5Ueq (methyl-C), and thereafter refined as riding.

The site occupation factor for disordered atoms O2A and O2B were constrained to be X1 and 1 - X1 respectively, and both atoms were constrained to have the same anisotropic displacement paramters; X1 was refined to a value of 0.510 (3). Likewise, site occupation factor X2 was independently refined to a value of 0.510 (3) for disordered methylcarboxylate O4A, C10A, O5A, C11A (1 - X2 for O4B, C10B, O5B, C11B).

Structure description top

The room temperature crystal structure of anthracene dedrivative (II) was determined by Morris et al. (1994). Along with pure crystals of (II), they obtained the co-crystalled product reported here. It is presumed that the anthraquinone derivative ((I)) was formed as an air oxidation product of (II).

The structure exhibits little aromatic ring stacking, with closest contacts C4···C18(at -x, -y, -z) 3.486 (2) and C2···C16(at -x, -y, -z) 3.575 (2) Å.

For (I), see: Tarnchompoo et al. (1987). For (II), see: Luo & Hart (1988); Morris et al. (1994); Yanagimoto et al. (2006).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom numbering scheme showing disorder. Displacement ellipsoids are drawn at the 30% probability level. H atoms were omitted for clarity.
[Figure 2] Fig. 2. The molecular structure of (I) with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms were omitted for clarity.
Tetramethyl anthracene-2,3,6,7-tetracarboxylate– tetramethyl 9,10-dihydro-9,10-dioxoanthracene-2,3,6,7-tetracarboxylate (1/1) top
Crystal data top
C22H16O10·C22H18O8Z = 1
Mr = 850.71F(000) = 442
Triclinic, P1Dx = 1.517 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2110 (3) ÅCell parameters from 6290 reflections
b = 9.5965 (3) Åθ = 2.6–33.1°
c = 12.0886 (5) ŵ = 0.12 mm1
α = 86.281 (2)°T = 90 K
β = 81.514 (2)°Plate, yellow
γ = 81.705 (2)°0.40 × 0.24 × 0.14 mm
V = 931.34 (6) Å3
Data collection top
Nonius KappaCCD
diffractometer
7048 independent reflections
Radiation source: sealed tube4579 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.030
Detector resolution: 9 pixels mm-1θmax = 33.1°, θmin = 2.7°
CCD rotation images, thick slices scansh = 1112
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1414
Tmin = 0.954, Tmax = 0.984l = 1818
12654 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0865P)2]
where P = (Fo2 + 2Fc2)/3
7048 reflections(Δ/σ)max = 0.001
326 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.30 e Å3
3 constraints
Crystal data top
C22H16O10·C22H18O8γ = 81.705 (2)°
Mr = 850.71V = 931.34 (6) Å3
Triclinic, P1Z = 1
a = 8.2110 (3) ÅMo Kα radiation
b = 9.5965 (3) ŵ = 0.12 mm1
c = 12.0886 (5) ÅT = 90 K
α = 86.281 (2)°0.40 × 0.24 × 0.14 mm
β = 81.514 (2)°
Data collection top
Nonius KappaCCD
diffractometer
7048 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
4579 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.984Rint = 0.030
12654 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.03Δρmax = 0.45 e Å3
7048 reflectionsΔρmin = 0.30 e Å3
326 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.17551 (13)0.04598 (11)0.45522 (9)0.0160 (2)
C20.03630 (13)0.08672 (11)0.40307 (9)0.0146 (2)
C30.07556 (13)0.17164 (11)0.31043 (9)0.0165 (2)
H30.18850.1980.280.02*
C40.05059 (14)0.21760 (12)0.26265 (10)0.0185 (2)
C50.21709 (14)0.17679 (13)0.30674 (11)0.0231 (3)
C60.25640 (14)0.08911 (13)0.39726 (11)0.0228 (3)
H60.36940.05920.42560.027*
C70.12956 (13)0.04518 (11)0.44636 (9)0.0160 (2)
C80.00953 (15)0.31246 (14)0.16572 (11)0.0256 (3)
O2A0.1090 (3)0.3944 (3)0.1466 (2)0.0274 (4)0.510 (3)
O2B0.1136 (3)0.3369 (3)0.1098 (2)0.0274 (4)0.490 (3)
C90.20164 (16)0.42773 (13)0.03751 (11)0.0258 (3)
H9A0.19590.52420.06820.039*
H9B0.3160.41880.00390.039*
H9C0.12770.40630.01980.039*
C10A0.3594 (5)0.2057 (4)0.2470 (3)0.0179 (7)0.490 (3)
O4A0.4377 (3)0.1268 (3)0.18701 (17)0.0208 (5)0.490 (3)
O5A0.3849 (4)0.3372 (3)0.2787 (3)0.0264 (5)0.490 (3)
C11A0.4895 (4)0.3982 (3)0.2144 (3)0.0336 (8)0.490 (3)
H11A0.60120.39580.25680.05*0.490 (3)
H11B0.44240.4960.19960.05*0.490 (3)
H11C0.4960.3440.14330.05*0.490 (3)
C10B0.3558 (5)0.2516 (4)0.2748 (4)0.0188 (7)0.510 (3)
O4B0.4236 (3)0.3413 (3)0.3294 (2)0.0263 (5)0.510 (3)
O5B0.3920 (3)0.1937 (3)0.17661 (18)0.0219 (5)0.510 (3)
C11B0.4997 (3)0.2659 (3)0.1233 (2)0.0274 (6)0.510 (3)
H11D0.55110.33270.17740.041*0.510 (3)
H11E0.43450.3170.06020.041*0.510 (3)
H11F0.58660.1970.09590.041*0.510 (3)
O10.31995 (10)0.08674 (9)0.41989 (8)0.0246 (2)
O30.15036 (10)0.32984 (9)0.12660 (7)0.02195 (19)
C120.16785 (13)0.04142 (11)0.04459 (9)0.0160 (2)
H120.28060.06980.07430.019*
C130.12949 (13)0.04723 (11)0.04583 (9)0.0151 (2)
C140.25614 (13)0.09921 (12)0.09405 (10)0.0178 (2)
H140.36930.07250.06440.021*
C150.21832 (13)0.18678 (12)0.18222 (9)0.0163 (2)
C160.04783 (13)0.22772 (11)0.22822 (9)0.0147 (2)
C170.07649 (13)0.17920 (11)0.18403 (9)0.0155 (2)
H170.18890.20620.21540.019*
C180.04030 (13)0.08847 (11)0.09143 (9)0.0145 (2)
C190.36209 (14)0.23079 (12)0.22755 (10)0.0192 (2)
C200.46657 (16)0.28536 (17)0.38791 (12)0.0338 (3)
H20A0.48570.37760.35280.051*
H20B0.43170.29460.46850.051*
H20C0.56950.21920.37560.051*
C210.00127 (13)0.33641 (12)0.31496 (9)0.0167 (2)
C220.19237 (15)0.41180 (12)0.47134 (10)0.0221 (2)
H22A0.22220.50270.43250.033*
H22B0.29110.38380.51850.033*
H22C0.10690.42030.51830.033*
O60.48764 (10)0.25750 (10)0.16986 (8)0.0285 (2)
O70.33807 (10)0.23321 (10)0.33907 (7)0.0266 (2)
O80.06719 (12)0.44073 (9)0.31555 (8)0.0276 (2)
O90.12862 (9)0.30601 (8)0.38957 (7)0.01791 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0173 (5)0.0168 (5)0.0150 (5)0.0030 (4)0.0027 (4)0.0062 (4)
C20.0171 (5)0.0146 (5)0.0131 (5)0.0021 (4)0.0038 (4)0.0047 (4)
C30.0179 (5)0.0170 (5)0.0150 (5)0.0007 (4)0.0041 (4)0.0058 (4)
C40.0210 (5)0.0191 (5)0.0164 (5)0.0013 (4)0.0041 (4)0.0086 (4)
C50.0193 (5)0.0290 (6)0.0238 (6)0.0032 (4)0.0061 (4)0.0145 (5)
C60.0173 (5)0.0296 (6)0.0235 (6)0.0025 (4)0.0039 (4)0.0153 (5)
C70.0178 (5)0.0155 (5)0.0157 (5)0.0017 (4)0.0032 (4)0.0069 (4)
C80.0228 (6)0.0311 (6)0.0244 (6)0.0008 (5)0.0061 (5)0.0164 (5)
O2A0.0273 (6)0.0296 (11)0.0287 (12)0.0019 (9)0.0094 (8)0.0177 (7)
O2B0.0273 (6)0.0296 (11)0.0287 (12)0.0019 (9)0.0094 (8)0.0177 (7)
C90.0321 (6)0.0267 (6)0.0190 (6)0.0009 (5)0.0019 (5)0.0130 (5)
C10A0.0212 (13)0.0160 (17)0.018 (2)0.0030 (14)0.0031 (13)0.0074 (12)
O4A0.0196 (9)0.0201 (11)0.0237 (10)0.0005 (8)0.0080 (7)0.0024 (8)
O5A0.0400 (15)0.0175 (10)0.0285 (14)0.0119 (9)0.0197 (12)0.0009 (10)
C11A0.0434 (17)0.0230 (13)0.0428 (18)0.0121 (11)0.0256 (14)0.0032 (12)
C10B0.0191 (12)0.022 (2)0.0170 (18)0.0014 (15)0.0046 (12)0.0077 (13)
O4B0.0326 (11)0.0298 (11)0.0209 (12)0.0155 (8)0.0054 (10)0.0043 (10)
O5B0.0216 (10)0.0268 (12)0.0208 (10)0.0071 (9)0.0112 (7)0.0003 (8)
C11B0.0249 (12)0.0382 (14)0.0236 (13)0.0110 (10)0.0096 (10)0.0052 (10)
O10.0178 (4)0.0311 (5)0.0257 (5)0.0031 (3)0.0004 (3)0.0152 (4)
O30.0260 (4)0.0240 (4)0.0168 (4)0.0049 (3)0.0000 (3)0.0115 (3)
C120.0122 (5)0.0204 (5)0.0159 (5)0.0019 (4)0.0008 (4)0.0067 (4)
C130.0145 (5)0.0173 (5)0.0140 (5)0.0025 (4)0.0014 (4)0.0053 (4)
C140.0144 (5)0.0226 (5)0.0174 (5)0.0038 (4)0.0014 (4)0.0076 (4)
C150.0156 (5)0.0192 (5)0.0153 (5)0.0047 (4)0.0016 (4)0.0051 (4)
C160.0172 (5)0.0152 (5)0.0120 (5)0.0029 (4)0.0009 (4)0.0039 (4)
C170.0146 (5)0.0178 (5)0.0140 (5)0.0019 (4)0.0008 (4)0.0046 (4)
C180.0146 (5)0.0167 (5)0.0129 (5)0.0028 (4)0.0016 (4)0.0046 (4)
C190.0170 (5)0.0224 (5)0.0196 (6)0.0032 (4)0.0029 (4)0.0098 (4)
C200.0235 (6)0.0548 (9)0.0280 (7)0.0077 (6)0.0098 (5)0.0189 (6)
C210.0187 (5)0.0183 (5)0.0137 (5)0.0024 (4)0.0030 (4)0.0041 (4)
C220.0260 (6)0.0225 (5)0.0171 (6)0.0007 (4)0.0006 (4)0.0104 (4)
O60.0196 (4)0.0419 (5)0.0265 (5)0.0119 (4)0.0014 (3)0.0144 (4)
O70.0222 (4)0.0437 (5)0.0180 (4)0.0107 (4)0.0054 (3)0.0107 (4)
O80.0393 (5)0.0219 (4)0.0228 (5)0.0140 (4)0.0054 (4)0.0093 (3)
O90.0181 (4)0.0202 (4)0.0160 (4)0.0039 (3)0.0007 (3)0.0089 (3)
Geometric parameters (Å, º) top
C1—O11.2166 (13)O5B—C11B1.442 (3)
C1—C21.4934 (14)C11B—H11D0.98
C1—C7i1.4935 (14)C11B—H11E0.98
C2—C71.3956 (15)C11B—H11F0.98
C2—C31.3994 (14)C12—C131.3998 (14)
C3—C41.3938 (15)C12—C18ii1.4021 (14)
C3—H30.95C12—H120.95
C4—C51.4015 (16)C13—C141.4270 (14)
C4—C81.4995 (15)C13—C181.4305 (15)
C5—C61.3951 (16)C14—C151.3718 (15)
C5—C10A1.527 (4)C14—H140.95
C5—C10B1.537 (4)C15—C161.4364 (15)
C6—C71.3987 (15)C15—C191.4957 (15)
C6—H60.95C16—C171.3691 (14)
C7—C1i1.4935 (14)C16—C211.4974 (14)
C8—O2B1.221 (3)C17—C181.4329 (14)
C8—O2A1.267 (3)C17—H170.95
C8—O31.3187 (14)C18—C12ii1.4021 (14)
C9—O31.4501 (13)C19—O61.2064 (14)
C9—H9A0.98C19—O71.3346 (15)
C9—H9B0.98C20—O71.4446 (13)
C9—H9C0.98C20—H20A0.98
C10A—O4A1.199 (4)C20—H20B0.98
C10A—O5A1.331 (4)C20—H20C0.98
O5A—C11A1.444 (3)C21—O81.2056 (13)
C11A—H11A0.98C21—O91.3445 (13)
C11A—H11B0.98C22—O91.4512 (13)
C11A—H11C0.98C22—H22A0.98
C10B—O4B1.201 (4)C22—H22B0.98
C10B—O5B1.333 (4)C22—H22C0.98
O1—C1—C2121.43 (9)C8—O3—C9115.83 (9)
O1—C1—C7i121.49 (9)C13—C12—C18ii120.19 (10)
C2—C1—C7i117.08 (9)C13—C12—H12119.9
C7—C2—C3120.05 (9)C18ii—C12—H12119.9
C7—C2—C1121.57 (9)C12—C13—C14121.62 (9)
C3—C2—C1118.37 (9)C12—C13—C18119.87 (9)
C4—C3—C2120.16 (10)C14—C13—C18118.51 (9)
C4—C3—H3119.9C15—C14—C13121.55 (10)
C2—C3—H3119.9C15—C14—H14119.2
C3—C4—C5119.74 (10)C13—C14—H14119.2
C3—C4—C8120.53 (10)C14—C15—C16119.90 (9)
C5—C4—C8119.72 (10)C14—C15—C19116.52 (10)
C6—C5—C4120.10 (10)C16—C15—C19123.55 (9)
C6—C5—C10A117.66 (17)C17—C16—C15119.93 (9)
C4—C5—C10A121.49 (17)C17—C16—C21118.53 (9)
C6—C5—C10B117.84 (17)C15—C16—C21121.13 (9)
C4—C5—C10B120.72 (16)C16—C17—C18121.24 (10)
C5—C6—C7120.05 (10)C16—C17—H17119.4
C5—C6—H6120C18—C17—H17119.4
C7—C6—H6120C12ii—C18—C13119.93 (9)
C2—C7—C6119.86 (10)C12ii—C18—C17121.20 (10)
C2—C7—C1i121.33 (9)C13—C18—C17118.86 (9)
C6—C7—C1i118.81 (9)O6—C19—O7123.75 (10)
O2B—C8—O3121.61 (16)O6—C19—C15123.71 (11)
O2A—C8—O3123.52 (14)O7—C19—C15112.51 (10)
O2B—C8—C4122.73 (15)O7—C20—H20A109.5
O2A—C8—C4121.19 (15)O7—C20—H20B109.5
O3—C8—C4112.55 (9)H20A—C20—H20B109.5
O3—C9—H9A109.5O7—C20—H20C109.5
O3—C9—H9B109.5H20A—C20—H20C109.5
H9A—C9—H9B109.5H20B—C20—H20C109.5
O3—C9—H9C109.5O8—C21—O9124.17 (10)
H9A—C9—H9C109.5O8—C21—C16124.51 (10)
H9B—C9—H9C109.5O9—C21—C16111.26 (9)
O4A—C10A—O5A126.1 (4)O9—C22—H22A109.5
O4A—C10A—C5128.3 (3)O9—C22—H22B109.5
O5A—C10A—C5105.6 (3)H22A—C22—H22B109.5
C10A—O5A—C11A115.2 (3)O9—C22—H22C109.5
O4B—C10B—O5B126.2 (3)H22A—C22—H22C109.5
O4B—C10B—C5126.9 (3)H22B—C22—H22C109.5
O5B—C10B—C5106.9 (3)C19—O7—C20115.38 (10)
C10B—O5B—C11B115.1 (2)C21—O9—C22115.34 (8)
O1—C1—C2—C7177.20 (11)C10A—C5—C10B—O4B161.3 (11)
C7i—C1—C2—C71.92 (18)C6—C5—C10B—O5B110.9 (3)
O1—C1—C2—C31.13 (17)C4—C5—C10B—O5B82.3 (3)
C7i—C1—C2—C3179.75 (10)C10A—C5—C10B—O5B16.0 (6)
C7—C2—C3—C41.43 (17)O4B—C10B—O5B—C11B12.7 (5)
C1—C2—C3—C4176.91 (10)C5—C10B—O5B—C11B169.9 (2)
C2—C3—C4—C50.90 (18)O2B—C8—O3—C923.4 (2)
C2—C3—C4—C8178.00 (11)O2A—C8—O3—C914.7 (2)
C3—C4—C5—C60.8 (2)C4—C8—O3—C9176.06 (10)
C8—C4—C5—C6179.69 (12)C18ii—C12—C13—C14178.77 (11)
C3—C4—C5—C10A170.7 (2)C18ii—C12—C13—C180.79 (18)
C8—C4—C5—C10A10.4 (3)C12—C13—C14—C15179.59 (11)
C3—C4—C5—C10B165.8 (2)C18—C13—C14—C150.04 (17)
C8—C4—C5—C10B13.2 (3)C13—C14—C15—C160.19 (18)
C4—C5—C6—C71.9 (2)C13—C14—C15—C19178.28 (10)
C10A—C5—C6—C7172.2 (2)C14—C15—C16—C170.04 (17)
C10B—C5—C6—C7165.0 (2)C19—C15—C16—C17177.91 (11)
C3—C2—C7—C60.28 (17)C14—C15—C16—C21172.59 (11)
C1—C2—C7—C6178.01 (11)C19—C15—C16—C219.46 (17)
C3—C2—C7—C1i179.70 (10)C15—C16—C17—C180.50 (17)
C1—C2—C7—C1i2.00 (18)C21—C16—C17—C18172.32 (10)
C5—C6—C7—C21.40 (19)C12—C13—C18—C12ii0.79 (18)
C5—C6—C7—C1i178.62 (12)C14—C13—C18—C12ii178.78 (10)
C3—C4—C8—O2B167.8 (2)C12—C13—C18—C17179.96 (10)
C5—C4—C8—O2B13.3 (3)C14—C13—C18—C170.48 (16)
C3—C4—C8—O2A154.37 (19)C16—C17—C18—C12ii178.53 (11)
C5—C4—C8—O2A24.5 (2)C16—C17—C18—C130.72 (17)
C3—C4—C8—O37.51 (18)C14—C15—C19—O637.99 (17)
C5—C4—C8—O3173.58 (12)C16—C15—C19—O6143.99 (13)
C6—C5—C10A—O4A71.8 (4)C14—C15—C19—O7140.16 (11)
C4—C5—C10A—O4A98.4 (4)C16—C15—C19—O737.85 (16)
C10B—C5—C10A—O4A167.6 (11)C17—C16—C21—O8134.54 (13)
C6—C5—C10A—O5A105.8 (3)C15—C16—C21—O838.19 (17)
C4—C5—C10A—O5A84.1 (3)C17—C16—C21—O942.72 (14)
C10B—C5—C10A—O5A9.9 (6)C15—C16—C21—O9144.55 (11)
O4A—C10A—O5A—C11A15.1 (6)O6—C19—O7—C206.45 (18)
C5—C10A—O5A—C11A167.3 (3)C15—C19—O7—C20175.39 (10)
C6—C5—C10B—O4B66.5 (4)O8—C21—O9—C222.47 (17)
C4—C5—C10B—O4B100.4 (4)C16—C21—O9—C22174.80 (9)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC22H16O10·C22H18O8
Mr850.71
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)8.2110 (3), 9.5965 (3), 12.0886 (5)
α, β, γ (°)86.281 (2), 81.514 (2), 81.705 (2)
V3)931.34 (6)
Z1
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.40 × 0.24 × 0.14
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.954, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
12654, 7048, 4579
Rint0.030
(sin θ/λ)max1)0.769
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.154, 1.03
No. of reflections7048
No. of parameters326
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.30

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Footnotes

1CAS 116896-77-6 and 113431-17-7.

Acknowledgements

The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLuo, J. & Hart, H. (1988). J. Org. Chem. 53, 1341–1343.  CrossRef CAS Web of Science Google Scholar
First citationMorris, J. L., Becker, C. L., Fronczek, F. R., Daly, W. H. & McLaughlin, M. L. (1994). J. Org. Chem. 59, 6484–6486.  CSD CrossRef CAS Web of Science Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarnchompoo, B., Thebtaranonth, C. & Thebtaranonth, Y. (1987). Tetrahedron Lett. 28, 6671–6674.  CrossRef CAS Web of Science Google Scholar
First citationYanagimoto, Y., Takaguchi, Y., Tsuboi, S., Ichihara, M. & Ohta, K. (2006). Bull. Chem. Soc. Jpn, 79, 1265–1270.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds