organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3,4-Di­methyl-5,5-dioxo-2H,4H-pyrazolo­[4,3-c][1,2]benzo­thia­zin-2-yl)-N-(2-fluoro­benz­yl)acetamide

aDepartment of Chemistry, Government College University, Faisalabad 38000, Pakistan, bInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, and cDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: drhamidlatif@hotmail.com

(Received 12 July 2012; accepted 12 July 2012; online 18 July 2012)

In the title mol­ecule, C20H19FN4O3S, the heterocyclic thia­zine ring adopts a half-chair conformation with the S atom displaced by 0.668 (4) Å from the mean plane formed by the remaining ring atoms. The mean planes of the benzene and pyrazole rings are inclined with respect to each other at a dihedral angle of 17.4 (3)°. The acetamide chain (O/N/C/C/C) linking the pyrazole and 2-fluoro­benzyl rings is essentially planar (r.m.s. deviation = 0.030 Å) and forms dihedral angles with the mean planes of these rings of 78.8 (2) and 78.89 (14)°, respectively. The crystal structure is stabilized by N—H⋯O and C—H⋯O hydrogen-bonding inter­actions, resulting in a six-membered ring with an R21(6) motif, while C—H⋯O and C—H⋯F hydrogen-bonding inter­actions result in chains of mol­ecules lying along the c axis in a zigzag fashion.

Related literature

For biological activities of benzothia­zine derivatives, see: Turck et al. (1996[Turck, D., Roth, W. & Busch, U. (1996). Br. J. Rheumatol. 35, 13-16.]); Silverstein et al. (2000[Silverstein, F. E., Faich, G., Goldstein, J. L., Simon, L. S., Pincus, T., Whelton, A., Makuch, R., Eisen, G., Agrawal, N. M., Stenson, W. F., Burr, A. M., Zhao, W. W., Kent, J. D., Lefkowith, J. B., Verburg, K. M. & Geis, G. S. (2000). J. Am. Med. Assoc. 284, 1247-1255.]); Lombardino et al. (1973[Lombardino, J. G., Wiseman, E. H. & Chiaini, J. (1973). J. Med. Chem. 16, 493-496.]); Zinnes et al. (1973[Zinnes, H., Lindo, N. A., Sircar, J. C., Schwartz, M. L. & Shavel, J. Jr (1973). J. Med. Chem. 16, 44-48.]); Ahmad, Siddiqui, Ahmad et al. (2010[Ahmad, M., Siddiqui, H. L., Ahmad, S., Parvez, M. & Tizzard, G. J. (2010). J. Chem. Crystallogr. 40, 1188-1194.]); Ahmad, Siddiqui, Zia-ur-Rehman & Parvez (2010[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698-704.]). For related crystal structures, see: Siddiqui et al. (2008[Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4-o6.], 2009[Siddiqui, W. A., Siddiqui, H. L., Azam, M., Parvez, M. & Rizvi, U. F. (2009). Acta Cryst. E65, o2279-o2280.]). For graph-set notations, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19FN4O3S

  • Mr = 414.45

  • Orthorhombic, P n a 21

  • a = 27.4331 (15) Å

  • b = 7.4519 (5) Å

  • c = 9.2598 (6) Å

  • V = 1893.0 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.88 mm−1

  • T = 173 K

  • 0.12 × 0.06 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.806, Tmax = 0.912

  • 17539 measured reflections

  • 3009 independent reflections

  • 2730 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.146

  • S = 1.09

  • 3009 reflections

  • 264 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.45 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1207 Friedel pairs

  • Flack parameter: 0.05 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O3i 0.88 2.09 2.940 (5) 162
C3—H3⋯O2ii 0.95 2.50 3.366 (6) 152
C14—H14A⋯F1iii 0.99 2.53 3.202 (6) 125
C12—H12B⋯O3i 0.99 2.42 3.195 (6) 135
C14—H14B⋯F1 0.99 2.42 2.820 (6) 103
Symmetry codes: (i) [-x, -y, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, -y-1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Oxicam drugs are benzothiazine based carboxamides which are well known for their potent anti-inflammatory and analgesic actions (Turck et al., 1996; Lombardino et al., 1973; Zinnes et al., 1973). On the other hand, celecoxib, a pyrazole compound is an anti-inflammatory drug and a selective inhibitor of the cox-2 enzyme (Silverstein et al., 2000). Keeping in view these features, we perceived that pyrazolobenzothiazine nucleus has a broad potential for biologically active molecules. We have prepared pyrazolobenzothiazines which are structural hybrids of both of these medicinally important heterocycles (Ahmad, Siddiqui, Ahmad, Parvez et al. (2010); Ahmad, Siddiqui, Zia-ur-Rehman & Parvez (2010)). In this article we report the crystal structure of the title molecule.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in closely related compounds (Siddiqui et al., 2008; 2009). The heterocyclic thiazine ring adopts a half chair conformation with atom S1 displaced by 0.668 (4) Å, from the mean plane formed by the remaining ring atoms (r.m.s. deviation 0.036 Å for N1/C1/C6–C8 atoms). The mean-plane of the benzene ring C1–C6 makes a dihedral angle 17.4 (3)° with the mean-plane of the pyrazolyl ring (N2/N3/C7/C8/C10). The acetamide chain (O3/N4/C12–C14) linking the pyrazolyl and 2-fluorobenzyl rings is essentially planar (r.m.s. deviation 0.030 Å) and forms dihedral angles with the mean-planes of these rings 78.8 (2) and 78.89 (14)°, respectively.

The crystal structure is stabilized by intermolecular hydrogen bonding interactions (Fig. 2 and Table 1). The hydrogen bonds N4—H4A···O3 and C12—H12B···O3 result in a six membered rings in R21(6) motif (Bernstein et al., 1995) while C3—H3···O2 and C14—H14A···F1 hydrogen bonding interactions result in chains of molecules lying along the c-axis in a zigzag fashion.

Related literature top

For biological activities of benzothiazine derivatives, see: Turck et al. (1996); Silverstein et al. (2000); Lombardino et al. (1973); Zinnes et al. (1973); Ahmad, Siddiqui, Ahmad, Parvez et al. (2010); Ahmad, Siddiqui, Zia-ur-Rehman & Parvez (2010). For related crystal structures, see: Siddiqui et al. (2008, 2009). For graph-set notations, see: Bernstein et al. (1995).

Experimental top

3,4-Dimethyl-5,5-dioxidopyrazolo[4,3-c][1,2] benzothiazin-2(4H)-yl acetic acid (1.013 g, 3.3 mmol) was dissolved in toluene:THF (2:1) and boran-THF complex (1.1 mmol) was added. The reaction mixture was stirred for 40 minutes and 2-flourobenzyl amine (0.412 g, 3.3 mmol) added. The contents of the flask were refluxed for 5 h. The solvent was evaporated under vacuum and the product was purified by column chromatography. Colorless crystals were grown from an ethyl acetate solution which were used for X-ray crystallographic studies; m.p. 419–420 K.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with N—H = 0.88 Å and C—H = 0.95, 0.98 and 0.99 Å, for aryl, methyl and methylene H-atoms, respectively. The Uiso(H) were allowed at 1.5Ueq(methyl C) or 1.2Ueq(the rest of the C/N). An absolute structure was determined by the Flack method (Flack, 1983) using 1207 Friedel pairs of reflections which were not merged.

Structure description top

Oxicam drugs are benzothiazine based carboxamides which are well known for their potent anti-inflammatory and analgesic actions (Turck et al., 1996; Lombardino et al., 1973; Zinnes et al., 1973). On the other hand, celecoxib, a pyrazole compound is an anti-inflammatory drug and a selective inhibitor of the cox-2 enzyme (Silverstein et al., 2000). Keeping in view these features, we perceived that pyrazolobenzothiazine nucleus has a broad potential for biologically active molecules. We have prepared pyrazolobenzothiazines which are structural hybrids of both of these medicinally important heterocycles (Ahmad, Siddiqui, Ahmad, Parvez et al. (2010); Ahmad, Siddiqui, Zia-ur-Rehman & Parvez (2010)). In this article we report the crystal structure of the title molecule.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in closely related compounds (Siddiqui et al., 2008; 2009). The heterocyclic thiazine ring adopts a half chair conformation with atom S1 displaced by 0.668 (4) Å, from the mean plane formed by the remaining ring atoms (r.m.s. deviation 0.036 Å for N1/C1/C6–C8 atoms). The mean-plane of the benzene ring C1–C6 makes a dihedral angle 17.4 (3)° with the mean-plane of the pyrazolyl ring (N2/N3/C7/C8/C10). The acetamide chain (O3/N4/C12–C14) linking the pyrazolyl and 2-fluorobenzyl rings is essentially planar (r.m.s. deviation 0.030 Å) and forms dihedral angles with the mean-planes of these rings 78.8 (2) and 78.89 (14)°, respectively.

The crystal structure is stabilized by intermolecular hydrogen bonding interactions (Fig. 2 and Table 1). The hydrogen bonds N4—H4A···O3 and C12—H12B···O3 result in a six membered rings in R21(6) motif (Bernstein et al., 1995) while C3—H3···O2 and C14—H14A···F1 hydrogen bonding interactions result in chains of molecules lying along the c-axis in a zigzag fashion.

For biological activities of benzothiazine derivatives, see: Turck et al. (1996); Silverstein et al. (2000); Lombardino et al. (1973); Zinnes et al. (1973); Ahmad, Siddiqui, Ahmad, Parvez et al. (2010); Ahmad, Siddiqui, Zia-ur-Rehman & Parvez (2010). For related crystal structures, see: Siddiqui et al. (2008, 2009). For graph-set notations, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A part of the unit cell of the title compound showing hydrogen bonding interactions (dotted lines). H atoms non-participating in hydrogen-bonding were omitted for clarity.
2-(3,4-Dimethyl-5,5-dioxo-2H,4H-pyrazolo[4,3- c][1,2]benzothiazin-2-yl)-N-(2-fluorobenzyl)acetamide top
Crystal data top
C20H19FN4O3SF(000) = 864
Mr = 414.45Dx = 1.454 Mg m3
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2nCell parameters from 8539 reflections
a = 27.4331 (15) Åθ = 3.2–67.4°
b = 7.4519 (5) ŵ = 1.88 mm1
c = 9.2598 (6) ÅT = 173 K
V = 1893.0 (2) Å3Needle, colorless
Z = 40.12 × 0.06 × 0.05 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3009 independent reflections
Radiation source: fine-focus sealed tube2730 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and φ scansθmax = 68.1°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 3232
Tmin = 0.806, Tmax = 0.912k = 88
17539 measured reflectionsl = 108
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0785P)2 + 2.144P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3009 reflectionsΔρmax = 1.05 e Å3
264 parametersΔρmin = 0.44 e Å3
1 restraintAbsolute structure: Flack (1983), 1207 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (3)
Crystal data top
C20H19FN4O3SV = 1893.0 (2) Å3
Mr = 414.45Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 27.4331 (15) ŵ = 1.88 mm1
b = 7.4519 (5) ÅT = 173 K
c = 9.2598 (6) Å0.12 × 0.06 × 0.05 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3009 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2730 reflections with I > 2σ(I)
Tmin = 0.806, Tmax = 0.912Rint = 0.029
17539 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.146Δρmax = 1.05 e Å3
S = 1.09Δρmin = 0.44 e Å3
3009 reflectionsAbsolute structure: Flack (1983), 1207 Friedel pairs
264 parametersAbsolute structure parameter: 0.05 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.18005 (14)0.5585 (5)0.5621 (5)0.0298 (9)
C20.19683 (14)0.6653 (6)0.4508 (5)0.0366 (10)
H20.23060.66950.42860.044*
C30.16385 (16)0.7660 (6)0.3722 (6)0.0410 (11)
H30.17470.83630.29280.049*
C40.11472 (16)0.7642 (5)0.4095 (6)0.0411 (11)
H40.09250.83910.35890.049*
C50.09785 (14)0.6551 (5)0.5191 (5)0.0330 (10)
H50.06420.65520.54330.040*
C60.12980 (13)0.5455 (5)0.5939 (5)0.0276 (8)
C70.11436 (12)0.4057 (5)0.6914 (5)0.0279 (8)
C80.14419 (13)0.2643 (5)0.7402 (5)0.0294 (9)
C90.21028 (17)0.0897 (7)0.6235 (6)0.0487 (13)
H9A0.19370.01720.66080.073*
H9B0.24560.07420.63260.073*
H9C0.20180.10660.52160.073*
C100.11529 (13)0.1512 (5)0.8186 (5)0.0309 (9)
C110.12523 (17)0.0203 (6)0.8981 (6)0.0402 (11)
H11A0.10370.02830.98240.060*
H11B0.15930.02210.93010.060*
H11C0.11920.12250.83400.060*
C120.02597 (14)0.1619 (5)0.8796 (5)0.0336 (9)
H12A0.00030.25170.86640.040*
H12B0.03150.14670.98450.040*
C130.00996 (13)0.0174 (5)0.8142 (5)0.0265 (8)
C140.02579 (14)0.3102 (5)0.8631 (5)0.0317 (9)
H14A0.02950.38380.95150.038*
H14B0.00140.36200.80630.038*
C150.07211 (15)0.3255 (5)0.7752 (5)0.0321 (9)
C160.07666 (19)0.4367 (6)0.6583 (6)0.0504 (13)
C170.1212 (2)0.4580 (7)0.5805 (6)0.0593 (16)
H170.12360.53740.50060.071*
C180.1600 (2)0.3605 (8)0.6252 (8)0.0618 (16)
H180.18980.37010.57350.074*
C190.15798 (19)0.2509 (9)0.7397 (8)0.0635 (16)
H190.18640.18500.76490.076*
C200.11537 (14)0.2278 (8)0.8259 (9)0.077 (2)
H200.11500.15470.90990.093*
F10.03977 (13)0.5300 (6)0.6187 (5)0.0875 (13)
N10.19490 (11)0.2479 (4)0.7068 (4)0.0341 (9)
N20.06857 (10)0.3820 (4)0.7375 (4)0.0281 (7)
N30.07015 (11)0.2262 (4)0.8123 (4)0.0294 (7)
N40.01247 (11)0.1285 (5)0.9057 (4)0.0304 (8)
H4A0.01930.09120.99360.036*
O10.22202 (11)0.5389 (4)0.8089 (4)0.0455 (8)
O20.26539 (10)0.4115 (5)0.5993 (4)0.0522 (9)
O30.01791 (9)0.0534 (4)0.6870 (4)0.0345 (6)
S10.22083 (3)0.44366 (14)0.67509 (13)0.0366 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0245 (19)0.035 (2)0.030 (3)0.0034 (15)0.0003 (17)0.0045 (17)
C20.0277 (19)0.041 (2)0.041 (3)0.0089 (16)0.0123 (19)0.003 (2)
C30.045 (2)0.039 (2)0.038 (3)0.0113 (19)0.003 (2)0.008 (2)
C40.037 (2)0.032 (2)0.055 (3)0.0024 (17)0.004 (2)0.007 (2)
C50.0247 (18)0.0297 (19)0.044 (3)0.0011 (15)0.0004 (18)0.0020 (19)
C60.0256 (18)0.0299 (18)0.027 (2)0.0046 (15)0.0001 (17)0.0017 (17)
C70.0202 (15)0.0357 (19)0.028 (2)0.0012 (13)0.0007 (17)0.0018 (19)
C80.0192 (16)0.041 (2)0.028 (2)0.0003 (15)0.0001 (17)0.0041 (17)
C90.038 (2)0.057 (3)0.051 (3)0.011 (2)0.004 (2)0.014 (2)
C100.0257 (18)0.0307 (19)0.036 (3)0.0002 (14)0.0043 (17)0.0015 (18)
C110.038 (2)0.042 (2)0.041 (3)0.0007 (18)0.006 (2)0.010 (2)
C120.0290 (19)0.038 (2)0.033 (3)0.0057 (16)0.0026 (18)0.0058 (19)
C130.0202 (17)0.036 (2)0.023 (2)0.0010 (14)0.0011 (16)0.0009 (18)
C140.0278 (18)0.0296 (19)0.038 (3)0.0008 (15)0.0007 (18)0.0023 (18)
C150.037 (2)0.035 (2)0.024 (2)0.0099 (16)0.0015 (17)0.0037 (17)
C160.058 (3)0.050 (3)0.044 (3)0.003 (2)0.004 (3)0.003 (2)
C170.092 (4)0.056 (3)0.030 (3)0.029 (3)0.018 (3)0.006 (2)
C180.047 (3)0.070 (4)0.069 (4)0.018 (3)0.008 (3)0.022 (3)
C190.043 (3)0.074 (4)0.073 (5)0.004 (3)0.011 (3)0.015 (4)
C200.019 (2)0.072 (3)0.141 (7)0.013 (2)0.021 (3)0.068 (4)
F10.063 (2)0.117 (3)0.082 (3)0.011 (2)0.0018 (19)0.036 (3)
N10.0213 (14)0.0416 (18)0.039 (2)0.0041 (12)0.0043 (15)0.0026 (17)
N20.0225 (14)0.0303 (17)0.032 (2)0.0024 (12)0.0031 (14)0.0018 (14)
N30.0235 (15)0.0333 (16)0.032 (2)0.0056 (12)0.0006 (14)0.0017 (15)
N40.0254 (15)0.0374 (17)0.028 (2)0.0041 (14)0.0007 (14)0.0031 (15)
O10.0400 (17)0.059 (2)0.038 (2)0.0167 (13)0.0096 (15)0.0051 (17)
O20.0200 (13)0.077 (2)0.060 (2)0.0022 (14)0.0048 (15)0.007 (2)
O30.0364 (14)0.0427 (15)0.0243 (17)0.0059 (11)0.0004 (14)0.0020 (13)
S10.0184 (4)0.0516 (6)0.0399 (7)0.0042 (4)0.0017 (4)0.0012 (5)
Geometric parameters (Å, º) top
C1—C21.381 (6)C12—C131.531 (6)
C1—C61.413 (5)C12—H12A0.9900
C1—S11.755 (4)C12—H12B0.9900
C2—C31.383 (7)C13—O31.227 (5)
C2—H20.9500C13—N41.335 (5)
C3—C41.391 (6)C14—N41.457 (5)
C3—H30.9500C14—C151.514 (6)
C4—C51.380 (7)C14—H14A0.9900
C4—H40.9500C14—H14B0.9900
C5—C61.384 (6)C15—C161.369 (7)
C5—H50.9500C15—C201.469 (7)
C6—C71.443 (6)C16—F11.282 (6)
C7—N21.339 (5)C16—C171.428 (8)
C7—C81.408 (5)C17—C181.354 (9)
C8—C101.366 (6)C17—H170.9500
C8—N11.430 (5)C18—C191.340 (9)
C9—N11.471 (6)C18—H180.9500
C9—H9A0.9800C19—C201.425 (8)
C9—H9B0.9800C19—H190.9500
C9—H9C0.9800C20—H200.9500
C10—N31.360 (5)N1—S11.650 (3)
C10—C111.500 (6)N2—N31.353 (5)
C11—H11A0.9800N4—H4A0.8800
C11—H11B0.9800O1—S11.429 (4)
C11—H11C0.9800O2—S11.430 (3)
C12—N31.444 (5)
C2—C1—C6121.3 (4)H12A—C12—H12B108.0
C2—C1—S1120.9 (3)O3—C13—N4123.7 (4)
C6—C1—S1117.7 (3)O3—C13—C12121.3 (4)
C1—C2—C3119.2 (4)N4—C13—C12115.0 (4)
C1—C2—H2120.4N4—C14—C15115.2 (3)
C3—C2—H2120.4N4—C14—H14A108.5
C2—C3—C4119.8 (4)C15—C14—H14A108.5
C2—C3—H3120.1N4—C14—H14B108.5
C4—C3—H3120.1C15—C14—H14B108.5
C5—C4—C3120.9 (4)H14A—C14—H14B107.5
C5—C4—H4119.6C16—C15—C20118.6 (5)
C3—C4—H4119.6C16—C15—C14123.2 (4)
C4—C5—C6120.2 (4)C20—C15—C14118.0 (4)
C4—C5—H5119.9F1—C16—C15118.9 (5)
C6—C5—H5119.9F1—C16—C17118.1 (5)
C5—C6—C1118.3 (4)C15—C16—C17123.0 (5)
C5—C6—C7123.6 (3)C18—C17—C16117.4 (5)
C1—C6—C7117.8 (3)C18—C17—H17121.3
N2—C7—C8110.2 (3)C16—C17—H17121.3
N2—C7—C6124.8 (3)C19—C18—C17122.4 (6)
C8—C7—C6124.8 (3)C19—C18—H18118.8
C10—C8—C7107.1 (3)C17—C18—H18118.8
C10—C8—N1128.8 (4)C18—C19—C20123.4 (6)
C7—C8—N1124.1 (4)C18—C19—H19118.3
N1—C9—H9A109.5C20—C19—H19118.3
N1—C9—H9B109.5C19—C20—C15115.1 (7)
H9A—C9—H9B109.5C19—C20—H20122.5
N1—C9—H9C109.5C15—C20—H20122.5
H9A—C9—H9C109.5C8—N1—C9117.5 (3)
H9B—C9—H9C109.5C8—N1—S1112.4 (3)
N3—C10—C8104.6 (3)C9—N1—S1119.5 (3)
N3—C10—C11122.4 (4)C7—N2—N3104.3 (3)
C8—C10—C11132.9 (4)N2—N3—C10113.8 (3)
C10—C11—H11A109.5N2—N3—C12118.6 (3)
C10—C11—H11B109.5C10—N3—C12127.6 (3)
H11A—C11—H11B109.5C13—N4—C14121.3 (4)
C10—C11—H11C109.5C13—N4—H4A119.3
H11A—C11—H11C109.5C14—N4—H4A119.3
H11B—C11—H11C109.5O1—S1—O2119.3 (2)
N3—C12—C13111.1 (3)O1—S1—N1107.15 (19)
N3—C12—H12A109.4O2—S1—N1107.9 (2)
C13—C12—H12A109.4O1—S1—C1106.9 (2)
N3—C12—H12B109.4O2—S1—C1109.5 (2)
C13—C12—H12B109.4N1—S1—C1105.23 (17)
C6—C1—C2—C32.2 (7)C17—C18—C19—C200.7 (9)
S1—C1—C2—C3174.3 (3)C18—C19—C20—C153.6 (8)
C1—C2—C3—C42.6 (7)C16—C15—C20—C194.1 (7)
C2—C3—C4—C53.7 (7)C14—C15—C20—C19178.8 (4)
C3—C4—C5—C60.1 (7)C10—C8—N1—C960.7 (6)
C4—C5—C6—C14.5 (6)C7—C8—N1—C9117.5 (5)
C4—C5—C6—C7168.7 (4)C10—C8—N1—S1154.7 (4)
C2—C1—C6—C55.7 (6)C7—C8—N1—S127.0 (5)
S1—C1—C6—C5170.9 (3)C8—C7—N2—N30.8 (5)
C2—C1—C6—C7167.9 (4)C6—C7—N2—N3173.4 (4)
S1—C1—C6—C715.5 (5)C7—N2—N3—C101.3 (5)
C5—C6—C7—N210.3 (7)C7—N2—N3—C12179.1 (4)
C1—C6—C7—N2176.5 (4)C8—C10—N3—N21.3 (5)
C5—C6—C7—C8163.0 (4)C11—C10—N3—N2179.0 (4)
C1—C6—C7—C810.2 (6)C8—C10—N3—C12178.9 (4)
N2—C7—C8—C100.0 (5)C11—C10—N3—C121.5 (7)
C6—C7—C8—C10174.1 (4)C13—C12—N3—N2116.5 (4)
N2—C7—C8—N1178.6 (4)C13—C12—N3—C1066.1 (6)
C6—C7—C8—N14.5 (7)O3—C13—N4—C145.2 (6)
C7—C8—C10—N30.8 (5)C12—C13—N4—C14174.2 (3)
N1—C8—C10—N3177.8 (4)C15—C14—N4—C1380.3 (5)
C7—C8—C10—C11179.7 (5)C8—N1—S1—O168.7 (3)
N1—C8—C10—C111.8 (8)C9—N1—S1—O1147.5 (4)
N3—C12—C13—O331.9 (5)C8—N1—S1—O2161.6 (3)
N3—C12—C13—N4147.6 (3)C9—N1—S1—O217.8 (4)
N4—C14—C15—C16138.4 (4)C8—N1—S1—C144.7 (3)
N4—C14—C15—C2047.1 (5)C9—N1—S1—C199.0 (4)
C20—C15—C16—F1176.0 (5)C2—C1—S1—O1104.4 (4)
C14—C15—C16—F11.6 (7)C6—C1—S1—O172.2 (3)
C20—C15—C16—C172.0 (7)C2—C1—S1—O226.1 (4)
C14—C15—C16—C17176.4 (4)C6—C1—S1—O2157.2 (3)
F1—C16—C17—C18179.0 (5)C2—C1—S1—N1141.9 (4)
C15—C16—C17—C180.9 (8)C6—C1—S1—N141.5 (4)
C16—C17—C18—C191.6 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O3i0.882.092.940 (5)162
C3—H3···O2ii0.952.503.366 (6)152
C14—H14A···F1iii0.992.533.202 (6)125
C12—H12B···O3i0.992.423.195 (6)135
C14—H14B···F10.992.422.820 (6)103
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x, y1, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H19FN4O3S
Mr414.45
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)173
a, b, c (Å)27.4331 (15), 7.4519 (5), 9.2598 (6)
V3)1893.0 (2)
Z4
Radiation typeCu Kα
µ (mm1)1.88
Crystal size (mm)0.12 × 0.06 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.806, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
17539, 3009, 2730
Rint0.029
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.146, 1.09
No. of reflections3009
No. of parameters264
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.05, 0.44
Absolute structureFlack (1983), 1207 Friedel pairs
Absolute structure parameter0.05 (3)

Computer programs: APEX2 (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O3i0.882.092.940 (5)161.9
C3—H3···O2ii0.952.503.366 (6)152.3
C14—H14A···F1iii0.992.533.202 (6)124.6
C12—H12B···O3i0.992.423.195 (6)135.1
C14—H14B···F10.992.422.820 (6)103.4
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x, y1, z+1/2.
 

Acknowledgements

The authors are grateful to the Higher Education Commission, Pakistan, and Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

References

First citationAhmad, M., Siddiqui, H. L., Ahmad, S., Parvez, M. & Tizzard, G. J. (2010). J. Chem. Crystallogr. 40, 1188–1194.  Web of Science CSD CrossRef CAS Google Scholar
First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLombardino, J. G., Wiseman, E. H. & Chiaini, J. (1973). J. Med. Chem. 16, 493–496.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiddiqui, W. A., Siddiqui, H. L., Azam, M., Parvez, M. & Rizvi, U. F. (2009). Acta Cryst. E65, o2279–o2280.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSilverstein, F. E., Faich, G., Goldstein, J. L., Simon, L. S., Pincus, T., Whelton, A., Makuch, R., Eisen, G., Agrawal, N. M., Stenson, W. F., Burr, A. M., Zhao, W. W., Kent, J. D., Lefkowith, J. B., Verburg, K. M. & Geis, G. S. (2000). J. Am. Med. Assoc. 284, 1247–1255.  Web of Science CrossRef CAS Google Scholar
First citationTurck, D., Roth, W. & Busch, U. (1996). Br. J. Rheumatol. 35, 13–16.  CrossRef PubMed Google Scholar
First citationZinnes, H., Lindo, N. A., Sircar, J. C., Schwartz, M. L. & Shavel, J. Jr (1973). J. Med. Chem. 16, 44–48.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds