organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Amino­benzoic acid–4,4′-bi­pyridine (2/3)

aDepartment of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10903, Thailand
*Correspondence e-mail: fscitwd@ku.ac.th

(Received 19 July 2012; accepted 23 July 2012; online 28 July 2012)

The asymmetric unit of the title compound, 3C10H8N2·2C7H7NO2, consists of three mol­ecules of 4,4′-bipyridine (bpy) and two mol­ecules of 3-amino­benzoic acid (bza). Two mol­ecules of bza and two mol­ecules of bpy are connected via O—H⋯N, N—H⋯N and N—H⋯O hydrogen bonds, forming forming infinite double-stranded zigzag chains along the c axis. The third mol­ecule of bpy is linked to the chain by weak C—H⋯O inter­actions. Adjacent chains are linked via ππ inter­actions [centroid–centroid distances = 3.759 (3)–3.928 (3) Å] involving the pyridine rings of bpy mol­ecules, resulting in a sheet-like structure parallel to (100). These sheets are stacked via C—H⋯π inter­actions, resulting finally in the formation of a three-dimensional supra­molecular structure.

Related literature

For related structures, see: Karpova et al. (2004[Karpova, E. V., Zakharov, M. A., Gutnikov, S. I. & Alekseyev, R. S. (2004). Acta Cryst. E60, o2491-o2492.]); Koteswara Rao et al. (2012[Koteswara Rao, V., Zeller, M. & Lovelace-Cameron, S. R. (2012). Acta Cryst. E68, o1711.]); Yao et al. (2008[Yao, J. C., Qin, J. H., Sun, Q. B., Qu, L. & Li, Y. G. (2008). Z. Kristallogr. New Cryst. Struct. 223, 11-12.]); Zhao et al. (2007[Zhao, W.-X., Gao, Y.-X., Dong, S.-F., Li, Y. & Zhang, W.-P. (2007). Acta Cryst. E63, o2728.]).

[Scheme 1]

Experimental

Crystal data
  • 3C10H8N2·2C7H7NO2

  • Mr = 742.82

  • Triclinic, [P \overline 1]

  • a = 9.371 (3) Å

  • b = 11.991 (4) Å

  • c = 17.653 (6) Å

  • α = 94.910 (11)°

  • β = 90.224 (10)°

  • γ = 102.128 (11)°

  • V = 1931.6 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.62 × 0.34 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 14412 measured reflections

  • 6518 independent reflections

  • 3893 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.252

  • S = 1.07

  • 6518 reflections

  • 513 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg7 and Cg8 are the centroids of the C31–C36 and C38–C43 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H′⋯N4 0.98 (4) 1.67 (4) 2.647 (4) 171 (3)
O4—H′′⋯N5 1.03 (5) 1.60 (5) 2.627 (4) 175 (4)
N7—H7A⋯N3i 0.86 2.16 3.007 (4) 169 (4)
N7—H7B⋯O3 0.86 2.23 3.038 (4) 156
N8—H8A⋯N6ii 0.86 2.16 3.006 (4) 169 (4)
N8—H8B⋯O1 0.86 2.21 3.019 (4) 158
C36—H36A⋯O3 0.93 2.52 3.300 (4) 141
C43—H43A⋯O1 0.93 2.53 3.304 (4) 141
C7—H7CCg7iii 0.93 2.87 3.751 (4) 157
C17—H17ACg8iv 0.93 2.72 3.562 (4) 151
C19—H19ACg8v 0.93 2.78 3.643 (4) 154
C22—H22ACg7vi 0.93 2.72 3.567 (4) 151
Symmetry codes: (i) x, y, z+1; (ii) x, y, z-1; (iii) x+1, y, z; (iv) -x+1, -y+1, -z; (v) -x, -y+1, -z; (vi) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound was obtained as a side-product in the synthesis of metal-organic framework materials which similar to previeously observed organic compounds (Karpova et al. (2004); Koteswara Rao et al. (2012); Yao et al. (2008); Zhao et al. (2007). The asymmetric unit is composed of crystallographically independent of 4,4'-bipyridine (bpy) and 3-aminobenzoic acid (bza) in the stoichiometric ratio of 3:2 (Fig. 1). Three strong intermolecular hydrogen bonds are formed between bpy molecules and bza molecules via (1) amino and carboxylic acid groups of bza molecules (N—H···O), (2) amino groups of bza molecules and an N atom of bpy (N—H···N) and (3) a carboxylic group and an N atom of bpy (O—H···N), resulting in infinite double zigzag chain along c-axis (Table 1, Fig. 2) . The infinite chain is further stabilized by weak C—H···N interactions (distance 2.75 Å) with the third bpy molecule. In the chain the bpy and bza molecules are arranged in a nonplanar structure. Moreover the pyridine rings of bpy molecules exhibit a nonplanar configuration with dihedral angles in the range 28.9–32.66°. In addition, each of the infinite zigzag chains is linked to adjacent chains through π -π interactions between the pyridine rings of bpy molecules(distance 3.85 Å) forming a two-dimensional sheet sructure (Fig. 2). The two-dimensional– sheets are further connected through C—H···π interactions (distance 2.74 Å), resulting in a three-dimensional supramolecular structure (Fig. 3)

Related literature top

For related structures, see: Karpova et al. (2004); Koteswara Rao et al. (2012); Yao et al. (2008); Zhao et al. (2007).

Experimental top

A solution of Mn(OAc)2.4H2O (1 mmol), 2-aminoterephthalic acid (1 mmol) and 4,4'-bipyridine(1 mmol) in 15 ml of H2O:DMF (1:1) was transferred into a Teflon lined aotoclave and heat at 170° for 15 h. Then, solution was slowly cooled to room temperature. Yellow crystral was obtained as a minor product from fragmentation of 2-aminoterephthalic acid to 3-aminobenzoic acid during reaction.

Refinement top

All H atoms of the compound were placed in the calculated positions with C—H =0.93 Å, N—H = 0.86 Å and included in the cycles of refinement in a rigid model, Uiso(H) = 1.2 Ueq(H). Except carboxylic acid H atom were located in different fourior map and restrained to their hosts.

Structure description top

The title compound was obtained as a side-product in the synthesis of metal-organic framework materials which similar to previeously observed organic compounds (Karpova et al. (2004); Koteswara Rao et al. (2012); Yao et al. (2008); Zhao et al. (2007). The asymmetric unit is composed of crystallographically independent of 4,4'-bipyridine (bpy) and 3-aminobenzoic acid (bza) in the stoichiometric ratio of 3:2 (Fig. 1). Three strong intermolecular hydrogen bonds are formed between bpy molecules and bza molecules via (1) amino and carboxylic acid groups of bza molecules (N—H···O), (2) amino groups of bza molecules and an N atom of bpy (N—H···N) and (3) a carboxylic group and an N atom of bpy (O—H···N), resulting in infinite double zigzag chain along c-axis (Table 1, Fig. 2) . The infinite chain is further stabilized by weak C—H···N interactions (distance 2.75 Å) with the third bpy molecule. In the chain the bpy and bza molecules are arranged in a nonplanar structure. Moreover the pyridine rings of bpy molecules exhibit a nonplanar configuration with dihedral angles in the range 28.9–32.66°. In addition, each of the infinite zigzag chains is linked to adjacent chains through π -π interactions between the pyridine rings of bpy molecules(distance 3.85 Å) forming a two-dimensional sheet sructure (Fig. 2). The two-dimensional– sheets are further connected through C—H···π interactions (distance 2.74 Å), resulting in a three-dimensional supramolecular structure (Fig. 3)

For related structures, see: Karpova et al. (2004); Koteswara Rao et al. (2012); Yao et al. (2008); Zhao et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. The two-dimensional-sheet structure showing π -π stacking (Hydrogen bonds indicated by dash lines).
[Figure 3] Fig. 3. The three-dimensional-supramolecular structure showing the C-H to π interactions.
3-Aminobenzoic acid–4,4'-bipyridine (2/3) top
Crystal data top
3C10H8N2·2C7H7NO2Z = 2
Mr = 742.82F(000) = 780
Triclinic, P1Dx = 1.277 Mg m3
a = 9.371 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.991 (4) ÅCell parameters from 3914 reflections
c = 17.653 (6) Åθ = 2.2–23.6°
α = 94.910 (11)°µ = 0.09 mm1
β = 90.224 (10)°T = 296 K
γ = 102.128 (11)°Plate, yellow
V = 1931.6 (11) Å30.62 × 0.34 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
3893 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 25.0°, θmin = 1.2°
φ and ω scansh = 1111
14412 measured reflectionsk = 1314
6518 independent reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.252H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.1384P)2 + 0.418P]
where P = (Fo2 + 2Fc2)/3
6518 reflections(Δ/σ)max < 0.001
513 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
3C10H8N2·2C7H7NO2γ = 102.128 (11)°
Mr = 742.82V = 1931.6 (11) Å3
Triclinic, P1Z = 2
a = 9.371 (3) ÅMo Kα radiation
b = 11.991 (4) ŵ = 0.09 mm1
c = 17.653 (6) ÅT = 296 K
α = 94.910 (11)°0.62 × 0.34 × 0.05 mm
β = 90.224 (10)°
Data collection top
Bruker APEXII CCD
diffractometer
3893 reflections with I > 2σ(I)
14412 measured reflectionsRint = 0.025
6518 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.252H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.31 e Å3
6518 reflectionsΔρmin = 0.29 e Å3
513 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.2374 (3)0.7665 (2)0.37029 (13)0.0653 (7)
O20.2525 (3)0.1595 (2)0.12426 (13)0.0686 (7)
C380.2173 (3)0.6986 (3)0.24016 (15)0.0419 (7)
C310.2317 (3)0.2219 (3)0.25340 (16)0.0453 (7)
N70.2381 (3)0.3911 (3)0.43764 (14)0.0716 (9)
H7A0.24290.38270.48540.086*
H7B0.23470.45700.42280.086*
O30.1895 (3)0.5792 (2)0.34188 (12)0.0728 (8)
C350.2356 (3)0.2994 (3)0.38509 (16)0.0480 (8)
C410.2283 (3)0.7337 (3)0.08730 (17)0.0527 (8)
H41A0.23190.74650.03610.063*
C440.2138 (3)0.6754 (3)0.32162 (16)0.0449 (7)
O10.2077 (4)0.3316 (2)0.15097 (12)0.0843 (9)
C320.2392 (4)0.1155 (3)0.27634 (17)0.0541 (8)
H32A0.24180.05450.24050.065*
C180.2790 (3)0.2763 (3)0.16668 (16)0.0479 (8)
C360.2291 (3)0.3127 (3)0.30716 (15)0.0471 (8)
H36A0.22290.38350.29120.056*
C430.2111 (3)0.6072 (3)0.18637 (15)0.0461 (7)
H43A0.20190.53400.20210.055*
C340.2409 (3)0.1914 (3)0.40706 (17)0.0527 (8)
H34A0.24330.18020.45850.063*
N80.2155 (4)0.5309 (3)0.05628 (14)0.0773 (10)
H8A0.21990.54060.00860.093*
H8B0.20940.46360.07110.093*
C230.2592 (3)0.6558 (3)0.66064 (16)0.0473 (7)
C420.2184 (3)0.6223 (3)0.10845 (16)0.0491 (8)
C370.2289 (3)0.2435 (3)0.17188 (16)0.0500 (8)
C130.2825 (3)0.3010 (3)0.24750 (16)0.0497 (8)
C390.2286 (3)0.8082 (3)0.21794 (17)0.0514 (8)
H39A0.23320.87020.25410.062*
N60.2662 (4)0.5891 (3)0.89493 (15)0.0756 (9)
C280.2610 (3)0.6319 (3)0.74141 (16)0.0479 (8)
N40.2684 (3)0.2220 (3)0.01622 (15)0.0640 (8)
N30.2904 (4)0.3476 (3)0.40037 (16)0.0818 (10)
N50.2546 (3)0.7082 (3)0.50962 (14)0.0612 (8)
C330.2426 (4)0.1014 (3)0.35363 (18)0.0579 (9)
H33A0.24610.03000.36940.070*
C400.2329 (3)0.8241 (3)0.14098 (18)0.0554 (8)
H40A0.23910.89720.12560.067*
C270.3880 (4)0.6226 (3)0.77845 (17)0.0606 (9)
H27A0.47500.63000.75230.073*
C260.3852 (4)0.6022 (4)0.85425 (19)0.0717 (11)
H26A0.47220.59750.87800.086*
C170.3960 (4)0.2479 (3)0.13103 (18)0.0626 (10)
H17A0.48140.24620.15740.075*
C190.1573 (4)0.2791 (3)0.12358 (18)0.0623 (9)
H19A0.07580.29890.14450.075*
C240.1354 (4)0.6189 (3)0.61445 (18)0.0615 (9)
H24A0.05100.57570.63340.074*
C120.4107 (4)0.3535 (3)0.28055 (18)0.0643 (10)
H12A0.49730.37380.25200.077*
C220.3807 (4)0.7180 (3)0.62811 (18)0.0619 (9)
H22A0.46680.74380.65660.074*
C160.3865 (4)0.2222 (4)0.05703 (18)0.0704 (11)
H16A0.46730.20390.03420.084*
C250.1382 (4)0.6465 (3)0.54070 (18)0.0665 (10)
H25A0.05410.62060.51060.080*
C110.4087 (5)0.3751 (4)0.35570 (19)0.0762 (11)
H11A0.49550.41120.37640.091*
C210.3740 (4)0.7417 (3)0.55334 (18)0.0675 (10)
H21A0.45740.78320.53250.081*
C200.1572 (4)0.2523 (3)0.04944 (19)0.0685 (10)
H20A0.07460.25580.02110.082*
C140.1599 (4)0.2723 (4)0.29407 (19)0.0750 (11)
H14A0.07110.23660.27510.090*
C290.1364 (4)0.6188 (4)0.78445 (18)0.0706 (11)
H29A0.04760.62370.76280.085*
C300.1453 (5)0.5984 (4)0.8596 (2)0.0818 (12)
H30A0.06030.59070.88750.098*
C150.1693 (5)0.2968 (5)0.3688 (2)0.0928 (15)
H15A0.08490.27610.39910.111*
C80.7232 (4)0.0224 (3)0.2943 (2)0.0598 (9)
C30.7286 (4)0.0451 (3)0.2136 (2)0.0647 (9)
C90.5967 (4)0.0339 (3)0.3258 (2)0.0760 (11)
H9A0.51300.06040.29550.091*
N20.7093 (6)0.0184 (4)0.4481 (2)0.1066 (13)
C40.6089 (5)0.0650 (4)0.1757 (2)0.0874 (13)
H4B0.52250.06600.20120.105*
C70.8441 (4)0.0586 (4)0.3433 (2)0.0790 (11)
H7C0.93230.09760.32550.095*
N10.7348 (8)0.0833 (4)0.0594 (2)0.1276 (18)
C100.5937 (6)0.0509 (4)0.4012 (3)0.0995 (15)
H10A0.50600.08740.42100.119*
C20.8530 (5)0.0441 (4)0.1716 (2)0.0866 (12)
H2B0.93660.03030.19430.104*
C60.8314 (6)0.0361 (5)0.4181 (3)0.0984 (15)
H6B0.91350.06040.44980.118*
C50.6177 (8)0.0833 (5)0.1007 (3)0.122 (2)
H5B0.53510.09680.07680.146*
C10.8513 (7)0.0639 (5)0.0957 (3)0.1154 (18)
H1B0.93590.06370.06840.138*
H''0.239 (4)0.744 (4)0.425 (2)0.101 (13)*
H'0.248 (4)0.178 (4)0.071 (2)0.099 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.1013 (18)0.0551 (15)0.0357 (12)0.0066 (13)0.0032 (12)0.0073 (11)
O20.1079 (19)0.0677 (17)0.0377 (13)0.0335 (14)0.0087 (12)0.0097 (12)
C380.0456 (16)0.0447 (18)0.0357 (15)0.0066 (13)0.0013 (12)0.0125 (14)
C310.0505 (17)0.0510 (19)0.0385 (16)0.0160 (14)0.0045 (13)0.0141 (14)
N70.114 (2)0.076 (2)0.0328 (14)0.0344 (19)0.0027 (15)0.0096 (15)
O30.130 (2)0.0503 (15)0.0366 (12)0.0117 (14)0.0021 (12)0.0158 (11)
C350.0530 (18)0.061 (2)0.0345 (15)0.0193 (15)0.0021 (13)0.0147 (15)
C410.0566 (19)0.066 (2)0.0381 (16)0.0107 (16)0.0010 (13)0.0227 (16)
C440.0517 (17)0.0478 (19)0.0350 (15)0.0080 (14)0.0001 (12)0.0087 (15)
O10.161 (3)0.0675 (17)0.0400 (13)0.0535 (18)0.0096 (14)0.0191 (13)
C320.069 (2)0.051 (2)0.0467 (18)0.0176 (16)0.0069 (15)0.0143 (16)
C180.0554 (18)0.054 (2)0.0376 (16)0.0186 (15)0.0016 (14)0.0050 (14)
C360.0579 (18)0.0513 (19)0.0369 (16)0.0178 (15)0.0026 (13)0.0154 (14)
C430.0595 (18)0.0426 (18)0.0358 (15)0.0053 (14)0.0009 (13)0.0152 (14)
C340.0572 (19)0.072 (2)0.0343 (15)0.0181 (16)0.0030 (13)0.0229 (16)
N80.139 (3)0.064 (2)0.0304 (14)0.0217 (19)0.0057 (16)0.0099 (14)
C230.0546 (18)0.0477 (19)0.0389 (16)0.0070 (15)0.0030 (14)0.0093 (14)
C420.0566 (18)0.057 (2)0.0332 (15)0.0070 (15)0.0004 (13)0.0123 (15)
C370.066 (2)0.051 (2)0.0363 (16)0.0167 (16)0.0026 (14)0.0084 (15)
C130.0586 (19)0.060 (2)0.0368 (16)0.0263 (16)0.0008 (14)0.0084 (15)
C390.063 (2)0.0462 (19)0.0448 (17)0.0091 (15)0.0030 (14)0.0090 (15)
N60.091 (2)0.094 (3)0.0376 (15)0.0057 (19)0.0053 (16)0.0166 (16)
C280.0571 (19)0.0473 (19)0.0356 (16)0.0021 (14)0.0008 (14)0.0054 (14)
N40.081 (2)0.078 (2)0.0371 (14)0.0252 (16)0.0047 (14)0.0070 (14)
N30.097 (3)0.115 (3)0.0423 (16)0.036 (2)0.0021 (17)0.0206 (18)
N50.078 (2)0.0669 (19)0.0357 (14)0.0062 (15)0.0010 (14)0.0074 (14)
C330.068 (2)0.060 (2)0.054 (2)0.0214 (17)0.0041 (16)0.0254 (18)
C400.066 (2)0.049 (2)0.054 (2)0.0092 (16)0.0025 (15)0.0241 (17)
C270.066 (2)0.072 (2)0.0423 (18)0.0084 (18)0.0042 (15)0.0138 (17)
C260.083 (3)0.083 (3)0.047 (2)0.010 (2)0.0066 (19)0.0183 (19)
C170.059 (2)0.092 (3)0.0444 (18)0.0281 (19)0.0010 (15)0.0155 (18)
C190.064 (2)0.084 (3)0.0465 (18)0.0295 (19)0.0041 (16)0.0138 (18)
C240.061 (2)0.073 (2)0.0446 (18)0.0025 (17)0.0021 (15)0.0102 (17)
C120.064 (2)0.088 (3)0.0443 (18)0.0205 (19)0.0021 (16)0.0125 (18)
C220.058 (2)0.082 (3)0.0429 (18)0.0045 (18)0.0003 (15)0.0156 (18)
C160.069 (2)0.105 (3)0.0449 (19)0.030 (2)0.0025 (17)0.023 (2)
C250.071 (2)0.079 (3)0.0443 (19)0.003 (2)0.0107 (16)0.0053 (18)
C110.086 (3)0.101 (3)0.047 (2)0.025 (2)0.0108 (19)0.024 (2)
C210.068 (2)0.086 (3)0.0453 (19)0.0020 (19)0.0060 (17)0.0181 (19)
C200.075 (2)0.092 (3)0.0468 (19)0.033 (2)0.0143 (17)0.0145 (19)
C140.061 (2)0.119 (4)0.050 (2)0.024 (2)0.0042 (17)0.020 (2)
C290.063 (2)0.104 (3)0.0454 (19)0.015 (2)0.0073 (16)0.019 (2)
C300.081 (3)0.117 (4)0.045 (2)0.011 (2)0.0157 (19)0.014 (2)
C150.081 (3)0.150 (5)0.051 (2)0.030 (3)0.015 (2)0.021 (3)
C80.066 (2)0.048 (2)0.067 (2)0.0104 (17)0.0014 (17)0.0148 (17)
C30.077 (2)0.046 (2)0.070 (2)0.0068 (17)0.000 (2)0.0151 (18)
C90.075 (3)0.067 (3)0.079 (3)0.006 (2)0.006 (2)0.020 (2)
N20.140 (4)0.104 (3)0.079 (3)0.019 (3)0.002 (3)0.041 (2)
C40.111 (3)0.086 (3)0.074 (3)0.036 (3)0.006 (2)0.022 (2)
C70.069 (2)0.090 (3)0.078 (3)0.012 (2)0.005 (2)0.019 (2)
N10.213 (6)0.098 (3)0.074 (3)0.027 (4)0.007 (3)0.035 (3)
C100.110 (4)0.095 (4)0.087 (3)0.004 (3)0.008 (3)0.036 (3)
C20.089 (3)0.083 (3)0.080 (3)0.003 (2)0.009 (2)0.015 (2)
C60.100 (4)0.117 (4)0.080 (3)0.023 (3)0.020 (3)0.019 (3)
C50.179 (6)0.121 (5)0.081 (4)0.062 (4)0.014 (4)0.029 (3)
C10.150 (5)0.103 (4)0.082 (3)0.003 (4)0.030 (3)0.022 (3)
Geometric parameters (Å, º) top
O4—C441.310 (4)N5—C251.332 (5)
O4—H''1.03 (4)C33—H33A0.9300
O2—C371.312 (4)C40—H40A0.9300
O2—H'0.98 (4)C27—C261.380 (4)
C38—C431.378 (4)C27—H27A0.9300
C38—C391.387 (4)C26—H26A0.9300
C38—C441.487 (4)C17—C161.367 (4)
C31—C321.386 (4)C17—H17A0.9300
C31—C361.386 (4)C19—C201.374 (4)
C31—C371.485 (4)C19—H19A0.9300
N7—C351.373 (4)C24—C251.369 (5)
N7—H7A0.8600C24—H24A0.9300
N7—H7B0.8600C12—C111.374 (5)
O3—C441.213 (4)C12—H12A0.9300
C35—C341.394 (4)C22—C211.378 (4)
C35—C361.401 (4)C22—H22A0.9300
C41—C401.370 (4)C16—H16A0.9300
C41—C421.402 (5)C25—H25A0.9300
C41—H41A0.9300C11—H11A0.9300
O1—C371.203 (4)C21—H21A0.9300
C32—C331.390 (4)C20—H20A0.9300
C32—H32A0.9300C14—C151.375 (5)
C18—C191.378 (4)C14—H14A0.9300
C18—C171.379 (4)C29—C301.374 (5)
C18—C131.481 (4)C29—H29A0.9300
C36—H36A0.9300C30—H30A0.9300
C43—C421.403 (4)C15—H15A0.9300
C43—H43A0.9300C8—C91.380 (5)
C34—C331.374 (4)C8—C71.393 (5)
C34—H34A0.9300C8—C31.472 (5)
N8—C421.365 (4)C3—C41.378 (5)
N8—H8A0.8600C3—C21.385 (6)
N8—H8B0.8600C9—C101.363 (6)
C23—C221.380 (4)C9—H9A0.9300
C23—C241.386 (4)N2—C61.329 (6)
C23—C281.479 (4)N2—C101.331 (6)
C13—C141.376 (4)C4—C51.359 (6)
C13—C121.389 (5)C4—H4B0.9300
C39—C401.387 (4)C7—C61.370 (6)
C39—H39A0.9300C7—H7C0.9300
N6—C261.317 (5)N1—C51.320 (7)
N6—C301.322 (5)N1—C11.336 (7)
C28—C291.385 (4)C10—H10A0.9300
C28—C271.385 (4)C2—C11.381 (6)
N4—C161.323 (4)C2—H2B0.9300
N4—C201.324 (4)C6—H6B0.9300
N3—C151.320 (5)C5—H5B0.9300
N3—C111.324 (5)C1—H1B0.9300
N5—C211.327 (4)
C44—O4—H''111 (2)C16—C17—H17A120.0
C37—O2—H'111 (2)C18—C17—H17A120.0
C43—C38—C39120.3 (3)C20—C19—C18119.5 (3)
C43—C38—C44117.9 (3)C20—C19—H19A120.2
C39—C38—C44121.9 (3)C18—C19—H19A120.2
C32—C31—C36120.1 (3)C25—C24—C23119.5 (3)
C32—C31—C37122.1 (3)C25—C24—H24A120.2
C36—C31—C37117.8 (3)C23—C24—H24A120.2
C35—N7—H7A120.0C11—C12—C13119.5 (3)
C35—N7—H7B120.0C11—C12—H12A120.2
H7A—N7—H7B120.0C13—C12—H12A120.2
N7—C35—C34121.6 (3)C21—C22—C23119.8 (3)
N7—C35—C36120.4 (3)C21—C22—H22A120.1
C34—C35—C36118.0 (3)C23—C22—H22A120.1
C40—C41—C42121.0 (3)N4—C16—C17123.3 (3)
C40—C41—H41A119.5N4—C16—H16A118.3
C42—C41—H41A119.5C17—C16—H16A118.3
O3—C44—O4122.1 (3)N5—C25—C24123.7 (3)
O3—C44—C38122.7 (3)N5—C25—H25A118.2
O4—C44—C38115.2 (3)C24—C25—H25A118.2
C31—C32—C33119.1 (3)N3—C11—C12123.9 (4)
C31—C32—H32A120.5N3—C11—H11A118.0
C33—C32—H32A120.5C12—C11—H11A118.0
C19—C18—C17116.6 (3)N5—C21—C22123.3 (3)
C19—C18—C13121.4 (3)N5—C21—H21A118.4
C17—C18—C13122.0 (3)C22—C21—H21A118.4
C31—C36—C35121.0 (3)N4—C20—C19123.5 (3)
C31—C36—H36A119.5N4—C20—H20A118.2
C35—C36—H36A119.5C19—C20—H20A118.2
C38—C43—C42121.4 (3)C15—C14—C13119.6 (4)
C38—C43—H43A119.3C15—C14—H14A120.2
C42—C43—H43A119.3C13—C14—H14A120.2
C33—C34—C35120.8 (3)C30—C29—C28119.3 (3)
C33—C34—H34A119.6C30—C29—H29A120.3
C35—C34—H34A119.6C28—C29—H29A120.3
C42—N8—H8A120.0N6—C30—C29124.5 (4)
C42—N8—H8B120.0N6—C30—H30A117.7
H8A—N8—H8B120.0C29—C30—H30A117.7
C22—C23—C24116.8 (3)N3—C15—C14124.3 (4)
C22—C23—C28121.2 (3)N3—C15—H15A117.9
C24—C23—C28121.9 (3)C14—C15—H15A117.9
N8—C42—C41122.3 (3)C9—C8—C7116.4 (4)
N8—C42—C43120.4 (3)C9—C8—C3121.6 (3)
C41—C42—C43117.3 (3)C7—C8—C3122.0 (3)
O1—C37—O2122.4 (3)C4—C3—C2116.8 (4)
O1—C37—C31122.7 (3)C4—C3—C8121.6 (4)
O2—C37—C31114.9 (3)C2—C3—C8121.5 (4)
C14—C13—C12116.4 (3)C10—C9—C8120.3 (4)
C14—C13—C18122.0 (3)C10—C9—H9A119.8
C12—C13—C18121.6 (3)C8—C9—H9A119.8
C38—C39—C40118.9 (3)C6—N2—C10116.2 (4)
C38—C39—H39A120.5C5—C4—C3119.7 (5)
C40—C39—H39A120.5C5—C4—H4B120.2
C26—N6—C30116.3 (3)C3—C4—H4B120.2
C29—C28—C27116.3 (3)C6—C7—C8119.2 (4)
C29—C28—C23121.9 (3)C6—C7—H7C120.4
C27—C28—C23121.8 (3)C8—C7—H7C120.4
C16—N4—C20116.9 (3)C5—N1—C1115.9 (5)
C15—N3—C11116.2 (3)N2—C10—C9123.7 (5)
C21—N5—C25116.8 (3)N2—C10—H10A118.2
C34—C33—C32121.0 (3)C9—C10—H10A118.2
C34—C33—H33A119.5C1—C2—C3119.2 (5)
C32—C33—H33A119.5C1—C2—H2B120.4
C41—C40—C39121.0 (3)C3—C2—H2B120.4
C41—C40—H40A119.5N2—C6—C7124.2 (4)
C39—C40—H40A119.5N2—C6—H6B117.9
C26—C27—C28119.8 (3)C7—C6—H6B117.9
C26—C27—H27A120.1N1—C5—C4124.8 (5)
C28—C27—H27A120.1N1—C5—H5B117.6
N6—C26—C27123.8 (3)C4—C5—H5B117.6
N6—C26—H26A118.1N1—C1—C2123.6 (6)
C27—C26—H26A118.1N1—C1—H1B118.2
C16—C17—C18120.0 (3)C2—C1—H1B118.2
C43—C38—C44—O38.5 (4)C22—C23—C24—C251.0 (5)
C39—C38—C44—O3172.5 (3)C28—C23—C24—C25178.0 (3)
C43—C38—C44—O4172.2 (3)C14—C13—C12—C110.9 (5)
C39—C38—C44—O46.8 (4)C18—C13—C12—C11179.8 (3)
C36—C31—C32—C330.5 (5)C24—C23—C22—C210.9 (5)
C37—C31—C32—C33179.5 (3)C28—C23—C22—C21178.1 (3)
C32—C31—C36—C350.8 (4)C20—N4—C16—C172.4 (6)
C37—C31—C36—C35178.2 (3)C18—C17—C16—N40.5 (6)
N7—C35—C36—C31177.7 (3)C21—N5—C25—C241.5 (6)
C34—C35—C36—C311.7 (4)C23—C24—C25—N50.2 (6)
C39—C38—C43—C421.1 (4)C15—N3—C11—C120.1 (6)
C44—C38—C43—C42178.0 (3)C13—C12—C11—N30.8 (6)
N7—C35—C34—C33178.1 (3)C25—N5—C21—C221.6 (6)
C36—C35—C34—C331.3 (4)C23—C22—C21—N50.4 (6)
C40—C41—C42—N8179.1 (3)C16—N4—C20—C192.6 (6)
C40—C41—C42—C431.0 (4)C18—C19—C20—N40.9 (6)
C38—C43—C42—N8178.5 (3)C12—C13—C14—C150.4 (6)
C38—C43—C42—C411.7 (4)C18—C13—C14—C15179.7 (4)
C32—C31—C37—O1172.3 (3)C27—C28—C29—C300.3 (6)
C36—C31—C37—O18.8 (5)C23—C28—C29—C30179.0 (4)
C32—C31—C37—O28.2 (4)C26—N6—C30—C291.0 (7)
C36—C31—C37—O2170.7 (3)C28—C29—C30—N60.6 (7)
C19—C18—C13—C1433.3 (5)C11—N3—C15—C140.5 (7)
C17—C18—C13—C14145.8 (4)C13—C14—C15—N30.3 (7)
C19—C18—C13—C12147.5 (4)C9—C8—C3—C432.3 (6)
C17—C18—C13—C1233.4 (5)C7—C8—C3—C4146.3 (4)
C43—C38—C39—C400.3 (4)C9—C8—C3—C2145.9 (4)
C44—C38—C39—C40179.3 (3)C7—C8—C3—C235.6 (6)
C22—C23—C28—C29150.1 (4)C7—C8—C9—C100.5 (6)
C24—C23—C28—C2928.8 (5)C3—C8—C9—C10178.2 (4)
C22—C23—C28—C2729.2 (5)C2—C3—C4—C50.5 (7)
C24—C23—C28—C27151.9 (3)C8—C3—C4—C5178.7 (4)
C35—C34—C33—C320.0 (5)C9—C8—C7—C60.5 (6)
C31—C32—C33—C340.9 (5)C3—C8—C7—C6179.2 (4)
C42—C41—C40—C390.3 (5)C6—N2—C10—C91.7 (8)
C38—C39—C40—C410.9 (5)C8—C9—C10—N21.7 (8)
C29—C28—C27—C260.5 (5)C4—C3—C2—C10.6 (6)
C23—C28—C27—C26178.8 (3)C8—C3—C2—C1178.9 (4)
C30—N6—C26—C271.2 (6)C10—N2—C6—C70.6 (8)
C28—C27—C26—N61.0 (6)C8—C7—C6—N20.5 (8)
C19—C18—C17—C161.2 (5)C1—N1—C5—C40.2 (9)
C13—C18—C17—C16178.0 (3)C3—C4—C5—N10.3 (9)
C17—C18—C19—C201.0 (5)C5—N1—C1—C20.4 (9)
C13—C18—C19—C20178.1 (3)C3—C2—C1—N10.6 (8)
Hydrogen-bond geometry (Å, º) top
Cg7 and Cg8 are the centroids of the C31–C36 and C38–C43 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H···N40.98 (4)1.67 (4)2.647 (4)171 (3)
O4—H···N51.03 (5)1.60 (5)2.627 (4)175 (4)
N7—H7A···N3i0.862.163.007 (4)169 (4)
N7—H7B···O30.862.233.038 (4)156
N8—H8A···N6ii0.862.163.006 (4)169 (4)
N8—H8B···O10.862.213.019 (4)158
C36—H36A···O30.932.523.300 (4)141
C43—H43A···O10.932.533.304 (4)141
C7—H7C···Cg7iii0.932.873.751 (4)157
C17—H17A···Cg8iv0.932.723.562 (4)151
C19—H19A···Cg8v0.932.783.643 (4)154
C22—H22A···Cg7vi0.932.723.567 (4)151
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1; (iii) x+1, y, z; (iv) x+1, y+1, z; (v) x, y+1, z; (vi) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula3C10H8N2·2C7H7NO2
Mr742.82
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.371 (3), 11.991 (4), 17.653 (6)
α, β, γ (°)94.910 (11), 90.224 (10), 102.128 (11)
V3)1931.6 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.62 × 0.34 × 0.05
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14412, 6518, 3893
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.252, 1.07
No. of reflections6518
No. of parameters513
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.29

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg7 and Cg8 are the centroids of the C31–C36 and C38–C43 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O2—H'···N40.98 (4)1.67 (4)2.647 (4)171 (3)
O4—H''···N51.03 (5)1.60 (5)2.627 (4)175 (4)
N7—H7A···N3i0.86002.16003.007 (4)169 (4)
N7—H7B···O30.86002.2303.038 (4)156.00
N8—H8A···N6ii0.86002.16003.006 (4)169 (4)
N8—H8B···O10.86002.21003.019 (4)158.00
C36—H36A···O30.932.523.300 (4)141
C43—H43A···O10.932.533.304 (4)141
C7—H7C···Cg7iii0.932.873.751 (4)157
C17—H17A···Cg8iv0.932.723.562 (4)151
C19—H19A···Cg8v0.932.783.643 (4)154
C22—H22A···Cg7vi0.932.723.567 (4)151
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1; (iii) x+1, y, z; (iv) x+1, y+1, z; (v) x, y+1, z; (vi) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Kasetsart University Research and Development Institute and the Department of Chemistry, Faculty of Science, Kasetsart University, for research funds.

References

First citationBruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationKarpova, E. V., Zakharov, M. A., Gutnikov, S. I. & Alekseyev, R. S. (2004). Acta Cryst. E60, o2491–o2492.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoteswara Rao, V., Zeller, M. & Lovelace-Cameron, S. R. (2012). Acta Cryst. E68, o1711.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, J. C., Qin, J. H., Sun, Q. B., Qu, L. & Li, Y. G. (2008). Z. Kristallogr. New Cryst. Struct. 223, 11–12.  CAS Google Scholar
First citationZhao, W.-X., Gao, Y.-X., Dong, S.-F., Li, Y. & Zhang, W.-P. (2007). Acta Cryst. E63, o2728.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds