metal-organic compounds
Poly[tetraaquabis(μ4-thiophene-2,5-dicarboxylato)(μ2-thiophene-2,5-dicarboxylato)dieuropium(III)]
aSchool of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang 471003, People's Republic of China, and bDepartment of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: yyduxigang@yahoo.com.cn
The three-dimensional coordination polymer, [Eu2(C6H2O4S)3(H2O)4]n, has been synthesized under hydrothermal conditions. The comprises one Eu3+ cation, two aqua ligands and one and a half thiophene-2,5-dicarboxylate anions (the half-anion being completed by a twofold rotation axis). The Eu3+ cation is eight-coordinated in a distorted dodecahedral geometry. The features O—H⋯O hydrogen bonds.
Related literature
For the structures and potential applications of metal hybrid compounds, see: Bo et al. (2008). For a number of lanthanide coordination polymers based on pyridinedicarboxylic acid, see: Xu et al. (2011). For metal-organic framework structures formed by 4f metals and thiophene-2,5-dicarboxylate anions, see: Huang et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: enCIFer (Allen et al., 2004) and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536812029546/rk2364sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812029546/rk2364Isup2.hkl
All chemicals and solvents except Eu(NO3)3 were purchased and used as received without further purification. Eu(NO3)3 was prepared by dissolving Eu2O3 with concentrated HNO3 and then evaporating at 373 K until crystal film formed. A mixture of Eu(NO3)3 (0.3 mmol), KSCN (0.15 mmol), H2tdc (0.3 mmol) and deionized water (8.0 ml) in a 23 ml teflon-lined autoclave and kept under autogenous pressure at 443 K for 5 days and then cooling to room temperature at a rate of 5 K h-1. Colourless crystals were isolated by filtration.
All hydrogen atoms were positioned geometrically and treated as riding, with C–H = 0.93Å (CH) and Uiso(H) = 1.2Ueq(C), with C–H = 0.97Å (CH2) and Uiso(H) = 1.2Ueq(C), and with C–H = 0.96Å (CH3) and Uiso(H) = 1.5Ueq(C)
The design and synthesis of metal-hybrid compounds have attracted considerable interest due to their intriguing topological structures and potential applications as functional materials in luminescence, magnetism, host-guest chemistry, catalysis and gas adsorption and separation (Bo et al., 2008). In recent years, a number of lanthanide coordination polymers based on pyridinedicarboxylic acid have been synthesized under hydrothermal conditions (Xu et al., 2011). By contrast with these lanthanide complexes containing only rigid pyridinedicarboxylic ligands, the high-dimensional coordination complexes of 4f metal-organic frameworks formed by H2tdc (thiophene-2,5-dicarboxylic acid) are still scarce (Huang et al., 2009). Herein, we report a new structure derived from thiophene-2,5-dicarboxylic acid (Scheme 1), namely [Eu2(tdc)3(H2O)4]n.
A view of the coordination environment of the Eu3+ with atom labeling is illustrated in Fig. 1. The Hydrogen-bond are listed in Table 1. The Eu—O bond lengths range from 2.336 (2)Å to 2.493 (1)Å, and the bond angles of O—Eu—O are in the range of 51.87 (11)° to 156.27 (13)°. In structure, tdc ligand adopt two different coordination modes, constructing an ordered three-dimensional lanthanide framework (Fig. 2).
For the topological structures and potential applications of metal hybrid compounds, see: Bo et al. (2008). For a number of lanthanide coordination polymers based on pyridinedicarboxylic acid, see: Xu et al. (2011). For 4f metal-organic frameworks formed by thiophene-2,5-dicarboxylic acid, see: Huang et al. (2009).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: enCIFer (Allen et al., 2004) and PLATON (Spek, 2009).[Eu2(C6H2O4S)3(H2O)4] | F(000) = 1696 |
Mr = 886.44 | Dx = 2.530 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 8572 reflections |
a = 25.366 (8) Å | θ = 2.6–27.5° |
b = 5.8326 (14) Å | µ = 5.69 mm−1 |
c = 19.008 (6) Å | T = 295 K |
β = 124.136 (4)° | Block, colourless |
V = 2327.7 (12) Å3 | 0.22 × 0.12 × 0.11 mm |
Z = 4 |
Bruker SMART APEXII CCD diffractometer | 2634 independent reflections |
Radiation source: fine-focus sealed tube | 2290 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
φ and ω scans | θmax = 27.5°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −32→32 |
Tmin = 0.445, Tmax = 0.535 | k = −7→7 |
8572 measured reflections | l = −24→24 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.090 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0272P)2] where P = (Fo2 + 2Fc2)/3 |
2634 reflections | (Δ/σ)max = 0.026 |
180 parameters | Δρmax = 1.97 e Å−3 |
0 restraints | Δρmin = −1.74 e Å−3 |
[Eu2(C6H2O4S)3(H2O)4] | V = 2327.7 (12) Å3 |
Mr = 886.44 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 25.366 (8) Å | µ = 5.69 mm−1 |
b = 5.8326 (14) Å | T = 295 K |
c = 19.008 (6) Å | 0.22 × 0.12 × 0.11 mm |
β = 124.136 (4)° |
Bruker SMART APEXII CCD diffractometer | 2634 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 2290 reflections with I > 2σ(I) |
Tmin = 0.445, Tmax = 0.535 | Rint = 0.061 |
8572 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.090 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | Δρmax = 1.97 e Å−3 |
2634 reflections | Δρmin = −1.74 e Å−3 |
180 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Eu1 | 0.866707 (10) | 0.33845 (4) | 0.887181 (14) | 0.01268 (11) | |
S1 | 0.80798 (6) | 0.0059 (2) | 0.56308 (7) | 0.0174 (3) | |
S2 | 1.0000 | 0.3059 (3) | 0.7500 | 0.0186 (4) | |
O1 | 0.89384 (19) | 0.3300 (5) | 0.4736 (2) | 0.0174 (8) | |
O2 | 0.84987 (18) | −0.0175 (6) | 0.4448 (2) | 0.0222 (8) | |
O3 | 0.73304 (15) | −0.0491 (6) | 0.6396 (2) | 0.0183 (7) | |
O4 | 0.79280 (18) | 0.1905 (6) | 0.7483 (2) | 0.0197 (8) | |
O5 | 0.92823 (17) | 0.0273 (6) | 0.8657 (2) | 0.0188 (7) | |
O6 | 0.94444 (17) | 0.3894 (6) | 0.8480 (2) | 0.0186 (7) | |
O7 | 0.83645 (19) | 0.6714 (5) | 0.7928 (2) | 0.0175 (8) | |
H7A | 0.7974 | 0.7025 | 0.7705 | 0.026* | |
H7B | 0.8592 | 0.7858 | 0.8214 | 0.026* | |
O8 | 0.96903 (18) | 0.2934 (7) | 1.0254 (2) | 0.0254 (9) | |
H8B | 0.9831 | 0.4248 | 1.0475 | 0.038* | |
H8A | 0.9956 | 0.2279 | 1.0181 | 0.038* | |
C1 | 0.8071 (2) | 0.1795 (8) | 0.6351 (3) | 0.0144 (10) | |
C2 | 0.8346 (2) | 0.3894 (9) | 0.6426 (3) | 0.0185 (10) | |
H2 | 0.8382 | 0.5055 | 0.6786 | 0.022* | |
C3 | 0.8565 (2) | 0.4072 (9) | 0.5900 (3) | 0.0171 (10) | |
H3 | 0.8758 | 0.5383 | 0.5866 | 0.021* | |
C4 | 0.8467 (2) | 0.2123 (9) | 0.5438 (3) | 0.0154 (10) | |
C5 | 0.8649 (2) | 0.1712 (7) | 0.4835 (3) | 0.0135 (10) | |
C6 | 0.7759 (2) | 0.1015 (8) | 0.6773 (3) | 0.0139 (9) | |
C7 | 0.9866 (3) | −0.1143 (10) | 0.7733 (4) | 0.0283 (13) | |
C8 | 0.9766 (2) | 0.1034 (9) | 0.7912 (3) | 0.0172 (10) | |
C9 | 0.9486 (2) | 0.1754 (8) | 0.8384 (3) | 0.0153 (11) | |
H7 | 0.976 (3) | −0.227 (10) | 0.794 (3) | 0.018* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Eu1 | 0.01266 (17) | 0.01346 (19) | 0.01289 (17) | 0.00158 (7) | 0.00776 (14) | 0.00075 (7) |
S1 | 0.0208 (6) | 0.0165 (6) | 0.0195 (6) | −0.0051 (5) | 0.0142 (5) | −0.0040 (5) |
S2 | 0.0227 (9) | 0.0160 (8) | 0.0265 (9) | 0.000 | 0.0195 (8) | 0.000 |
O1 | 0.020 (2) | 0.020 (2) | 0.0183 (19) | −0.0001 (13) | 0.0144 (18) | 0.0045 (13) |
O2 | 0.0246 (19) | 0.0203 (19) | 0.0277 (18) | −0.0023 (15) | 0.0183 (17) | −0.0077 (15) |
O3 | 0.0154 (16) | 0.0226 (18) | 0.0193 (16) | −0.0090 (14) | 0.0112 (15) | −0.0068 (15) |
O4 | 0.023 (2) | 0.026 (2) | 0.0136 (17) | −0.0048 (14) | 0.0122 (17) | −0.0045 (14) |
O5 | 0.0225 (18) | 0.0167 (18) | 0.0263 (18) | 0.0018 (14) | 0.0193 (16) | 0.0025 (15) |
O6 | 0.0195 (18) | 0.0171 (18) | 0.0240 (18) | 0.0007 (14) | 0.0150 (16) | −0.0003 (15) |
O7 | 0.019 (2) | 0.016 (2) | 0.0163 (18) | 0.0006 (12) | 0.0093 (17) | 0.0015 (12) |
O8 | 0.0196 (19) | 0.0235 (18) | 0.0209 (19) | 0.0019 (15) | 0.0039 (17) | −0.0051 (16) |
C1 | 0.012 (2) | 0.018 (3) | 0.014 (2) | −0.0042 (17) | 0.007 (2) | −0.0008 (17) |
C2 | 0.020 (3) | 0.019 (2) | 0.018 (2) | −0.002 (2) | 0.011 (2) | −0.003 (2) |
C3 | 0.022 (3) | 0.013 (2) | 0.020 (2) | −0.0036 (19) | 0.013 (2) | 0.000 (2) |
C4 | 0.012 (2) | 0.020 (2) | 0.016 (2) | −0.0009 (19) | 0.009 (2) | −0.001 (2) |
C5 | 0.010 (2) | 0.015 (3) | 0.014 (2) | 0.0018 (16) | 0.006 (2) | 0.0016 (17) |
C6 | 0.012 (2) | 0.016 (2) | 0.013 (2) | 0.0052 (19) | 0.0073 (19) | 0.0038 (19) |
C7 | 0.050 (4) | 0.016 (2) | 0.044 (3) | −0.008 (3) | 0.042 (3) | −0.002 (3) |
C8 | 0.018 (2) | 0.020 (2) | 0.022 (2) | 0.001 (2) | 0.016 (2) | 0.000 (2) |
C9 | 0.010 (2) | 0.020 (3) | 0.015 (2) | −0.0005 (17) | 0.006 (2) | −0.0012 (18) |
Eu1—O2i | 2.326 (3) | O4—C6 | 1.275 (6) |
Eu1—O1ii | 2.375 (3) | O5—C9 | 1.259 (6) |
Eu1—O3iii | 2.376 (3) | O6—C9 | 1.274 (5) |
Eu1—O4 | 2.382 (4) | O7—H7A | 0.8500 |
Eu1—O7 | 2.456 (3) | O7—H7B | 0.8500 |
Eu1—O8 | 2.461 (4) | O8—H8B | 0.8500 |
Eu1—O6 | 2.486 (4) | O8—H8A | 0.8501 |
Eu1—O5 | 2.572 (3) | C1—C2 | 1.376 (7) |
S1—C1 | 1.713 (5) | C1—C6 | 1.480 (7) |
S1—C4 | 1.718 (5) | C2—C3 | 1.392 (7) |
S2—C8iv | 1.697 (5) | C2—H2 | 0.9300 |
S2—C8 | 1.697 (5) | C3—C4 | 1.372 (7) |
O1—C5 | 1.260 (6) | C3—H3 | 0.9300 |
O1—Eu1v | 2.375 (3) | C4—C5 | 1.476 (7) |
O2—C5 | 1.258 (5) | C7—C8 | 1.373 (8) |
O2—Eu1vi | 2.326 (3) | C7—C7iv | 1.389 (11) |
O3—C6 | 1.262 (6) | C7—H7 | 0.87 (6) |
O3—Eu1vii | 2.376 (3) | C8—C9 | 1.484 (7) |
O2i—Eu1—O1ii | 112.82 (13) | C9—O6—Eu1 | 94.0 (3) |
O2i—Eu1—O3iii | 82.43 (12) | Eu1—O7—H7A | 109.4 |
O1ii—Eu1—O3iii | 77.54 (13) | Eu1—O7—H7B | 109.4 |
O2i—Eu1—O4 | 89.55 (13) | H7A—O7—H7B | 109.5 |
O1ii—Eu1—O4 | 143.48 (13) | Eu1—O8—H8B | 109.3 |
O3iii—Eu1—O4 | 77.34 (13) | Eu1—O8—H8A | 109.3 |
O2i—Eu1—O7 | 156.27 (13) | H8B—O8—H8A | 109.5 |
O1ii—Eu1—O7 | 73.27 (14) | C2—C1—C6 | 127.7 (5) |
O3iii—Eu1—O7 | 76.49 (12) | C2—C1—S1 | 112.1 (4) |
O4—Eu1—O7 | 75.39 (12) | C6—C1—S1 | 120.2 (3) |
O2i—Eu1—O8 | 76.92 (13) | C1—C2—C3 | 112.0 (5) |
O1ii—Eu1—O8 | 68.02 (13) | C1—C2—H2 | 124.0 |
O3iii—Eu1—O8 | 128.08 (13) | C3—C2—H2 | 124.0 |
O4—Eu1—O8 | 147.93 (13) | C4—C3—C2 | 113.4 (5) |
O7—Eu1—O8 | 125.05 (13) | C4—C3—H3 | 123.3 |
O2i—Eu1—O6 | 128.58 (12) | C2—C3—H3 | 123.3 |
O1ii—Eu1—O6 | 98.00 (13) | C3—C4—C5 | 127.6 (5) |
O3iii—Eu1—O6 | 146.20 (12) | C3—C4—S1 | 111.3 (4) |
O4—Eu1—O6 | 88.55 (12) | C5—C4—S1 | 121.1 (4) |
O7—Eu1—O6 | 70.23 (13) | O2—C5—O1 | 124.5 (5) |
O8—Eu1—O6 | 78.11 (13) | O2—C5—C4 | 118.1 (4) |
O2i—Eu1—O5 | 78.18 (12) | O1—C5—C4 | 117.3 (4) |
O1ii—Eu1—O5 | 135.91 (12) | O3—C6—O4 | 123.7 (5) |
O3iii—Eu1—O5 | 145.99 (12) | O3—C6—C1 | 117.3 (4) |
O4—Eu1—O5 | 74.85 (12) | O4—C6—C1 | 119.0 (4) |
O7—Eu1—O5 | 114.24 (12) | C8—C7—C7iv | 112.4 (3) |
O8—Eu1—O5 | 73.97 (12) | C8—C7—H7 | 116 (4) |
O6—Eu1—O5 | 51.87 (11) | C7iv—C7—H7 | 131 (4) |
C1—S1—C4 | 91.2 (2) | C7—C8—C9 | 128.9 (5) |
C8iv—S2—C8 | 91.8 (4) | C7—C8—S2 | 111.7 (4) |
C5—O1—Eu1v | 137.3 (3) | C9—C8—S2 | 119.4 (4) |
C5—O2—Eu1vi | 154.6 (3) | O5—C9—O6 | 121.7 (5) |
C6—O3—Eu1vii | 142.1 (3) | O5—C9—C8 | 120.1 (4) |
C6—O4—Eu1 | 155.3 (3) | O6—C9—C8 | 118.1 (4) |
C9—O5—Eu1 | 90.4 (3) | ||
O2i—Eu1—O4—C6 | −109.1 (8) | C1—S1—C4—C5 | 179.0 (4) |
O1ii—Eu1—O4—C6 | 121.1 (8) | Eu1vi—O2—C5—O1 | 40.7 (11) |
O3iii—Eu1—O4—C6 | 168.6 (8) | Eu1vi—O2—C5—C4 | −140.3 (6) |
O7—Eu1—O4—C6 | 89.5 (8) | Eu1v—O1—C5—O2 | 91.7 (6) |
O8—Eu1—O4—C6 | −45.1 (9) | Eu1v—O1—C5—C4 | −87.3 (6) |
O6—Eu1—O4—C6 | 19.5 (8) | C3—C4—C5—O2 | −177.7 (5) |
O5—Eu1—O4—C6 | −31.2 (8) | S1—C4—C5—O2 | 1.7 (7) |
O2i—Eu1—O5—C9 | −174.6 (3) | C3—C4—C5—O1 | 1.4 (8) |
O1ii—Eu1—O5—C9 | −63.9 (3) | S1—C4—C5—O1 | −179.2 (4) |
O3iii—Eu1—O5—C9 | 128.8 (3) | Eu1vii—O3—C6—O4 | 36.1 (8) |
O4—Eu1—O5—C9 | 92.6 (3) | Eu1vii—O3—C6—C1 | −142.9 (4) |
O7—Eu1—O5—C9 | 26.7 (3) | Eu1—O4—C6—O3 | 140.6 (6) |
O8—Eu1—O5—C9 | −95.0 (3) | Eu1—O4—C6—C1 | −40.4 (10) |
O6—Eu1—O5—C9 | −7.7 (3) | C2—C1—C6—O3 | 152.4 (5) |
O2i—Eu1—O6—C9 | 24.1 (3) | S1—C1—C6—O3 | −24.0 (6) |
O1ii—Eu1—O6—C9 | 151.9 (3) | C2—C1—C6—O4 | −26.7 (8) |
O3iii—Eu1—O6—C9 | −128.6 (3) | S1—C1—C6—O4 | 156.9 (4) |
O4—Eu1—O6—C9 | −64.1 (3) | C7iv—C7—C8—C9 | 179.4 (7) |
O7—Eu1—O6—C9 | −139.1 (3) | C7iv—C7—C8—S2 | 0.3 (9) |
O8—Eu1—O6—C9 | 86.5 (3) | C8iv—S2—C8—C7 | −0.1 (3) |
O5—Eu1—O6—C9 | 7.7 (3) | C8iv—S2—C8—C9 | −179.3 (5) |
C4—S1—C1—C2 | 1.0 (4) | Eu1—O5—C9—O6 | 14.0 (5) |
C4—S1—C1—C6 | 177.9 (4) | Eu1—O5—C9—C8 | −164.0 (4) |
C6—C1—C2—C3 | −176.9 (5) | Eu1—O6—C9—O5 | −14.6 (5) |
S1—C1—C2—C3 | −0.2 (6) | Eu1—O6—C9—C8 | 163.5 (4) |
C1—C2—C3—C4 | −1.0 (7) | C7—C8—C9—O5 | −2.5 (8) |
C2—C3—C4—C5 | −178.9 (5) | S2—C8—C9—O5 | 176.5 (4) |
C2—C3—C4—S1 | 1.7 (6) | C7—C8—C9—O6 | 179.4 (6) |
C1—S1—C4—C3 | −1.5 (4) | S2—C8—C9—O6 | −1.6 (6) |
Symmetry codes: (i) x, −y, z+1/2; (ii) x, −y+1, z+1/2; (iii) −x+3/2, y+1/2, −z+3/2; (iv) −x+2, y, −z+3/2; (v) x, −y+1, z−1/2; (vi) x, −y, z−1/2; (vii) −x+3/2, y−1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7A···O4iii | 0.85 | 2.11 | 2.915 (6) | 158 |
O7—H7A···O3viii | 0.85 | 2.53 | 3.073 (5) | 123 |
O7—H7B···O5viii | 0.85 | 2.03 | 2.833 (5) | 158 |
O8—H8B···O6ix | 0.85 | 2.10 | 2.846 (5) | 147 |
O8—H8A···O5x | 0.85 | 2.46 | 2.919 (5) | 115 |
Symmetry codes: (iii) −x+3/2, y+1/2, −z+3/2; (viii) x, y+1, z; (ix) −x+2, −y+1, −z+2; (x) −x+2, −y, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [Eu2(C6H2O4S)3(H2O)4] |
Mr | 886.44 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 295 |
a, b, c (Å) | 25.366 (8), 5.8326 (14), 19.008 (6) |
β (°) | 124.136 (4) |
V (Å3) | 2327.7 (12) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.69 |
Crystal size (mm) | 0.22 × 0.12 × 0.11 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.445, 0.535 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8572, 2634, 2290 |
Rint | 0.061 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.090, 1.00 |
No. of reflections | 2634 |
No. of parameters | 180 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.97, −1.74 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), enCIFer (Allen et al., 2004) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7A···O4i | 0.85 | 2.11 | 2.915 (6) | 158.0 |
O7—H7A···O3ii | 0.85 | 2.53 | 3.073 (5) | 122.8 |
O7—H7B···O5ii | 0.85 | 2.03 | 2.833 (5) | 158.4 |
O8—H8B···O6iii | 0.85 | 2.10 | 2.846 (5) | 146.6 |
O8—H8A···O5iv | 0.85 | 2.46 | 2.919 (5) | 114.9 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) x, y+1, z; (iii) −x+2, −y+1, −z+2; (iv) −x+2, −y, −z+2. |
Acknowledgements
This work was supported financially by the Doctoral Fund Project of Shandong Province (BS2009SF019) and the National Natural Science Foundation of China (grants Nos. 21076063 and 20963007).
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Bo, Q. B., Sun, Z. X. & Forsling, W. (2008). CrystEngComm, 10, 232–238. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Huang, W., Wu, D. Y., Zhou, P., Yan, W. B., Guo, D., Duan, C. Y. & Meng, Q. J. (2009). Cryst. Growth Des. 9, 1361-1369. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, J., Su, W. P. & Hong, M. C. (2011). Cryst. Growth Des. 11, 337–346. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The design and synthesis of metal-hybrid compounds have attracted considerable interest due to their intriguing topological structures and potential applications as functional materials in luminescence, magnetism, host-guest chemistry, catalysis and gas adsorption and separation (Bo et al., 2008). In recent years, a number of lanthanide coordination polymers based on pyridinedicarboxylic acid have been synthesized under hydrothermal conditions (Xu et al., 2011). By contrast with these lanthanide complexes containing only rigid pyridinedicarboxylic ligands, the high-dimensional coordination complexes of 4f metal-organic frameworks formed by H2tdc (thiophene-2,5-dicarboxylic acid) are still scarce (Huang et al., 2009). Herein, we report a new structure derived from thiophene-2,5-dicarboxylic acid (Scheme 1), namely [Eu2(tdc)3(H2O)4]n.
A view of the coordination environment of the Eu3+ with atom labeling is illustrated in Fig. 1. The Hydrogen-bond are listed in Table 1. The Eu—O bond lengths range from 2.336 (2)Å to 2.493 (1)Å, and the bond angles of O—Eu—O are in the range of 51.87 (11)° to 156.27 (13)°. In structure, tdc ligand adopt two different coordination modes, constructing an ordered three-dimensional lanthanide framework (Fig. 2).