metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[tetra­aqua­bis­­(μ4-thio­phene-2,5-di­carboxyl­ato)(μ2-thio­phene-2,5-di­carboxyl­ato)dieuropium(III)]

aSchool of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang 471003, People's Republic of China, and bDepartment of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: yyduxigang@yahoo.com.cn

(Received 23 May 2012; accepted 28 June 2012; online 4 July 2012)

The three-dimensional coordination polymer, [Eu2(C6H2O4S)3(H2O)4]n, has been synthesized under hydro­thermal conditions. The asymmetric unit comprises one Eu3+ cation, two aqua ligands and one and a half thiophene-2,5-dicarboxylate anions (the half-anion being completed by a twofold rotation axis). The Eu3+ cation is eight-coordinated in a distorted dodeca­hedral geometry. The crystal structure features O—H⋯O hydrogen bonds.

Related literature

For the structures and potential applications of metal hybrid compounds, see: Bo et al. (2008[Bo, Q. B., Sun, Z. X. & Forsling, W. (2008). CrystEngComm, 10, 232-238.]). For a number of lanthanide coordination polymers based on pyridine­dicarb­oxy­lic acid, see: Xu et al. (2011[Xu, J., Su, W. P. & Hong, M. C. (2011). Cryst. Growth Des. 11, 337-346.]). For metal-organic framework structures formed by 4f metals and thiophene-2,5-dicarboxylate anions, see: Huang et al. (2009[Huang, W., Wu, D. Y., Zhou, P., Yan, W. B., Guo, D., Duan, C. Y. & Meng, Q. J. (2009). Cryst. Growth Des. 9, 1361-1369.]).

[Scheme 1]

Experimental

Crystal data
  • [Eu2(C6H2O4S)3(H2O)4]

  • Mr = 886.44

  • Monoclinic, C 2/c

  • a = 25.366 (8) Å

  • b = 5.8326 (14) Å

  • c = 19.008 (6) Å

  • β = 124.136 (4)°

  • V = 2327.7 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.69 mm−1

  • T = 295 K

  • 0.22 × 0.12 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.445, Tmax = 0.535

  • 8572 measured reflections

  • 2634 independent reflections

  • 2290 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.090

  • S = 1.00

  • 2634 reflections

  • 180 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.97 e Å−3

  • Δρmin = −1.74 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O4i 0.85 2.11 2.915 (6) 158
O7—H7A⋯O3ii 0.85 2.53 3.073 (5) 123
O7—H7B⋯O5ii 0.85 2.03 2.833 (5) 158
O8—H8B⋯O6iii 0.85 2.10 2.846 (5) 147
O8—H8A⋯O5iv 0.85 2.46 2.919 (5) 115
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y+1, z; (iii) -x+2, -y+1, -z+2; (iv) -x+2, -y, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: enCIFer (Allen et al., 2004)[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.] and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The design and synthesis of metal-hybrid compounds have attracted considerable interest due to their intriguing topological structures and potential applications as functional materials in luminescence, magnetism, host-guest chemistry, catalysis and gas adsorption and separation (Bo et al., 2008). In recent years, a number of lanthanide coordination polymers based on pyridinedicarboxylic acid have been synthesized under hydrothermal conditions (Xu et al., 2011). By contrast with these lanthanide complexes containing only rigid pyridinedicarboxylic ligands, the high-dimensional coordination complexes of 4f metal-organic frameworks formed by H2tdc (thiophene-2,5-dicarboxylic acid) are still scarce (Huang et al., 2009). Herein, we report a new structure derived from thiophene-2,5-dicarboxylic acid (Scheme 1), namely [Eu2(tdc)3(H2O)4]n.

A view of the coordination environment of the Eu3+ with atom labeling is illustrated in Fig. 1. The Hydrogen-bond are listed in Table 1. The Eu—O bond lengths range from 2.336 (2)Å to 2.493 (1)Å, and the bond angles of O—Eu—O are in the range of 51.87 (11)° to 156.27 (13)°. In structure, tdc ligand adopt two different coordination modes, constructing an ordered three-dimensional lanthanide framework (Fig. 2).

Related literature top

For the topological structures and potential applications of metal hybrid compounds, see: Bo et al. (2008). For a number of lanthanide coordination polymers based on pyridinedicarboxylic acid, see: Xu et al. (2011). For 4f metal-organic frameworks formed by thiophene-2,5-dicarboxylic acid, see: Huang et al. (2009).

Experimental top

All chemicals and solvents except Eu(NO3)3 were purchased and used as received without further purification. Eu(NO3)3 was prepared by dissolving Eu2O3 with concentrated HNO3 and then evaporating at 373 K until crystal film formed. A mixture of Eu(NO3)3 (0.3 mmol), KSCN (0.15 mmol), H2tdc (0.3 mmol) and deionized water (8.0 ml) in a 23 ml teflon-lined autoclave and kept under autogenous pressure at 443 K for 5 days and then cooling to room temperature at a rate of 5 K h-1. Colourless crystals were isolated by filtration.

Refinement top

All hydrogen atoms were positioned geometrically and treated as riding, with C–H = 0.93Å (CH) and Uiso(H) = 1.2Ueq(C), with C–H = 0.97Å (CH2) and Uiso(H) = 1.2Ueq(C), and with C–H = 0.96Å (CH3) and Uiso(H) = 1.5Ueq(C)

Structure description top

The design and synthesis of metal-hybrid compounds have attracted considerable interest due to their intriguing topological structures and potential applications as functional materials in luminescence, magnetism, host-guest chemistry, catalysis and gas adsorption and separation (Bo et al., 2008). In recent years, a number of lanthanide coordination polymers based on pyridinedicarboxylic acid have been synthesized under hydrothermal conditions (Xu et al., 2011). By contrast with these lanthanide complexes containing only rigid pyridinedicarboxylic ligands, the high-dimensional coordination complexes of 4f metal-organic frameworks formed by H2tdc (thiophene-2,5-dicarboxylic acid) are still scarce (Huang et al., 2009). Herein, we report a new structure derived from thiophene-2,5-dicarboxylic acid (Scheme 1), namely [Eu2(tdc)3(H2O)4]n.

A view of the coordination environment of the Eu3+ with atom labeling is illustrated in Fig. 1. The Hydrogen-bond are listed in Table 1. The Eu—O bond lengths range from 2.336 (2)Å to 2.493 (1)Å, and the bond angles of O—Eu—O are in the range of 51.87 (11)° to 156.27 (13)°. In structure, tdc ligand adopt two different coordination modes, constructing an ordered three-dimensional lanthanide framework (Fig. 2).

For the topological structures and potential applications of metal hybrid compounds, see: Bo et al. (2008). For a number of lanthanide coordination polymers based on pyridinedicarboxylic acid, see: Xu et al. (2011). For 4f metal-organic frameworks formed by thiophene-2,5-dicarboxylic acid, see: Huang et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: enCIFer (Allen et al., 2004) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The coordination environment of the Eu3+ with the atom numbering scheme. Displacement ellipsoids are presented at 30% probability level. Symmetry codes: (i) x, 1-y, 1/2+z; (ii) x, -y, 1/2+z; (iii) 3/2-x, 1/2+y, 3/2-z; (iv) 2-x, y, 1/2-z;
[Figure 2] Fig. 2. Three-dimensional architecture in the crystal structure of title compound. All the hydrogen atoms are omitted for clarity.
Poly[tetraaquabis(µ4-thiophene-2,5-dicarboxylato)(µ2- thiophene-2,5-dicarboxylato)dieuropium(III)] top
Crystal data top
[Eu2(C6H2O4S)3(H2O)4]F(000) = 1696
Mr = 886.44Dx = 2.530 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8572 reflections
a = 25.366 (8) Åθ = 2.6–27.5°
b = 5.8326 (14) ŵ = 5.69 mm1
c = 19.008 (6) ÅT = 295 K
β = 124.136 (4)°Block, colourless
V = 2327.7 (12) Å30.22 × 0.12 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
2634 independent reflections
Radiation source: fine-focus sealed tube2290 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
φ and ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 3232
Tmin = 0.445, Tmax = 0.535k = 77
8572 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0272P)2]
where P = (Fo2 + 2Fc2)/3
2634 reflections(Δ/σ)max = 0.026
180 parametersΔρmax = 1.97 e Å3
0 restraintsΔρmin = 1.74 e Å3
Crystal data top
[Eu2(C6H2O4S)3(H2O)4]V = 2327.7 (12) Å3
Mr = 886.44Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.366 (8) ŵ = 5.69 mm1
b = 5.8326 (14) ÅT = 295 K
c = 19.008 (6) Å0.22 × 0.12 × 0.11 mm
β = 124.136 (4)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2634 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2290 reflections with I > 2σ(I)
Tmin = 0.445, Tmax = 0.535Rint = 0.061
8572 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 1.97 e Å3
2634 reflectionsΔρmin = 1.74 e Å3
180 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.866707 (10)0.33845 (4)0.887181 (14)0.01268 (11)
S10.80798 (6)0.0059 (2)0.56308 (7)0.0174 (3)
S21.00000.3059 (3)0.75000.0186 (4)
O10.89384 (19)0.3300 (5)0.4736 (2)0.0174 (8)
O20.84987 (18)0.0175 (6)0.4448 (2)0.0222 (8)
O30.73304 (15)0.0491 (6)0.6396 (2)0.0183 (7)
O40.79280 (18)0.1905 (6)0.7483 (2)0.0197 (8)
O50.92823 (17)0.0273 (6)0.8657 (2)0.0188 (7)
O60.94444 (17)0.3894 (6)0.8480 (2)0.0186 (7)
O70.83645 (19)0.6714 (5)0.7928 (2)0.0175 (8)
H7A0.79740.70250.77050.026*
H7B0.85920.78580.82140.026*
O80.96903 (18)0.2934 (7)1.0254 (2)0.0254 (9)
H8B0.98310.42481.04750.038*
H8A0.99560.22791.01810.038*
C10.8071 (2)0.1795 (8)0.6351 (3)0.0144 (10)
C20.8346 (2)0.3894 (9)0.6426 (3)0.0185 (10)
H20.83820.50550.67860.022*
C30.8565 (2)0.4072 (9)0.5900 (3)0.0171 (10)
H30.87580.53830.58660.021*
C40.8467 (2)0.2123 (9)0.5438 (3)0.0154 (10)
C50.8649 (2)0.1712 (7)0.4835 (3)0.0135 (10)
C60.7759 (2)0.1015 (8)0.6773 (3)0.0139 (9)
C70.9866 (3)0.1143 (10)0.7733 (4)0.0283 (13)
C80.9766 (2)0.1034 (9)0.7912 (3)0.0172 (10)
C90.9486 (2)0.1754 (8)0.8384 (3)0.0153 (11)
H70.976 (3)0.227 (10)0.794 (3)0.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.01266 (17)0.01346 (19)0.01289 (17)0.00158 (7)0.00776 (14)0.00075 (7)
S10.0208 (6)0.0165 (6)0.0195 (6)0.0051 (5)0.0142 (5)0.0040 (5)
S20.0227 (9)0.0160 (8)0.0265 (9)0.0000.0195 (8)0.000
O10.020 (2)0.020 (2)0.0183 (19)0.0001 (13)0.0144 (18)0.0045 (13)
O20.0246 (19)0.0203 (19)0.0277 (18)0.0023 (15)0.0183 (17)0.0077 (15)
O30.0154 (16)0.0226 (18)0.0193 (16)0.0090 (14)0.0112 (15)0.0068 (15)
O40.023 (2)0.026 (2)0.0136 (17)0.0048 (14)0.0122 (17)0.0045 (14)
O50.0225 (18)0.0167 (18)0.0263 (18)0.0018 (14)0.0193 (16)0.0025 (15)
O60.0195 (18)0.0171 (18)0.0240 (18)0.0007 (14)0.0150 (16)0.0003 (15)
O70.019 (2)0.016 (2)0.0163 (18)0.0006 (12)0.0093 (17)0.0015 (12)
O80.0196 (19)0.0235 (18)0.0209 (19)0.0019 (15)0.0039 (17)0.0051 (16)
C10.012 (2)0.018 (3)0.014 (2)0.0042 (17)0.007 (2)0.0008 (17)
C20.020 (3)0.019 (2)0.018 (2)0.002 (2)0.011 (2)0.003 (2)
C30.022 (3)0.013 (2)0.020 (2)0.0036 (19)0.013 (2)0.000 (2)
C40.012 (2)0.020 (2)0.016 (2)0.0009 (19)0.009 (2)0.001 (2)
C50.010 (2)0.015 (3)0.014 (2)0.0018 (16)0.006 (2)0.0016 (17)
C60.012 (2)0.016 (2)0.013 (2)0.0052 (19)0.0073 (19)0.0038 (19)
C70.050 (4)0.016 (2)0.044 (3)0.008 (3)0.042 (3)0.002 (3)
C80.018 (2)0.020 (2)0.022 (2)0.001 (2)0.016 (2)0.000 (2)
C90.010 (2)0.020 (3)0.015 (2)0.0005 (17)0.006 (2)0.0012 (18)
Geometric parameters (Å, º) top
Eu1—O2i2.326 (3)O4—C61.275 (6)
Eu1—O1ii2.375 (3)O5—C91.259 (6)
Eu1—O3iii2.376 (3)O6—C91.274 (5)
Eu1—O42.382 (4)O7—H7A0.8500
Eu1—O72.456 (3)O7—H7B0.8500
Eu1—O82.461 (4)O8—H8B0.8500
Eu1—O62.486 (4)O8—H8A0.8501
Eu1—O52.572 (3)C1—C21.376 (7)
S1—C11.713 (5)C1—C61.480 (7)
S1—C41.718 (5)C2—C31.392 (7)
S2—C8iv1.697 (5)C2—H20.9300
S2—C81.697 (5)C3—C41.372 (7)
O1—C51.260 (6)C3—H30.9300
O1—Eu1v2.375 (3)C4—C51.476 (7)
O2—C51.258 (5)C7—C81.373 (8)
O2—Eu1vi2.326 (3)C7—C7iv1.389 (11)
O3—C61.262 (6)C7—H70.87 (6)
O3—Eu1vii2.376 (3)C8—C91.484 (7)
O2i—Eu1—O1ii112.82 (13)C9—O6—Eu194.0 (3)
O2i—Eu1—O3iii82.43 (12)Eu1—O7—H7A109.4
O1ii—Eu1—O3iii77.54 (13)Eu1—O7—H7B109.4
O2i—Eu1—O489.55 (13)H7A—O7—H7B109.5
O1ii—Eu1—O4143.48 (13)Eu1—O8—H8B109.3
O3iii—Eu1—O477.34 (13)Eu1—O8—H8A109.3
O2i—Eu1—O7156.27 (13)H8B—O8—H8A109.5
O1ii—Eu1—O773.27 (14)C2—C1—C6127.7 (5)
O3iii—Eu1—O776.49 (12)C2—C1—S1112.1 (4)
O4—Eu1—O775.39 (12)C6—C1—S1120.2 (3)
O2i—Eu1—O876.92 (13)C1—C2—C3112.0 (5)
O1ii—Eu1—O868.02 (13)C1—C2—H2124.0
O3iii—Eu1—O8128.08 (13)C3—C2—H2124.0
O4—Eu1—O8147.93 (13)C4—C3—C2113.4 (5)
O7—Eu1—O8125.05 (13)C4—C3—H3123.3
O2i—Eu1—O6128.58 (12)C2—C3—H3123.3
O1ii—Eu1—O698.00 (13)C3—C4—C5127.6 (5)
O3iii—Eu1—O6146.20 (12)C3—C4—S1111.3 (4)
O4—Eu1—O688.55 (12)C5—C4—S1121.1 (4)
O7—Eu1—O670.23 (13)O2—C5—O1124.5 (5)
O8—Eu1—O678.11 (13)O2—C5—C4118.1 (4)
O2i—Eu1—O578.18 (12)O1—C5—C4117.3 (4)
O1ii—Eu1—O5135.91 (12)O3—C6—O4123.7 (5)
O3iii—Eu1—O5145.99 (12)O3—C6—C1117.3 (4)
O4—Eu1—O574.85 (12)O4—C6—C1119.0 (4)
O7—Eu1—O5114.24 (12)C8—C7—C7iv112.4 (3)
O8—Eu1—O573.97 (12)C8—C7—H7116 (4)
O6—Eu1—O551.87 (11)C7iv—C7—H7131 (4)
C1—S1—C491.2 (2)C7—C8—C9128.9 (5)
C8iv—S2—C891.8 (4)C7—C8—S2111.7 (4)
C5—O1—Eu1v137.3 (3)C9—C8—S2119.4 (4)
C5—O2—Eu1vi154.6 (3)O5—C9—O6121.7 (5)
C6—O3—Eu1vii142.1 (3)O5—C9—C8120.1 (4)
C6—O4—Eu1155.3 (3)O6—C9—C8118.1 (4)
C9—O5—Eu190.4 (3)
O2i—Eu1—O4—C6109.1 (8)C1—S1—C4—C5179.0 (4)
O1ii—Eu1—O4—C6121.1 (8)Eu1vi—O2—C5—O140.7 (11)
O3iii—Eu1—O4—C6168.6 (8)Eu1vi—O2—C5—C4140.3 (6)
O7—Eu1—O4—C689.5 (8)Eu1v—O1—C5—O291.7 (6)
O8—Eu1—O4—C645.1 (9)Eu1v—O1—C5—C487.3 (6)
O6—Eu1—O4—C619.5 (8)C3—C4—C5—O2177.7 (5)
O5—Eu1—O4—C631.2 (8)S1—C4—C5—O21.7 (7)
O2i—Eu1—O5—C9174.6 (3)C3—C4—C5—O11.4 (8)
O1ii—Eu1—O5—C963.9 (3)S1—C4—C5—O1179.2 (4)
O3iii—Eu1—O5—C9128.8 (3)Eu1vii—O3—C6—O436.1 (8)
O4—Eu1—O5—C992.6 (3)Eu1vii—O3—C6—C1142.9 (4)
O7—Eu1—O5—C926.7 (3)Eu1—O4—C6—O3140.6 (6)
O8—Eu1—O5—C995.0 (3)Eu1—O4—C6—C140.4 (10)
O6—Eu1—O5—C97.7 (3)C2—C1—C6—O3152.4 (5)
O2i—Eu1—O6—C924.1 (3)S1—C1—C6—O324.0 (6)
O1ii—Eu1—O6—C9151.9 (3)C2—C1—C6—O426.7 (8)
O3iii—Eu1—O6—C9128.6 (3)S1—C1—C6—O4156.9 (4)
O4—Eu1—O6—C964.1 (3)C7iv—C7—C8—C9179.4 (7)
O7—Eu1—O6—C9139.1 (3)C7iv—C7—C8—S20.3 (9)
O8—Eu1—O6—C986.5 (3)C8iv—S2—C8—C70.1 (3)
O5—Eu1—O6—C97.7 (3)C8iv—S2—C8—C9179.3 (5)
C4—S1—C1—C21.0 (4)Eu1—O5—C9—O614.0 (5)
C4—S1—C1—C6177.9 (4)Eu1—O5—C9—C8164.0 (4)
C6—C1—C2—C3176.9 (5)Eu1—O6—C9—O514.6 (5)
S1—C1—C2—C30.2 (6)Eu1—O6—C9—C8163.5 (4)
C1—C2—C3—C41.0 (7)C7—C8—C9—O52.5 (8)
C2—C3—C4—C5178.9 (5)S2—C8—C9—O5176.5 (4)
C2—C3—C4—S11.7 (6)C7—C8—C9—O6179.4 (6)
C1—S1—C4—C31.5 (4)S2—C8—C9—O61.6 (6)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z+1/2; (iii) x+3/2, y+1/2, z+3/2; (iv) x+2, y, z+3/2; (v) x, y+1, z1/2; (vi) x, y, z1/2; (vii) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O4iii0.852.112.915 (6)158
O7—H7A···O3viii0.852.533.073 (5)123
O7—H7B···O5viii0.852.032.833 (5)158
O8—H8B···O6ix0.852.102.846 (5)147
O8—H8A···O5x0.852.462.919 (5)115
Symmetry codes: (iii) x+3/2, y+1/2, z+3/2; (viii) x, y+1, z; (ix) x+2, y+1, z+2; (x) x+2, y, z+2.

Experimental details

Crystal data
Chemical formula[Eu2(C6H2O4S)3(H2O)4]
Mr886.44
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)25.366 (8), 5.8326 (14), 19.008 (6)
β (°) 124.136 (4)
V3)2327.7 (12)
Z4
Radiation typeMo Kα
µ (mm1)5.69
Crystal size (mm)0.22 × 0.12 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.445, 0.535
No. of measured, independent and
observed [I > 2σ(I)] reflections
8572, 2634, 2290
Rint0.061
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.090, 1.00
No. of reflections2634
No. of parameters180
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.97, 1.74

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), enCIFer (Allen et al., 2004) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O4i0.852.112.915 (6)158.0
O7—H7A···O3ii0.852.533.073 (5)122.8
O7—H7B···O5ii0.852.032.833 (5)158.4
O8—H8B···O6iii0.852.102.846 (5)146.6
O8—H8A···O5iv0.852.462.919 (5)114.9
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x, y+1, z; (iii) x+2, y+1, z+2; (iv) x+2, y, z+2.
 

Acknowledgements

This work was supported financially by the Doctoral Fund Project of Shandong Province (BS2009SF019) and the National Natural Science Foundation of China (grants Nos. 21076063 and 20963007).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBo, Q. B., Sun, Z. X. & Forsling, W. (2008). CrystEngComm, 10, 232–238.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, W., Wu, D. Y., Zhou, P., Yan, W. B., Guo, D., Duan, C. Y. & Meng, Q. J. (2009). Cryst. Growth Des. 9, 1361-1369.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, J., Su, W. P. & Hong, M. C. (2011). Cryst. Growth Des. 11, 337–346.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds