metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­aqua­(μ5-1H-imidazole-4,5-di­carboxyl­ato)(μ4-1H-imidazole-4,5-di­carboxyl­ato)tris­­ilver(I)ytterbium(III)]

aSchool of Light Industry and Food Science, South China University of Technology, Guangzhou 510641, People's Republic of China
*Correspondence e-mail: simingzhu76@yahoo.com.cn

(Received 6 June 2012; accepted 10 July 2012; online 18 July 2012)

The asymmetric unit of the title compound, [Ag3Yb(C5HN2O4)2(H2O)2]n, contains three AgI ions, one YbIII ion, two imidazole-4,5-dicarboxyl­ate ligands and two coordinating water mol­ecules. The YbIII atom is eight-coordinated, in a bicapped trigonal prismatic coordination geometry, by six O atoms from three imidazole-4,5-dicarboxyl­ate ligands and two coordinating water mol­ecules. The two-coordinated AgI ions exhibit three types of coordination environments. One AgI atom is bonded to two N atoms from two different imidazole-4,5-dicarboxyl­ate ligands. The other two AgI atoms are each coordinated by one O atom and one N atom from two different imidazole-4,5-dicarboxyl­ate ligands. These metal coordination units are connected by bridging imidazole-4,5-dicarboxyl­ate ligands, generating a two-dimensional heterometallic layer. These layers are stacked along the a axis via O—H⋯O hydrogen-bonding inter­actions to generate a three-dimensional framework.

Related literature

For the application of lanthanide–transition metal heterometallic complexes with bridging multifunctional organic ligands, see: Cheng et al. (2006[Cheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73-77.]); Kuang et al. (2007[Kuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526-m2527.]); Sun et al. (2006[Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2006). Chem. Commun. pp. 4700-4702.]); Zhu et al. (2010[Zhu, L.-C., Zhao, Y., Yu, S.-J. & Zhao, M.-M. (2010). Inorg. Chem. Commun. 13, 1299-1303.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag3Yb(C5HN2O4)2(H2O)2]

  • Mr = 838.84

  • Monoclinic, C 2/c

  • a = 12.6850 (7) Å

  • b = 8.6643 (5) Å

  • c = 28.4015 (16) Å

  • β = 97.686 (1)°

  • V = 3093.5 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 9.80 mm−1

  • T = 295 K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.162, Tmax = 0.189

  • 7613 measured reflections

  • 2794 independent reflections

  • 2629 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.055

  • S = 1.19

  • 2794 reflections

  • 265 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −1.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O8i 0.82 (2) 2.11 (5) 2.751 (5) 136 (6)
O1W—H2W⋯O2ii 0.81 (2) 2.03 (3) 2.823 (5) 165 (6)
O2W—H4W⋯O1iii 0.81 (2) 1.88 (4) 2.634 (5) 154 (8)
Symmetry codes: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the past few years, lanthanide-transition metal heterometallic complexs with bridging multifunctionnal organic ligands are of increasing interest, not only because of their impressive topological structures, but also due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probe (Cheng et al., 2006; Kuang et al., 2007; Sun et al., 2006; Zhu et al., 2010). As an extension of this research, the structure of the title compound, a new heterometallic coordination polymer, has been determined which is presented in this artcle.

The asymmetric unit of the title compound (Fig. 1), contains three AgI ions, one YbIII ion, two imidazole-4,5-dicarboxylate ligands, and two coordinated water molecules. The YbIII are eight-coordinated, in a bicapped trigonal prismatic coordination geometry, by six O atoms from three imidazole-4,5-dicarboxylate ligands and two coordinated water molecules. The two-coordinated AgI ions exhibit three types of coordination environment. One AgI ion is linear bonded to two N atoms from two different imidazole-4,5-dicarboxylate ligands with N2iv-Ag3-N3 angle 176.23 (17)°. The other two AgI ions are coordinated in a bow-like conformation each by one O atom and one N atom from two different imidazole-4,5-dicarboxylate ligands with N-Ag-O angle 157.45 (14)° and 159.80 (14)°, respectively. These metal coordination units are connected by bridging imidazole-4,5-dicarboxylate ligands, generating a two-dimensional heterometallic layer. The two-dimensional layers are stacked along a axis via O–H···O hydrogen-bonding interactions to generate the three-dimensional framework (Table 1 and Fig. 2). Symmetry code: (iv) -x, y, -z+3/2.

Related literature top

For the application of lanthanide–transition metal heterometallic complexes with bridging multifunctional organic ligands, see: Cheng et al. (2006); Kuang et al. (2007); Sun et al. (2006); Zhu et al. (2010).

Experimental top

A mixture of AgNO3 (0.102 g, 0.6 mmol), Yb2O3 (0.118 g, 0.3 mmol), imidazole-4,5-dicarboxylic acid (0.188 g, 1.2 mmol), H2O (10 ml), and HClO4 (0.385 mmol) was sealed in a 20 ml teflon-lined reaction vessel at 443 K for 5 days then slowly cooled to room temperature. The product was collected by filtration, washed with water and air-dried. Colourless block crystals suitable for X-ray analysis were obtained.

Refinement top

H atoms bonded to C atoms were positioned geometrically and refined as riding, with C–H = 0.93Å and Uiso(H) = 1.2Ueq(C). H atoms of water molecules were found from difference Fourier maps and refined isotropically with a restraint of O–H = 0.82Å and Uiso(H) = 1.5Ueq(O).

Structure description top

In the past few years, lanthanide-transition metal heterometallic complexs with bridging multifunctionnal organic ligands are of increasing interest, not only because of their impressive topological structures, but also due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probe (Cheng et al., 2006; Kuang et al., 2007; Sun et al., 2006; Zhu et al., 2010). As an extension of this research, the structure of the title compound, a new heterometallic coordination polymer, has been determined which is presented in this artcle.

The asymmetric unit of the title compound (Fig. 1), contains three AgI ions, one YbIII ion, two imidazole-4,5-dicarboxylate ligands, and two coordinated water molecules. The YbIII are eight-coordinated, in a bicapped trigonal prismatic coordination geometry, by six O atoms from three imidazole-4,5-dicarboxylate ligands and two coordinated water molecules. The two-coordinated AgI ions exhibit three types of coordination environment. One AgI ion is linear bonded to two N atoms from two different imidazole-4,5-dicarboxylate ligands with N2iv-Ag3-N3 angle 176.23 (17)°. The other two AgI ions are coordinated in a bow-like conformation each by one O atom and one N atom from two different imidazole-4,5-dicarboxylate ligands with N-Ag-O angle 157.45 (14)° and 159.80 (14)°, respectively. These metal coordination units are connected by bridging imidazole-4,5-dicarboxylate ligands, generating a two-dimensional heterometallic layer. The two-dimensional layers are stacked along a axis via O–H···O hydrogen-bonding interactions to generate the three-dimensional framework (Table 1 and Fig. 2). Symmetry code: (iv) -x, y, -z+3/2.

For the application of lanthanide–transition metal heterometallic complexes with bridging multifunctional organic ligands, see: Cheng et al. (2006); Kuang et al. (2007); Sun et al. (2006); Zhu et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius. Symmetry codes: (i) -x, -y, 1-z; (ii) x, 1+y, z; (iv) -x, y, 3/2-z.
[Figure 2] Fig. 2. A view of the three-dimensional structure of the title compound. The hydrogen bonding interactions showed as broken lines.
Poly[diaqua(µ5-1H-imidazole-4,5-dicarboxylato)(µ4-1H- imidazole-4,5-dicarboxylato)trisilver(I)ytterbium(III)] top
Crystal data top
[Ag3Yb(C5HN2O4)2(H2O)2]F(000) = 3080
Mr = 838.84Dx = 3.602 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4947 reflections
a = 12.6850 (7) Åθ = 2.9–28.1°
b = 8.6643 (5) ŵ = 9.80 mm1
c = 28.4015 (16) ÅT = 295 K
β = 97.686 (1)°Block, colourless
V = 3093.5 (3) Å30.20 × 0.18 × 0.17 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
2794 independent reflections
Radiation source: fine-focus sealed tube2629 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scanθmax = 25.2°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1315
Tmin = 0.162, Tmax = 0.189k = 108
7613 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.0213P)2 + 8.4063P]
where P = (Fo2 + 2Fc2)/3
2794 reflections(Δ/σ)max = 0.001
265 parametersΔρmax = 0.58 e Å3
4 restraintsΔρmin = 1.29 e Å3
Crystal data top
[Ag3Yb(C5HN2O4)2(H2O)2]V = 3093.5 (3) Å3
Mr = 838.84Z = 8
Monoclinic, C2/cMo Kα radiation
a = 12.6850 (7) ŵ = 9.80 mm1
b = 8.6643 (5) ÅT = 295 K
c = 28.4015 (16) Å0.20 × 0.18 × 0.17 mm
β = 97.686 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2794 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2629 reflections with I > 2σ(I)
Tmin = 0.162, Tmax = 0.189Rint = 0.026
7613 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0244 restraints
wR(F2) = 0.055H atoms treated by a mixture of independent and constrained refinement
S = 1.19Δρmax = 0.58 e Å3
2794 reflectionsΔρmin = 1.29 e Å3
265 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb10.062585 (17)0.17662 (3)0.534835 (7)0.01157 (8)
Ag10.08531 (4)0.52086 (5)0.638040 (16)0.02463 (12)
Ag20.18074 (4)0.78628 (5)0.663984 (15)0.02278 (12)
Ag30.12303 (3)0.14446 (5)0.739965 (13)0.02025 (11)
C10.1656 (4)0.4861 (6)0.59111 (17)0.0128 (11)
C20.1594 (4)0.4326 (6)0.64091 (16)0.0114 (10)
C30.1486 (4)0.4663 (6)0.71522 (17)0.0163 (11)
H30.14340.51430.74410.020*
C40.1601 (4)0.2898 (6)0.66262 (17)0.0119 (10)
C50.1733 (4)0.1266 (6)0.64641 (17)0.0120 (11)
C60.0760 (4)0.1879 (6)0.62733 (17)0.0121 (11)
C70.0744 (4)0.0214 (6)0.64145 (16)0.0124 (11)
C80.0872 (4)0.1680 (6)0.68906 (18)0.0173 (12)
H80.09330.22300.71670.021*
C90.0685 (4)0.1163 (6)0.61662 (17)0.0114 (10)
C100.0598 (4)0.1506 (6)0.56693 (17)0.0121 (11)
O10.1765 (3)0.6248 (4)0.58442 (12)0.0255 (10)
O20.1559 (3)0.3874 (4)0.55739 (12)0.0172 (8)
O30.1588 (3)0.0949 (4)0.60304 (12)0.0169 (8)
O40.1991 (3)0.0300 (4)0.67886 (12)0.0196 (8)
O50.1075 (3)0.2825 (4)0.65620 (13)0.0200 (8)
O60.0463 (3)0.2298 (4)0.58910 (12)0.0171 (8)
O70.0256 (3)0.0485 (4)0.54003 (11)0.0164 (8)
O80.0893 (3)0.2776 (4)0.54873 (12)0.0193 (8)
N10.1517 (3)0.5441 (5)0.67471 (14)0.0148 (9)
N20.1537 (4)0.3137 (5)0.71038 (14)0.0149 (9)
N30.0869 (3)0.0151 (5)0.68748 (14)0.0140 (9)
N40.0780 (3)0.2366 (5)0.64767 (14)0.0142 (9)
O1W0.2245 (3)0.0680 (5)0.51848 (13)0.0221 (9)
H1W0.275 (4)0.079 (8)0.5390 (17)0.033*
H2W0.249 (5)0.075 (8)0.4936 (13)0.033*
O2W0.0917 (4)0.2942 (6)0.50178 (14)0.0347 (11)
H4W0.130 (5)0.298 (9)0.4768 (15)0.052*
H3W0.138 (5)0.331 (8)0.515 (3)0.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.01795 (13)0.01015 (13)0.00699 (12)0.00344 (9)0.00307 (8)0.00139 (8)
Ag10.0334 (3)0.0086 (2)0.0326 (3)0.00032 (18)0.00726 (19)0.00049 (18)
Ag20.0308 (3)0.0085 (2)0.0290 (2)0.00071 (17)0.00390 (19)0.00148 (17)
Ag30.0304 (3)0.0191 (2)0.0125 (2)0.00166 (18)0.00737 (17)0.00609 (16)
C10.015 (3)0.010 (3)0.012 (2)0.003 (2)0.001 (2)0.001 (2)
C20.015 (3)0.011 (3)0.008 (2)0.001 (2)0.0039 (19)0.000 (2)
C30.027 (3)0.015 (3)0.008 (2)0.002 (2)0.007 (2)0.003 (2)
C40.020 (3)0.008 (3)0.009 (2)0.002 (2)0.004 (2)0.0018 (19)
C50.010 (2)0.012 (3)0.014 (3)0.002 (2)0.0024 (19)0.001 (2)
C60.016 (3)0.010 (3)0.010 (2)0.002 (2)0.001 (2)0.001 (2)
C70.018 (3)0.011 (3)0.008 (2)0.003 (2)0.0023 (19)0.0003 (19)
C80.026 (3)0.012 (3)0.015 (3)0.000 (2)0.009 (2)0.003 (2)
C90.012 (3)0.008 (3)0.015 (2)0.003 (2)0.004 (2)0.002 (2)
C100.011 (3)0.011 (3)0.013 (2)0.001 (2)0.001 (2)0.001 (2)
O10.052 (3)0.010 (2)0.0124 (19)0.0062 (18)0.0007 (18)0.0020 (15)
O20.030 (2)0.014 (2)0.0091 (17)0.0080 (16)0.0047 (15)0.0025 (15)
O30.026 (2)0.015 (2)0.0093 (17)0.0017 (16)0.0018 (14)0.0024 (15)
O40.039 (2)0.0067 (19)0.0121 (18)0.0035 (17)0.0004 (16)0.0005 (15)
O50.035 (2)0.009 (2)0.0194 (19)0.0001 (16)0.0143 (17)0.0007 (16)
O60.026 (2)0.014 (2)0.0124 (18)0.0004 (16)0.0070 (15)0.0023 (15)
O70.026 (2)0.015 (2)0.0091 (17)0.0094 (16)0.0056 (15)0.0020 (15)
O80.029 (2)0.013 (2)0.0175 (19)0.0060 (16)0.0063 (16)0.0095 (16)
N10.022 (2)0.011 (2)0.011 (2)0.0014 (19)0.0023 (17)0.0002 (18)
N20.024 (2)0.013 (2)0.008 (2)0.0016 (18)0.0048 (17)0.0012 (17)
N30.023 (2)0.010 (2)0.010 (2)0.0014 (18)0.0071 (18)0.0000 (17)
N40.022 (2)0.007 (2)0.015 (2)0.0018 (18)0.0071 (18)0.0032 (17)
O1W0.019 (2)0.032 (2)0.015 (2)0.0022 (18)0.0042 (15)0.0015 (18)
O2W0.039 (3)0.052 (3)0.014 (2)0.024 (2)0.0048 (18)0.008 (2)
Geometric parameters (Å, º) top
Yb1—O22.224 (4)C4—N21.385 (6)
Yb1—O62.251 (3)C4—C51.504 (7)
Yb1—O32.261 (3)C5—O31.251 (6)
Yb1—O72.263 (3)C5—O41.255 (6)
Yb1—O2W2.293 (4)C6—O61.249 (6)
Yb1—O1W2.361 (4)C6—O51.262 (6)
Yb1—O7i2.389 (3)C6—C71.496 (7)
Yb1—O8i2.594 (4)C7—N31.375 (6)
Yb1—C10i2.895 (5)C7—C91.393 (7)
Yb1—Yb1i3.8682 (5)C8—N31.326 (7)
Ag1—N4ii2.119 (4)C8—N41.336 (7)
Ag1—O52.157 (4)C8—H80.9300
Ag2—N12.159 (4)C9—N41.381 (6)
Ag2—O4ii2.160 (4)C9—C101.461 (7)
Ag2—Ag3iii3.3055 (6)C10—O81.251 (6)
Ag3—N2iv2.107 (4)C10—O71.283 (6)
Ag3—N32.127 (4)C10—Yb1i2.895 (5)
Ag3—Ag3iv3.0969 (9)O4—Ag2vi2.160 (3)
Ag3—Ag2v3.3055 (6)O7—Yb1i2.389 (3)
C1—O11.228 (6)O8—Yb1i2.594 (4)
C1—O21.277 (6)N2—Ag3iv2.107 (4)
C1—C21.500 (7)N4—Ag1vi2.119 (4)
C2—N11.375 (6)O1W—H1W0.82 (2)
C2—C41.382 (7)O1W—H2W0.81 (2)
C3—N21.331 (7)O2W—H4W0.81 (2)
C3—N11.339 (7)O2W—H3W0.81 (2)
C3—H30.9300
O2—Yb1—O689.21 (13)N1—C2—C4108.3 (4)
O2—Yb1—O378.74 (13)N1—C2—C1117.3 (4)
O6—Yb1—O377.75 (13)C4—C2—C1134.4 (5)
O2—Yb1—O7159.69 (12)N2—C3—N1113.8 (4)
O6—Yb1—O777.17 (13)N2—C3—H3123.1
O3—Yb1—O783.64 (13)N1—C3—H3123.1
O2—Yb1—O2W98.34 (17)C2—C4—N2107.8 (4)
O6—Yb1—O2W67.73 (13)C2—C4—C5134.4 (4)
O3—Yb1—O2W145.43 (14)N2—C4—C5117.6 (4)
O7—Yb1—O2W90.43 (17)O3—C5—O4124.5 (5)
O2—Yb1—O1W86.59 (14)O3—C5—C4120.0 (4)
O6—Yb1—O1W147.79 (13)O4—C5—C4115.5 (4)
O3—Yb1—O1W70.10 (13)O6—C6—O5122.3 (5)
O7—Yb1—O1W96.89 (14)O6—C6—C7121.2 (4)
O2W—Yb1—O1W144.46 (13)O5—C6—C7116.5 (4)
O2—Yb1—O7i132.22 (12)N3—C7—C9107.8 (4)
O6—Yb1—O7i129.72 (12)N3—C7—C6118.5 (4)
O3—Yb1—O7i129.53 (13)C9—C7—C6133.6 (4)
O7—Yb1—O7i67.50 (13)N3—C8—N4114.5 (5)
O2W—Yb1—O7i77.69 (15)N3—C8—H8122.8
O1W—Yb1—O7i73.28 (13)N4—C8—H8122.8
O2—Yb1—O8i81.79 (11)N4—C9—C7107.9 (4)
O6—Yb1—O8i136.44 (12)N4—C9—C10119.2 (4)
O3—Yb1—O8i140.18 (13)C7—C9—C10132.8 (4)
O7—Yb1—O8i118.45 (11)O8—C10—O7117.8 (4)
O2W—Yb1—O8i71.58 (14)O8—C10—C9121.4 (5)
O1W—Yb1—O8i74.40 (13)O7—C10—C9120.7 (4)
O7i—Yb1—O8i51.43 (11)O8—C10—Yb1i63.6 (3)
O2—Yb1—C10i106.65 (13)O7—C10—Yb1i54.5 (2)
O6—Yb1—C10i140.62 (13)C9—C10—Yb1i171.2 (4)
O3—Yb1—C10i139.85 (13)C1—O2—Yb1139.5 (3)
O7—Yb1—C10i93.32 (13)C5—O3—Yb1140.0 (3)
O2W—Yb1—C10i74.33 (14)C5—O4—Ag2vi119.8 (3)
O1W—Yb1—C10i70.57 (13)C6—O5—Ag1113.8 (3)
O7i—Yb1—C10i25.90 (12)C6—O6—Yb1145.0 (3)
O8i—Yb1—C10i25.60 (12)C10—O7—Yb1147.5 (3)
O2—Yb1—Yb1i164.48 (9)C10—O7—Yb1i99.6 (3)
O6—Yb1—Yb1i105.35 (9)Yb1—O7—Yb1i112.50 (13)
O3—Yb1—Yb1i109.17 (9)C10—O8—Yb1i90.8 (3)
O7—Yb1—Yb1i34.79 (8)C3—N1—C2105.0 (4)
O2W—Yb1—Yb1i82.69 (13)C3—N1—Ag2129.5 (4)
O1W—Yb1—Yb1i83.82 (10)C2—N1—Ag2123.7 (3)
O7i—Yb1—Yb1i32.71 (8)C3—N2—C4105.0 (4)
O8i—Yb1—Yb1i83.89 (8)C3—N2—Ag3iv127.3 (3)
C10i—Yb1—Yb1i58.56 (10)C4—N2—Ag3iv126.3 (3)
N4ii—Ag1—O5157.46 (14)C8—N3—C7105.3 (4)
N1—Ag2—O4ii159.80 (14)C8—N3—Ag3128.6 (3)
N1—Ag2—Ag3iii70.99 (11)C7—N3—Ag3125.5 (3)
O4ii—Ag2—Ag3iii100.58 (10)C8—N4—C9104.6 (4)
N2iv—Ag3—N3176.23 (17)C8—N4—Ag1vi123.2 (3)
N2iv—Ag3—Ag3iv98.55 (12)C9—N4—Ag1vi132.2 (3)
N3—Ag3—Ag3iv79.79 (12)Yb1—O1W—H1W116 (5)
N2iv—Ag3—Ag2v89.30 (12)Yb1—O1W—H2W126 (5)
N3—Ag3—Ag2v89.89 (11)H1W—O1W—H2W105 (6)
Ag3iv—Ag3—Ag2v140.588 (19)Yb1—O2W—H4W140 (6)
O1—C1—O2122.7 (5)Yb1—O2W—H3W128 (6)
O1—C1—C2118.0 (5)H4W—O2W—H3W90 (7)
O2—C1—C2119.2 (4)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z; (iv) x, y, z+3/2; (v) x1/2, y1/2, z; (vi) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O8iii0.82 (2)2.11 (5)2.751 (5)136 (6)
O1W—H2W···O2vii0.81 (2)2.03 (3)2.823 (5)165 (6)
O2W—H4W···O1viii0.81 (2)1.88 (4)2.634 (5)154 (8)
Symmetry codes: (iii) x+1/2, y+1/2, z; (vii) x+1/2, y+1/2, z+1; (viii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ag3Yb(C5HN2O4)2(H2O)2]
Mr838.84
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)12.6850 (7), 8.6643 (5), 28.4015 (16)
β (°) 97.686 (1)
V3)3093.5 (3)
Z8
Radiation typeMo Kα
µ (mm1)9.80
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.162, 0.189
No. of measured, independent and
observed [I > 2σ(I)] reflections
7613, 2794, 2629
Rint0.026
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.055, 1.19
No. of reflections2794
No. of parameters265
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 1.29

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O8i0.82 (2)2.11 (5)2.751 (5)136 (6)
O1W—H2W···O2ii0.81 (2)2.03 (3)2.823 (5)165 (6)
O2W—H4W···O1iii0.81 (2)1.88 (4)2.634 (5)154 (8)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z+1; (iii) x, y+1, z+1.
 

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities of South China University of Technology (grant No. 2012ZM0072).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526–m2527.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-Q., Zhang, J. & Yang, G.-Y. (2006). Chem. Commun. pp. 4700–4702.  Web of Science CSD CrossRef Google Scholar
First citationZhu, L.-C., Zhao, Y., Yu, S.-J. & Zhao, M.-M. (2010). Inorg. Chem. Commun. 13, 1299–1303.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds